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ABSTRACT 
 
Folding into complex 3D structures, protein molecules are 
responsible for carrying out nearly all of the essential 
functions in living cells by properly binding to other 
molecules with a number of chemical bonds connecting 
neighboring atoms. Locations of these atoms are called 
the binding sites. To help biologists identify the functions 
of unknown proteins and to discover new functions of 
known proteins, it is desirable to retrieve common binding 
sites among proteins. We propose to use the geometric 
hashing method to perform protein surface matching to 
identify similar binding sites. Furthermore, two tech-
niques, α-hull and 3D reference frames, are adopted to 
reduce the complex computation.  
 

 
1. INTRODUCTION 

 
It is the geometrical shape that determines if a protein 

can bind to another molecule. Consequently, proteins 
sharing resembling structures may perform similar func-
tions. It is desirable to find common substructures among 
proteins rather than the whole structures. To perform sub-
structure matching, Fischer et al. [1] have exploited the 
geometric hashing paradigm previously introduced in 
computer vision [2]. Their method is based on pre-
processing and recognition algorithms of complexity 

)( 3nO , where n  is the number of residues of interest. 
Later, Pennec and Ayache [3] introduced a 3D reference 
frame attached to each residue, which drastically reduces 
the complexity of recognition. Andrew et al. also use the 
geometric hashing algorithm for deriving 3D coordinate 
templates for searching structural databases[4]. They in-
vestigated those enzymes with the His-based “catalytic 
triad” active site.  

Other work deals with the protein structure represen-
tation. Edelsbrunner proposed a α-hull theory [5], which 
interprets a set of discrete points as a shape. The α-hull is 
able to identify cavities and protrusions on the protein 
surfaces to model the protein shape. 

With increasing 3D biological molecular structures 
derived and deposited at the Protein Data Bank (PDB) [6], 
interesting similarities among proteins can be found based 
on the 3D geometry. However, the geometric hashing 

algorithm is very computational expensive. Base on the 
existing method, our work is trying to reduce the compu-
tation and to find more general cases for enzyme active 
binding sites. From a PDB file we can get the protein 
binding site information, which is the position of certain 
molecules that actually interact with the substrates or 
ligands. The binding site is represented as several residues 
in the protein. Since most of the proteins’ binding sites are 
on the surface, in order to simplify computation only 
those residues on the surface need to be considered as 3D 
reference frames to generate the geometric hashing table. 
Then the residues on the surface can be extracted with the 
help of surface triangulation generated by the α-hull al-
gorithm. After this, geometric hashing algorithm is per-
formed to find the surface matching of proteins.  

This paper is organized as follows. In Section 2 we 
discuss the algorithm. Some experiment results with the 
Enzyme Classification Database are provided in Section 
3. Conclusions and extension of our work are in Section 
4. 
 
 

2. PROTEIN MODELING AND MATCHING 
STRATEGY 

 
2.1 Geometric hashing algorithm 

 
The geometric hashing algorithm was introduced [2] for 
model-based recognition in computer vision. It is com-
posed of two stages: pre-processing and recognition. The 
basic idea is to store in a database at pre-processing time a 
redundant representation of the models by rigid transfor-
mation, based on local features to allow for occlusion. By 
doing so, the representation of the query protein computed 
at recognition time will present some similarity with that 
of some database proteins.  Figure 1 shows the flowchart 
of our algorithm. 
Preprocessing. Local features are extracted from each 
protein structure. Each residue in the protein can be 
treated as a 3D reference frame, which we will discuss 
later. With this frame, we have three orthonormal vectors 
to describe other residues of the protein in this particular 
3D coordinate system. Based on the basis, the 3D posi-
tions of all the residues are the features, which are in-
serted into the hashing table with an index  (protein, resi-
due). This step is performed without any knowledge of the 



 
 

Figure 1. Flowchart of the proposed algorithm 
 
database objects to be matched and hence can be done 
once for all. 
Recognition. Choose a reference frame of the query pro-
tein. For each different frame in the hashing table, we 
accumulate the number of compatible 3D features, which 
is called voting.  This will be the matching score of these 
two frames. The process is repeated with each frame of 
the query protein taken as the reference frame. The output 
is the list of matching reference frames of query and data-
base proteins with their associated score. We keep the 
matches with high scores. 

At the recognition stage, some other issues need to 
be considered. Due to the conformation changes when a 
protein binds to its ligands and the low resolution of pro-
tein structure determination, there may be certain variation 
between matching reference frames. On the other hand, it 
is also possible to incorrectly match geometrically similar 
proteins with totally different chemical properties. In or-
der to enhance the matching performance, we adopt a fre-
quently used similarity matrix Dayhoff PAM250 [7] for 
sequence alignment. When two reference frames match 
each other, we accumulate the similarity score by looking 
up the similarity matrix. We set a threshold distance 2Å, 
beyond which residues will not be considered. The match-
ing residue is chosen as with the maximum of similarity 
score divided by the distance while distance is greater 
than 1Å. While smaller then 1Å, the distance does not 
affect the matching score. If no residues can be matched 
within the threshold distance, we accumulate it with the 
minimal score, which is –8, of the similarity matrix. The 
final score is normalized for perfect matching to have a 
unity score. In addition, in order to simplify the heavy 
computation of geometric hashing, the α-hull algorithm 
is applied before feature extraction.  We will discuss it in 
the next subsection. 

 
2.2 Alpha hull algorithm 

 
In molecular biology, the van der Waals surface [8] is 
often used for molecular modeling. The α-hull theory can 
be applied to model the molecular surfaces with the van 
der Waals surface. With a public domain α-hull algo-
rithm [8], we can extract the surface atoms and, further, 
the surface residues from a given PDB file. This step can 
reduce the computation in geometric hashing algorithm. 
In addition, since in PDB files the crystallized proteins 
usually have ligands attached at the binding site, we 
should remove the ligands first before we apply this algo-
rithm. 
 

2.2 3D Reference frame 
 

Proteins are composed of possibly several chains of resi-
dues linked to each other by peptide bonds. The backbone 
of the protein is composed of Carbon )( αC  atoms. The 
geometry of the atoms attached to the αC  is perfectly de-
termined. In particular, the three atoms N, αC , C form a 
known triangle from which we can define a frame (a point 
and a trihedron; see Figure 2). It can uniquely determine 
the position and orientation of a residue in space [5]. With 
this mechanism, we can now choose a single residue as a 
basis. Within each protein, all the surface residues ob-
tained by the α-hull algorithm are used as the basis to 
generate the hashing table at the pre-processing step of the 
geometric hashing algorithm. 
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Figure 2. Geometry of a residue and the definition of a basis 

 
 

3. EXPERIMENT RESULTS 
 

An Enzyme Structure Classification Database is available 
[9]. There are 8390 PDB enzyme entries in the PDB (as of 
January 2002) including 8059 separate PDB files. Some 
entries have no corresponding files since for these entries 
only protein sequences and functions are known but not 
the 3D structures, while some other entries may have 
more than 30 files. Proteins in the same entry share the 
same function. One protein can have multiple PDB files 
since different crystallizations of this protein can be de-
rived under different environments or while combining 



E.C. number PDB ID Function Description SWISS-PORT Code No. of Residues  Score 
E.C.5.2.1.8 1bck Peptidylprolyl isomerase CYPH_HUMAN 165 1.000000
E.C.5.2.1.8 1cyn Peptidylprolyl isomerase CYPB_HUMAN 178 1.000000
E.C.5.2.1.8 1dyw Peptidylprolyl isomerase CYP3_CAEEL 172 1.000000
E.C.5.2.1.8 1ihg Peptidylprolyl isomerase CYP4_BOVIN 364 0.743590
E.C.5.2.1.8 1a7x Peptidylprolyl isomerase FKB1_HUMAN 214 -0.492383

Table 1: Part of high scoring proteins given query 1bck 
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Table 2: Precision Recall Graph of two 

queries: 1a7x and1bck 
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Table 3: Hit-and-miss bars for query pro-
tein 1a7x. F set has many successful hits. 
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Table 4: Hit-and-miss bars for query pro-
tein 1bck. C set has many successful hits. 

with different ligands. We can tell whether two proteins 
are the same by using the SWISS-PORT codes [10], 
which are the identifications of proteins. To get a query 
model, we select one of those proteins with binding site 
information. Currently, 20% (3122/16496) of the PDB 
files already have this information. We choose 200 pro-
teins from Enzyme Database, with 85 of them are in Set 
E.C. 5.2.1.8., which contains peptidylprolyl isomerase 
proteins with similar functions. The reason to choose 
this set is that some enzymes here have clear and proper 
binding sites so that we can use them as queries. In our 
experiments, we would like to show that most of the 
proteins within the same set could be retrieved with high 
similarity.  

In the first experiment, as shown in Table 1, we 
choose protein “1bck” as the query. This protein has one 
binding site with 13 residues “RFMQGANAQFWLH”. 
At the first three rows, by the SWISS-PORT code and 
the number of residues we can tell that the target pro-
teins (at 2nd and 3rd row) are not the same as the query 
protein, but they get perfect match with score 1! These 
are very good examples illustrating that different but 
similar proteins, with the same function and binding 
sites, can be retrieved by the proposed algorithm. Al-
though there is one residue in the protein 1ihg cannot be 
matched with any of the query proteins’ residues in the 
3D space, the 4th row shows that, this protein still gets a 
high matching score 0.74. 

Unfortunately, the protein at the 5th row can’t match 
well. To study this further, we use 1a7x 
(FKB1_HUMAN) and 1bck (CYPH_HUMAN) as the 
query respectively and obtain the corresponding preci-
sion-recall plots as Table 2. There are 200 proteins in 
this experiment and we want to retrieve the 85 proteins 

with the same function. An interesting result shows that, 
1a7x can retrieve those proteins with SWISS-PROT 
code starting from F very well, such as FKB2_HUMAN, 
FKBP_H, and FKBP_BOVIN. On the other hand, 1bck 
can retrieve those proteins with SWISS-PROT code 
starting from C very well, such as CYPB_ECOLI, 
CYP4_BOVIN, and CYPH_H. We manually group 
those SWISS-PROT codes into set C (starting from C), 
F (starting from F), N/A (without SWISS-PROT code) 
and Others (other miscellanary codes). Given the thresh-
old t, a hit happens if the score is larger than the thresh-
old. In this experiment t is 0.4. Hit-and-miss bars can be 
drawn in Table 3 and Table 4. Most of the proteins can 
be retrieved by these two queries. A reasonable explana-
tion for this is that, proteins with different shapes may 
still perform the same function. Some proteins in F, C 
and Other sets are structurally quite different or have 
large conformational change. Moreover, if some proteins 
without the SWISS-PROT code can still be retrieved, it 
is possible that we have found their functions. 

 

 

 

 
 
 
 
 

 
 
 
Table 5:  
Precision-Recall 
Plots 



We also compare the proposed algorithmthis method with 
our previous work. [11] Previously we only consider the 
whole protein structure similarity. Table 5, the precision- 
recall graph, shows that considering the substructure 
matching is much better. 
 
 

4. DISCUSSION AND CONCLUSIONS 
 
There are several contributions of this work. First, due to 
the fact that the binding sites are on the protein surface, 
we use the α-hull algorithm to extract the surface points 
and surface residues to simplify the computation. Second, 
in [3] they proposed a 6D (3 translations and 3 rotations) 
index for the geometric hashing, while we used a 3D sys-
tem where only translation components are considered. As 
a result, the computation time required for the matching 
can  be drastically reduced. Third, we adopted the Dayoff 
PAM250 similarity matrix to perform our 3D matching, 
which enhances the matching performance. Without using 
the similarity matrix, the matching is likely to yield geo-
metrically similar proteins with totally different chemical 
properties. Finally, the algorithm can deal with protein 
structures that are not precisely determined, as long as the 
conformational deformations are small. 

There are several possible ways to extend our work. 
First, due to the limited binding site information, we could 
only choose a small portion of proteins as the queries. 
According to many biologists, if the binding site informa-
tion for a certain protein is not available, we can use the 
binding site information of the ligand for that protein as a 
close approximation. Second, when bonded with other 
molecules, proteins may experience conformation changes. 
Although our algorithm can handle proteins with small 
conformation changes, new theories should be developed 
to tackle proteins with large conformation changes. Fur-
thermore, proteins totally different in shape can still per-
form same functions. Since our algorithm is suitable for 
local and precise matching of the binding sites, it is hard 
to handle large conformation changes and proteins with 
different shapes altogether. In addition, since people have 
classified proteins based on sequence alignments and 3D 
shape approximation, it is possible to introduce a new 
classification method using protein surfaces. 

In molecular biology, to identify protein functions is 
essential to drug design and disease prediction. Biologists 
suggest that a large amount of protein structures will be 
crystallized without knowing their functions in the next 
decade. Our algorithm therefore is very promising to help 
identify the functions of unknown proteins and even dis-
cover new function of known proteins. It will also save 
time for biologists by reducing their search space in an 

effort to find good candidates to be used in lab experi-
ments to identify protein functions. To achieve this, our 
algorithm can be applied to different E.C. sets and if some 
proteins get high similarity scores, it is possible that some 
new functions of the proteins have been discovered.  
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