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ABSTRACT 

In this paper, we propose an efficient calibration method to 
estimate the pointing direction via a human pointing gesture to 
facilitate robot interaction. The ways in which pointing gestures 
are used by humans to indicate an object are individually diverse. 
In addition, people do not always point at the object carefully, 
which means there is a divergence between the line from the eye to 
the tip of the index finger and the line of sight. Hence, we focus on 
adapting to these individual ways of pointing to improve the 
accuracy of target object identification by means of an effective 
calibration process. We model these individual ways as two offsets, 
the horizontal offset and the vertical offset. After locating the head 
and fingertip positions, we learn these offsets for each individual 
through a training process with the person pointing at the camera. 
Experimental results show that our proposed method outperforms 
other conventional head-hand, head-fingertip, and eye-fingertip-
based pointing recognition methods.  

Index Terms— Pointing Gesture, Object Identification, 
Calibration, Robot Interaction 
 

1. INTRODUCTION 
 
Human pointing is an intuitive gesture used to indicate direction. 
When a user points at something, if a robot knows the plane on 
which the object exists (ex. floor, table, or wall), the robot can 
locate the object through the intersection between the pointing 
direction and the plane. After doing this, the robot can perform 
such tasks as fetching the object and discarding it. However, the 
identification of target objects from the user’s pointing gesture is 
still a challenging problem for robots, sometimes even for humans. 
One of the intrinsic problems is how to adapt to individual ways of 
pointing when trying to recognize the pointing direction. For 
example, not all users indicate the position of the object with a 
careful pointing gesture that coincides with the direction of the 
gaze. In this case, the target object is not on the line extending 
forward from the dominant eye to the tip of index finger. In other 
words, sometimes the fingertip is not on the line from the dominant 
eye to the object: the line of sight. Figure 1 shows this situation. 
We define the offset between the target object position and the eye-
fingertip line as the individual way, and it is split into two offsets, 
horizontal offset 𝑜ℎ and vertical offset 𝑜𝑣. If these offsets become 
too great to ignore, the robot will fail to identify the position of the 
target object even if the robot is able to extract the eye and the 
fingertip positions precisely. For example, when the user points to 
the object with a small pointing gesture [9], these offsets tend to be 
greater. To overcome this problem, one solution is to adapt to the 
pointing gesture ways by using regression methods [3, 5]. After the 
user points to several objects whose positions are given, the robot 
can estimate the pointing direction using these regression models. 
However, in this case, another problem arises. The problem is how 

the robot indicates the position of the object to the user during the 
learning step. In the one study [5], they used screens to show the 
target object positions to the users. In another study [3], the users 
knew the positions of the objects and the users were informed of 
what the target objects were. In real situations, it is not an easy task 
for users to set up the circumstance for obtaining the learned data 
with some given objects. 

In this paper, we propose an efficient calibration method to 
estimate the human pointing direction to facilitate robot interaction. 
Our main purpose is to adapt to individual pointing ways so that 
the horizontal and vertical offsets can be easily compensated for. In 
our preliminary experiments, we assume that the horizontal offset 
𝑜ℎ is relatively shorter than the vertical offset 𝑜𝑣. Hence, we focus 
on how to calibrate the vertical offset for individual ways. The 
proposed method requires only a pointing gesture to the center of 
an RGB-D camera.  
 

2. RELATED WORK 
 
There have been many studies in the area of pointing direction 
recognition for robot interaction. In the last decade, some studies 
focused on how to detect human bodies and how to recognize 
pointing gestures [7, 10, 12]. However, in an indoor situation, The 
Microsoft Kinect and its SDK [14] have sufficient accuracy for 
human detection and pointing gesture detection. Thus, we can use 
the Kinect to detect human bodies and to recognize pointing 
gestures in order to focus on estimating the pointing direction. 

Regarding the estimation of pointing direction, roughly speaking, 
the direction is approximately along the line from the user’s 
dominant eye position to the fingertip position. However, because 
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it is still a difficult problem to extract these two small positions, 
there are many alternative methods for estimating the pointing 
direction; head-hand line [2, 6, 8], head-finger line [4, 6, 13], 
forearm direction [1, 6, 8], and head orientation [8, 11] methods. 
Regarding the head orientation approach, this method does not use 
the hand position so we need to obtain more information to identify 
the target object, for example, speech recognition to obtain the 
object features [11]. Regarding the forearm direction, it is useful to 
indicate the position to which the robot should go [1]. However, in 
studies [6, 8], it was concluded that the head-hand or head-finger 
methods should be used to identify the object rather than using the 
forearm direction method. Thus, we use the head-finger line 
method. However, these conventional methods [4, 6, 13] do not 
take individual ways into account.  
 Some studies considered individual ways using regression models 
[3, 5]. These methods require a large amount of pointing gesture 
data with given objects for learning. Unlike the calibration for 
touch panel devices, in these methods, it is a time-consuming task 
for users to set up the learning situation with several known objects. 
We therefore propose a simple calibration method without any 
given object positions but instead use the position corresponding to 
the center of the camera.  
 

3. PROPOSED METHOD 
 
Our proposed method utilizes the user’s pointing gesture to the 
center of the camera to adapt to the individual ways using Kinect 
skeletal data. During the pointing gesture, we extract the head and 
fingertip positions, and calculate the two offsets; horizontal offset 
𝑜ℎ  and vertical offset 𝑜𝑣 . These two offsets are the distances 
between the user’s fingertip position and the line of the head and 
the center of the camera. Our main contribution is that we do not 
need to collect a lot of learning data obtained from pointing 
gestures with several given object positions, and we do not require 
any extra screen or projector devices to indicate the object 
positions to the user during the learning steps. If the robot needs to 
obtain the user’s calibration data, the robot can just say, “please 
point to me for calibration” to ask the user to point at the robot’s 
camera. It is easy for users to detect the robot camera position and 
to point at the robot. 
  In our study, we use the Kinect camera as the robot camera. In 
addition, we use the Kinect coordinate as the world coordinate, the 
x-axis points to the left, the y-axis points upward, and the z-axis 
points forward. We set the Kinect horizontally, so the y-axis is 
parallel with the vertical direction. Before using our proposed 
calibration method, some Kinect skeletal data needs to be located 
to improve the accuracy of the pointing direction estimation. Then, 
we first locate the head and fingertip positions. Next, we extract 
the calibration data by using a pointing gesture. Finally, we apply 
them to the pointing gesture, allowing the robot to obtain the user 
pointing direction based on the head and calibrated fingertip line. 
 
3.1. Preliminary arrangements 
3.1.1. Estimation of the head position 
Kinect sometimes fails to estimate the head skeletal position if the 
hand blocks part of the head region through a pointing gesture, or 
if the robot camera captures the user from a side view. The head 
skeletal position error is particularly large along the x  and 
z coordinates. In these cases, we locate the new head position 𝑃ℎ 
aligned with a line from the spine to shoulder-center skeletal 
positions. Figure 2 shows the new head positions. In Fig. 2, the 
yellow dots indicate the original head skeletal positions obtained 

by Kinect. Then, we correct them with regard to the x  and 
z coordinates using the spine and shoulder-center skeletal positions. 
If the spine and shoulder-center skeletal positions are blocked by a 
hand or a forearm, we use the original head skeletal position taken 
from Kinect as the new head position 𝑃ℎ. 
 
3.1.2. Estimation of the fingertip position 
Kinect can also extract human body regions as a point cloud, so 
with these data and skeletal data we extract fingertip position 𝑃𝑓 . 
We simply define the fingertip as the extremity of the human point 
cloud region in the direction from the elbow to hand skeletal 
positions. Kinect sometimes fails to extract edge regions, so if 
there are no candidates for the fingertip positions we just use the 
hand skeletal position as the fingertip position. In most cases, 
fingertip position 𝑃𝑓  is close to the actual fingertip position. 
Furthermore, we calibrate the fingertip position in the next step. 
 
3.2. Calibration for the fingertip and angle 
Using new head position 𝑃ℎ and fingertip position 𝑃𝑓 , we calibrate 
the individual gesture way by means of a pointing gesture that 
points at the center of the camera. We measure the pointing offset 
𝑜𝑝 and the angular offset 𝑜𝜃 for every subject. We describe these 
procedures below.  
 
3.2.1. Estimation of the pointing offset 
Figure 3 shows the definition of pointing offset 𝑜𝑝. This pointing 
offset corresponds to horizontal offset 𝑜ℎ. As we mentioned above, 
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it is difficult to extract the fingertip position. Therefore, we 
calculate an extended fingertip position to compensate for 
individual differences. The extended fingertip position 𝑃𝑒𝑓  is the 
intersection of the plane and the line; the plane is composed of the 
head position 𝑃ℎ , the spine, and the center of the camera. 
Furthermore, the line is parallel to the elbow-hand line from the 
fingertip position. During the action of pointing at the center of the 
camera, the elbow-hand line is almost perpendicular to the camera 
plane. In this case, Kinect sometimes fails to extract these arm 
positions precisely. Hence, we calculate the consistency of the 
positions among the hand, wrist, and elbow. During the pointing 
gesture, these three positions are usually on the same line. 
However, if these positions are inconsistent, we use the original 
fingertip position as the extended fingertip position. For example, 
the wrist position is at a specific distance from the hand-elbow line. 
In this case, we assign the pointing offset 𝑜𝑝 to zero.  
 
3.2.2. Estimation of the angular offset 
After extracting the extended fingertip position, we calculate the 
angular offset 𝑜𝜃. The angular offset 𝑜𝜃 is the angle between two 
lines; the line from the head to the center of the camera, and the 
line from the head to the extended fingertip position. Figure 4 
shows how angular offset is defined. This angular offset 
corresponds to vertical offset 𝑜𝑣 . If the user points at the object 
with just a small pointing gesture [9], this vertical offset is 
relatively large. Even in this case, our method can adapt to a small 
pointing gesture. 
 
3.3. Estimation of the pointing direction 
When we estimate the user pointing direction, we update the 
extended fingertip position by adding the pointing offset 𝑜𝑝 from 
the fingertip position 𝑃𝑓  in the direction of the elbow-hand line. 
Next, we rotate it by angular offset 𝑜𝜃  around the head position 
𝑃ℎ vertically. Then the new extended fingertip position is  𝑝𝑒𝑓′  (in 
Fig. 4). Finally, we define the pointing direction as the line from 
𝑃ℎ to 𝑃𝑒𝑓′ . 

We can extract these two offsets for each frame in a pointing 
gesture to the center of the camera. Then we store the mean values 
of these two offsets respectively for every subject. These two 
means can also take a negative value. While we can calculate the 
mean values, we set threshold ranges for the pointing offset 𝑜𝑝 and 
the angular offset 𝑜𝜃 for each frame. The absolute minimum of the 
pointing offset 𝑜𝑝  is 0.05 m and the absolute minimum of the 
angular offset 𝑜𝜃 is one degree. If the value is under the threshold, 
we assign the value to zero. In this case, the pointing direction can 
be represented by the head and fingertip line because the user 
points to the object carefully. Meanwhile, we assign 0.25 m as the 
absolute maximum of the pointing offset 𝑜𝑝 and ten degrees as the 
absolute maximum of the angular offset 𝑜𝜃 to prevent outliers. 
 

4. EXPERIMENTS AND RESULTS 
4.1. Experimental environment 
In order to evaluate the accuracy of the pointing direction, we 
conducted the experiments in an indoor environment. We assume a 
scenario in which the robot will fetch an object to which a user 
points. In addition, the test objects are relatively small (about a 
three-centimeter cube), and they are all on a table. Figure 5 shows 
the layout of our experiment from above. There are 16 objects 
arranged 4 by 4, and the objects are about 0.25 m apart. The table 
height is 0.7 m. We also checked the accuracy of the pointing 
direction with different camera angles in respect to body 
orientation. We set up cameras in three different locations: frontal, 
quarter, and side views. All camera height positions were 1 m. We 
used a Kinect camera, and then we asked the subjects to point at 
each of the objects three times. We measured the object 3d 
positions relative to the camera employing a manual operation 
using Kinect depth data. 
We tested ten subjects, nine males and one female. Their heights 

ranged from 1.6 to 1.9 m. Nine subjects were right-handed and one 
was left-handed. Each calibration datum was captured once from 
the frontal view and all gestures were performed in the standing 
position. We collected data on a total of  480 pointing gestures in 
our experiment. Examples of the captured data are shown in Fig. 6.  
We determined the target object by selecting the one closest to the 

line of the pointing direction. The scores ranged from zero to one 
with one being the best score. We compared the seven methods set 
out below to estimate the pointing direction.  
(1) Kinect head and Kinect hand line-based method (𝐾ℎ𝐾ℎ) 
(2) Kinect head and proposed fingertip line-based method (𝐾ℎ𝑃𝑓),  
(3) Kinect dominant eye position and proposed fingertip line-

based method    (𝐾𝑒𝑃𝑓), 
(4) Proposed method considering just the line from the head to 

the fingertip positions (𝑃ℎ𝑃𝑓),  
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Fig. 5.  Layout of our experiment 
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(5) Proposed method considering the pointing offset (𝑃ℎ𝑃𝑓𝑜) 
(6) Proposed method considering the pointing offset and the 

angular offset (𝑃ℎ𝑃𝑓o𝜃) 
(7) The regression method based on training with 16 objects 

(Train) [3] 
Regarding method (3), the detection accuracy of the eye position is 
sometimes low from (b) Quarter view and (c) Side view. In these 
cases, we use the Kinect head position as the Kinect dominant eye 
position. Moreover, we used the subject’s dominant eye for 
estimation. We split the data into two groups, one for training with 
16 objects for method (7), and the other was used as test data to 
calculate the accuracy of all methods. Regarding training data, we 
segmented the pointing gesture frames manually. This is not 
ground-truth data, but it is close to the precision limit in our 
experiment. 
 

4.2. Results 
Figure 7 shows the average results for object identification 
accuracy using three different camera positions for methods (1) to 
(4), and figure 8 shows the average results for methods (4) to (7). 
The x-axis represents the methods arranged by the perspectives, 
the y-axis represents accuracy, and the error bar represents 
standard error (S.E.). In Fig. 7, it is clear that our proposed 
preliminary arrangements method (4) is able to improve the 
accuracy of object identification for all views, especially for the 
side view. Therefore, this finding suggests that we should use the 
located head position when the user points in a standing position. 
In Fig. 8, we can see that the proposed method has improved 
accuracy compared to method (4): the head-fingertip method. 
Furthermore, the accuracy of the proposed method is close to that 
of the regression method. From the perspective of the time-
consuming task for learning, our method is useful for pointing 
estimation. Note that, from the comparison of the accuracy among 
(a), (b), and (c) camera views, the highest level of accuracy is from 
(b) quarter view, and the accuracy is as about the same as that as 
(c) side view and (a) frontal view. Many conventional methods [1, 
2, 4, 6, 9, 10] captured the pointing gestures from a frontal camera. 
We assume that the easiest way is to detect the users from a frontal 
camera. However, Kinect is now sufficiently robust to detect 
humans from different camera angles. Therefore, if the robot can 
predict the moment when a user points, then moving to the quarter 
view relative to the user’s body orientation will improve the 
accuracy of estimating the pointing direction. 
Next, we discuss the experimental results in more detail. We 

assess the effect of the two offsets. To do this, we arranged four 
objects lengthwise and analyzed how we could discriminate the 
object groups widthwise. In the same way, we arranged four 

objects widthwise and analyzed how we could discriminate the 
object groups lengthwise. Table 1 shows the accuracy of the 
estimation for two groups. From this table, we can see that in terms 
of horizontal accuracy, the accuracy is relatively high for all 
methods. This means horizontal offset 𝑜ℎ is relatively smaller than 
the vertical offset 𝑜𝑣. We assume that it is because we look at the 
tip of the index finger from above during the pointing gesture. 
Furthermore, we can see that our proposed method improves 
accuracy for object groups widthwise. 
 

5. CONCLUSION 
 
In this paper, we proposed a method for estimating users’ pointing 
direction by means of efficient calibration. The proposed method 
uses the head position and the calibrated fingertip position to 
estimate the pointing direction. We calculate the calibrated 
fingertip position while the user points to the center of a camera. 
Our method outperforms other conventional methods; head-hand, 
head-finger, and eye-finger line-based methods.  
We assume that the offsets depend on the relative positions 

among the user, the object, and the camera. In the future, this study 
will be extended to encompass many different positions in an 
indoor situation.  
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Fig. 8. The results of the proposed methods 
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Table 1. The results from the viewpoints of 
the horizontal and vertical offsets 

 

Camera Angles Methods Horizontal Vertical
(1) 0.49 0.24
(2) 0.90 0.69
(3) 0.91 0.64
(4) 0.91 0.75
(5) 0.96 0.81
(6) 0.98 0.82
(7) 0.98 0.85
(1) 0.80 0.24
(2) 0.90 0.71
(3) 0.83 0.67
(4) 0.95 0.83
(5) 0.99 0.88
(6) 0.98 0.90
(7) 0.98 0.93
(1) 0.80 0.24
(2) 0.86 0.40
(3) 0.86 0.40
(4) 0.93 0.83
(5) 0.93 0.87
(6) 0.93 0.89
(7) 0.98 0.86

(a) Frontal

(b) Quarter

(c) Side



6. REFERENCES 
 
[1] M. V. Bergh, D. Carton, R.D. Nijs, N. Mitsou, C. Landsiedel, 
K. Kuehnlenz, D. Wollherr, L. V. Gool and M. Buss, “Real-time 
3D Hand Gesture Interaction with a Robot for Understanding 
Directions from Humans,” 20th IEEE International Symposium on 
Robot and Human Interactive Communication, pp.357-362, 2011. 
 
[2] B. Burger, I. Ferrane, F. Lerasle, and G. Infantes, “Two-handed 
gesture recognition and fusion with speech to command a robot,” 
Autonomous Robots, Vol. 32, Issue 2, pp.129-147, 2012. 
 
[3] D. Droeschel, J. Stuckler, and S. Behnke, “Leaning to Interpret 
Pointing Gestures with a Time-of-Flight Camera,” sixth 
ACM/IEEE International Conference on Human-Robot Interaction 
(HRI), pp.481-488, 2011. 
 
[4] P. Jing and G.Y. Peng, “Human-computer Interaction using 
Pointing Gesture based on an Adaptive Virtual Touch Screen,” 
International Journal of Signal Processing, Image Processing and 
Pattern Recognition, Vol.6, No.4, p. 81-92, 2013. 
 
[5] N. Jojic, B. Brumitt, B. Meyers, S. Harris, and T. Huang, 
“Detection and estimation of pointing gestures in dense disparity 
maps,” Fourth IEEE international Conference on Automatic Face 
and Gesture Recognition, pp.468-475, 2000. 
 
[6] Z. Li and R. Jarvis, “Visual Interpretation of Natural Pointing 
Gestures in 3D Space for Human-Robot Interaction,” Control 
Automation Robotics & Vision (ICARCV), pp.2513-2518, 2010. 
 
[7] C. Martin, F-F. Steege, and H-M. Gross, “Estimation of 
Pointing Poses for Visual Instructing Mobile Robots under Real 
World Conditions,” Robotics and Autonomous Systems, Vol.58 
Issue 2, pp. 174-185, 2010. 
 
[8] K. Nickel and R. Stiefelhagen, “Visual recognition of pointing 
gestures for human-robot interaction,” Image and Vision 
Computing, Vol.25, Issue 12, pp.1875–1884, 2007. 
 
[9] C.-B. Park, and S.-W. Lee, “Real-time 3D pointing gesture 
recognition for mobile robots with cascade HMM and particle 
filter,” Image and Vision Computing, Vol.29, Issue 1, pp.51–63, 
2011. 
 
[10] M. Sigalas, H. Baltzakis, and P. Trahanias, “Gesture 
recognition based on arm tracking for human-robot interaction,” 
Intelligent Robots and Systems (IROS), pp.5424-5429, 2010. 
 
[11] R. Steifelhagen, H. K. Ekenal, C. Fugen, P. Gieselmann, H. 
Holzapfel, F. Kraft, K. Nickel, M. Voit, and A. Waibel, “Enabling 
Multimodal Human–Robot Interaction for the Karlsruhe Humanoid 
Robot,” IEEE Transactions on Robotics, Vol. 23, Issue 5, pp. 840 -
851, 2007. 
 
[12] S. Waldherr, R. Romero, and S. Thrun, “A Gesture Based 
Interface for Human-Robot Interaction,” Autonomous Robots, 
Vol.9 No. 2, pp.151-173, 2000. 
 
[13] Y. Yamamoto, I. Yoda, and K. Sakaue, “Arm-pointing gesture 
interface using surrounded stereo cameras system,”  17th 

International Conference on Pattern Recognition (ICPR) , Vol. 4, 
pp.965-970, 2004. 
 
[14] Kinect for Windows SDK v1.7 
 


