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Abstract

Most pose robust face verification algorithms, which em-
ploy 2D appearance, rely heavily on statistics gathered from
offline databases containing ample facial appearance vari-
ation across many views. Due to the high dimensionality of
the face images being employed, the validity of the assump-
tions employed in obtaining these statistics are essential for
good performance. In this paper we assess three common
approaches in 2D appearance pose mismatched face recog-
nition literature. In our experiments we demonstrate where
these approaches work and fail. As a result of this analy-
sis, we additionally propose a new algorithm that attempts
to learn the statistical dependency between gallery patches
(i.e. local regions of pixels) and the whole appearance of
the probe image. We demonstrate improved performance
over a number of leading 2D appearance face recognition
algorithms.

1. Introduction

It is often tempting to look at the problem of face recog-
nition1, in the presence of pose mismatch, as a 3D computer
vision problem. Pose variation, in terms of pixel appear-
ance, is highly non-linear in 2D, but linear in 3D. Notable
work, such as that conducted by Vetter and Blantz [1], has
attempted to leverage this inherent 3D advantage for face
recognition in the presence of pose mismatch. A drawback
to this approach however, is the requirement for multiple
gallery images or depth information of the subject. In many
face verification applications, we have at most a single 2D
gallery image. This will be assumed throughout the work
presented in this paper.

For the task of 2D appearance face verification we want
to obtain the likelihood functions,

p(xg,xp|ω), ω ∈ {C, I} (1)

1Even though our paper is dealing solely with the task of face verifica-
tion, we have seen that it is appropriate and consistent to included literature
from the broader face recognition community. For the purposes of this pa-
per we shall define recognition as encapsulating the tasks of verification
and identification.
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Figure 1. In this paper we demonstrate that good performance,
which is robust to pose mismatch, can be obtained by modeling
the marginal distribution of gallery patch appearance og at posi-
tion i with the whole appearance of the probe image xp (note we
employ the notation x for representing the whole facial appear-
ance, and o for representing patch appearance).

where ω refers to the classes where the gallery (xg) and
probe (xp) images are similar (C) and dissimilar (I) in terms
of subject identity. There is no need in this formulation for
subject labels, as we assume there is only a single gallery
and probe image per subject.

Employing these likelihoods one can then apply Bayes
rule to obtain,

P (C|xg, xp) =
P (C)p(xg,xp|C)

P (C)p(xg,xp|C) + P (I)p(xg,xp|I)
(2)

where P (C) and P (I) are priors for the client and imposter
classes respectively. The probability in Equation 2 can be
employed as a match-score in the task of face verification2.

A contribution is made in this paper towards improved
face verification performance, in the presence of pose mis-

2We must note that in many instances in literature [2, 3, 4], authors do
not adhere strictly to a Bayesian formulation in estimating the match-score,
instead opting for non-probabilistic measures (e.g. cosine, Euclidean, Ma-
halanobis distances) for calculating similarity. However, a commonality
exists amongst all these techniques in terms of how they gather statistics
of facial appearance variation. Throughout this paper we will be using
likelihood functions, as found in Equation 1, for expressing these differing
methods for modeling gallery-probe facial appearance.



match, through a method for learning the dependencies be-
tween individual gallery patches and the whole appearance
of the probe image (see Figure 1). This approach is advan-
tageous over existing pose invariant algorithms [5, 6, 7] due
to the ability of our approach to learn dependencies between
the gallery and probe images at the patch-level; without
having to assume a specific alignment between the gallery
and probe images. Our experimental results, in Section 7,
demonstrate improved performance over current algorithms
in literature.

The central focus of this paper will be questioning a
number of assumptions, made previously in literature [5, 6,
7], for the task of 2D appearance based face recognition in
the presence of pose mismatch. Hitherto, many of these as-
sumptions have not been analyzed in a comparative manner.
Specifically, we will be investigating the following model-
ing approaches:

A1: Even though we are limited to a finite world set, we
should attempt to model the joint appearance likeli-
hood of the whole face p(xg,xp|ω) directly [6, 8].

A2: We should attempt to learn the likelihood function for
the differential appearance p(xg − xp|ω) between the
whole probe and gallery images, rather than the joint
likelihood p(xg,xp|ω). This assumption [3, 4, 7] is
motivated largely by the realization that, provided the
gallery and probe images are appropriately aligned, the
relative difference in appearance contains a lot of dis-
criminatory information; with the added advantage of
not having to model the degrees of freedom present in
p(xg,xp|ω).

A3: Individual image patches within the face should be as-
sumed to be statistically independent of one another.
This strong assumption is motivated by the hypothe-
sis [5] that modeling the appearance variation of the
entire face, in the presence of varying pose, is too dif-
ficult. By treating the face as an ensemble of indepen-
dent patches we can, to some extent, circumvent this
problem by learning the local appearance variation of
each local region (i.e. patch) in the face.

In this paper we investigate the merit of these three mod-
eling approaches with respect to gaining a tractable estima-
tion to the likelihoods functions in Equation 1. As a result
of this analysis we derive a novel approach (see Figure 1),
that attempts to leverage the beneficial aspects of these three
approaches into a unifying framework. Improved verifica-
tion results are reported, relative to existing algorithms, on
the pose portion of the FERET database [9].

2. Offline Training

Face verification is a task of generalization, where one
attempts to gain an adequate estimate of the likelihood func-
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Figure 2. In any face recognition system there is an offline and
online component. The offline component trains the face verifier
on a world set, which is representative of the appearance variation
we anticipate seeing in the gallery and probe images.

tion in Equation 1, from what we observe in a finite world
set (see Figure 2). A high-level example of a face verifier is
depicted in Figure 2 for the case of pose variation. In this
example we depict how a face verifier relies on offline train-
ing from a world set. The world set contains a large number
of subject faces representative of the population of subject
faces expected during verification, but are usually indepen-
dent, in terms of identity, to the subjects involved in the
online verification process. In all the experiments within
this paper we employ the world set for obtaining our sta-
tistics describing the client and imposter facial appearance
classes.

3. Background

Techniques that decompose the face into an ensemble of
salient patches/regions (e.g. eyes, nose, and mouth) have re-
ported superior face recognition performance with respect
to approaches that treat the face as a whole. Notable ex-
amples can be found in the work of Brunelli et al. [10],
Moghaddam et al. [7] and Martinez [11]. By analyzing the
face in terms of these separate salient patches/regions, good
performance was noted in the presence of occlusion and ex-
pression mismatches [11]. Analyzing faces in terms of an
ensemble of salient patches however, has not been success-
fully applied when there is pose mismatch. A reason for
this poor performance may perhaps stem from the heuristic
choice of salient patches, and that the discrimination pro-
vided by these heuristically chosen patches vary dramati-
cally as a function of pose.

3.1. A1: Joint Appearance

Recently techniques, like the Eigen Light-Fields [6] and
Tensorface [8] approaches, have found benefit in model-
ing the joint client likelihood function p(xg,xp|C) directly
in the presence of pose mismatch. The likelihood func-



tion p(xg,xp|I) is typically omitted due to the complex-
ity associated with its estimation. Due to the large dimen-
sionality of the whole face x, subspace approaches based
on principal component analysis (PCA) must be employed
to approximate the likelihood p(xg ,xp|C) from the finite
world set. To match a known gallery image xg against an
unknown probe image xp the following approximation is
then made (note: the italicized vector x is a variable),

xg∗ ≈
∫

x

x p(x,xp|C)dx (3)

In practice this approximation can be obtained simply,
through a psuedo-inverse operation on the probe specific
portion of the eigenvectors describing the joint appearance
of the gallery and probe client images. The vectors xg

and xg∗ are then matched against one another using a
canonical distance measure. In our experiments we chose
to use the cosine distance due to its good performance.

3.2. A2: Differential Appearance

As previously mentioned, a number of approaches have
been employed in literature in order to estimate the 2D ap-
pearance likelihoods in Equation 1. The most well known
of these has been the intra-personal (i.e. client) and extra-
personal (i.e. imposter) approach of Moghaddam and Pent-
land [7]. In this approach the authors attempt to model
the differential appearance between probe and gallery im-
ages xp and xg , in order to make the approximation3,

p(xg,xp|ω)� p(xg − xp|ω) (4)

from the offline examples present in the world set. These
likelihoods are attempting to model the whole face, for both
the client (ω = C) and imposter classes (ω = I). Due
to the large dimensionality of the whole face x, subspace
approaches based on PCA must be employed to approxi-
mate these likelihoods from a finite world set. Addition-
ally, it has been reported that techniques centered around
linear discriminant analysis (LDA), like those seen in the
Fisherface [3] algorithm, can obtain similar performance
to Moghaddam and Pentland’s approach. LDA based ap-
proaches employ a similar paradigm to the approach of
Moghaddam and Pentland, in terms of differential appear-
ance, although they are not framed within a strict proba-
bilistic framework. Approaches centered around variants of
LDA, have recently reported good performance on the prob-
lem of pose mismatched face recognition [4].

For the experiments in this paper, we will be assuming
the client and imposter classes of the differential appear-

3It should be emphasized that we are attempting to approximate the
output of the likelihood function for the purposes of classification, not the
generative distribution itself. To make this difference clear, we use the�
to denote our approximation.
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Figure 3. In this paper we will be using a patch-based representa-
tion of the face such that x = [o1,o2, . . . ,oR−1,oR].

ance likelihood in Equation 4 are modeled through a nor-
mal distribution. These distributions are estimated within a
subspace, found using PCA, that preserves all major modes
of extra-personal variation. Constraining the distribution to
lie within this subspace ensures that the covariance matrix,
describing the client and imposter classes, is not rank defi-
cient. A match-score is then obtained through the applica-
tion of Bayes rule found in Equation 2.

3.3. A3: Patch Independence

Recently, Kanade and Yamada [5] proposed an effective
assumption for the task of face recognition in the presence
of pose mismatch. This approach is centered around the de-
composition of a face image into an ensemble of sub-image
patches x = {o}R

r=1. An example of this decomposition
can be seen in Figure 3.

This decomposition was motivated by hypothesized defi-
ciencies in holistic appearance-based template matching. In
holistic template matching, if we use the whole face region
for comparison, it is not easy to take into account changes
in appearance due to pose differences, because the appear-
ance in a different part of a face changes in a different man-
ner due to its complicated three-dimensional shape (e.g. the
nose). By treating the face as an ensemble of independent
patches we can, to some extent, circumvent this problem by
learning how the discrimination of each local region of the
face varies as a function of pose. Kanade and Yamada [5]
proposed the following approximation,

p(xg,xp|ω)�
R∏

i=1

p(ei|λωi) (5)

where ei = ‖og
i − op

i‖2 is the “sum of the squared
differences” (SSD) in pixels between the gallery and probe
patches at position i. The SSD measure is computed af-
ter image normalization for each patch, so it is effectively
equivalent to normalized correlation. The parametric form
of λ = {µ, σ2} is Gaussian where µ is the mean and σ2 is
the variance, which can be explicitly estimated offline. This



estimation is performed on both the client C and imposter I
classes.

4. Face Database and Evaluation

4.1. Database

Experiments were performed on a subset of the
FERET database [9], specifically images stemming from
the ba, bb, bc, bd, be, bf, bg, bh, and bi subsets; which
approximately refer to rotation’s about the vertical axis
of 0o, +60o, +40o, +25o, +15o, −15o, −25o, −40o, −60o

respectively. In all experiments, gallery images stem from
the frontal pose ba with probe images stemming from all
other view-points. The database contains 200 subjects
which were randomly divided into sets g1 and g2 both con-
taining 90 subjects. The remaining 20 subjects were used as
an imposter set for our verification experiments. The world
set is used to obtain any non-client data-dependent aspects
of the verification system. The evaluation and imposter sets
are where the performance rates for the verification system
are obtained. The g1 and g2 sets were used as the world
and evaluation sets respectively. All images were geometri-
cally normalized according to their eye-coordinates to give
a cropped face image of 74 × 64 pixels. Examples of the
gallery and probe images used in our experiments can be
seen in Figure 2.

4.2. Evaluation

Verification is performed by accepting a claimant when
his/her match-score is greater than or equal to Th and
rejecting him/her when the match-score is less than Th,
where Th is a given threshold. Verification performance
is evaluated using two measures; being false rejection rate
(FRR), where a true client is rejected against their own
claim, and false acceptance rate (FAR), where an impos-
tor is accepted as the falsely claimed client. The FAR and
FRR measures increase or decrease in contrast to each other
based on the threshold Th. The overall verification per-
formance of a system is typically visualized in terms of a
receiver operating characteristic (ROC) or detection error
tradeoff (DET) curve. A simple measure for overall perfor-
mance of a verification system is found by determining the
equal error rate (EER) for the system, where FAR = FRR.

5. Improving Patch Independence

Due to the recency of the patch independence work [5]
made with approach A3, we have extended the algorithm
first suggested by Kanade and Yamada. We have employed
this new extension so as to ensure a fair comparison be-
tween algorithms, due to the maturity and body of work in
existence for approach A1 (i.e. joint appearance) and A2
(i.e. differential appearance).
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Figure 4. Results depicting the benefit of fitting a log-normal para-
metric form to the client and imposter’s SSD values when there
are small amounts of pose mismatch (i.e. < 25o). There seems
to be a clear advantage in modeling differential patch appearances
directly, rather than relying on indirect SSD values. The patch-size
for all these experiments was 8 × 8.

Our extension to Kanade and Yamada’s algorithm was
motivated by the experiments conducted in Figure 4. In
these experiments, we first wanted to investigate whether
there was any benefit in modeling the differential patch ap-
pearance directly; rather than relying on the more coarse
SSD values. This approach attempts to make the following
approximation,

p(xg,xp|ω)�
R∏

i=1

p(og
i − op

i|λωi) (6)

Note in Equation 6 we are now modeling differences in
patch appearance directly, as opposed to the indirect ap-
proach taken in Equation 5 of modeling just the SSD val-
ues. The parametric form of λ is assumed to be a multidi-
mensional normal distribution. A 2D discrete cosine trans-
form was used to preserve the 32 most energy preserving
dimensions in each patch. This dimensionality reduction
was performed so as to ensure the covariance matrices are
well ranked.

A second aspect of Kanade and Yamada’s algorithm we
wanted to explore was the assumed parametric form (i.e. a
normal distribution) of the client and imposter SSD values.
In row (a) of Figure 5, one can see a set of histograms for
the offline client and imposter distributions of the SSD mea-
sure e for both the gallery and probe patch locations i across
a number of pose mismatches. From these small set of vi-
sual examples in Figure 5 it is clear that the distributions are
not adequately described parametrically by a normal distri-
bution; as can be seen by the client and imposter approxima-
tions in rows (b) and (c) respectively. It would make sense
to perhaps use the raw histograms obtained from the offline
world set. However in practice, using the raw histograms
produced poor performance, during verification, due to their
noisy nature.
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Figure 5. For all plots in this figure the x-axis denotes the SSD measure e and the y-axis denotes the density approximation p(e|ω) for the
given class ω = {C, I} being modeled. Row (a) depicts the histograms for the the client and imposter classes for an individual patch i
across four different pose mismatches (i.e. 60o, 40o, 25o, 15o). The individual patches i for each pose were chosen based on the client
and imposter histograms that had the largest divergence. Rows (b) and (c) denote the parametric estimations of the client and imposter
distributions respectively. In our experiment we attempted to fit a normal and log-normal distribution. One should note that employing a
normal distribution for either the client or imposter distributions resulted in a poor fit.

To circumvent the problems of poor fit, with respect to
the normal distribution, and of noise, with respect to the
histogram fit, we propose the employment of the log-normal
distribution,

p(e|λ) =
1

γ
√

2πe
exp(−‖ log(e) − ν|2

2γ2
) (7)

The parametric values λ = {ν, γ2} are found in a sim-
ilar explicit manner to the mean and variance values of the
normal distribution; with the log operator being used be-
fore one estimates the log-mean ν = E{log(e)} and log-
variance γ2 = E{log(e)2} − E{log(e)}2 parameters.

The results presented in Figure 4 demonstrates that it is
advantageous to employ a log-normal, rather than normal,
distribution for modeling patch SSD values. This result
is especially noticeable where there are smaller pose mis-
matches. A possible reason for this result can be attributed
to the increased likelihood that the client and imposter dis-
tributions will be skewed towards a zero SSD value when
there is less pose mismatch. The most important result in
Figure 4 is the clear advantage seen in modeling the differ-
ential patch observations directly, rather than relying on the
indirect SSD values. This extension to the algorithm repre-
senting approach A3 is employed throughout the rest of our
experimental results.

6. Assessing Approaches

In Figure 6 one can see a performance breakdown of al-
gorithms representing the three approaches A1-A3, refer-
ring to modeling the whole joint appearance, whole dif-
ferential appearance, and patch differential appearance re-
spectively gallery-probe face image pairs. We also com-
pared performance against the Eigenface [2] algorithm, as
this is a common benchmark used in literature. Algo-
rithm A1 seems to obtain the best performance overall, in
comparison to algorithms A2 and A3; with all three algo-
rithms outperforming the baseline Eigenface algorithm.

In Figure 7, we conducted an additional experiment
where we tested the performance of algorithms A1 and A2
for the situation where the gallery image is “badly” mis-
aligned with the probe image. We synthetically created this
misalignment by performing a 180o circular shift on the
gallery image in the x and y directions. An example of this
synthetic misalignment can be seen at the bottom of Fig-
ure 7. It must be emphasized, for these experiments, that
the circular shift operation was applied to both the offline
and online gallery images; requiring the likelihood func-
tions for algorithms A1 and A2 to be re-estimated. In-
terestingly, there was no noticeable degradation in perfor-
mance for algorithm A1, whereas algorithm A2 suffered
catastrophic degradation in comparison to the original re-
sults seen in Figure 6.
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Figure 6. Results demonstrating the breakdown in performance for
the three approaches A1-A3, referring to modeling the whole joint
appearance, whole differential appearance, and patch differential
appearance respectively. Results demonstrate that there is benefit
in modeling the whole joint appearance, especially in the presence
of a large pose mismatch (i.e. greater than 40o).
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Figure 7. Demonstration of how algorithms that model joint ap-
pearance (A1) rather than differential appearance (A2) are less
prone to the effects of “bad” alignment between gallery and probe
images. All results in this figure were carried out on misaligned
gallery images. Refer to Figure 6 for the aligned performance of
algorithms A1 and A2. Note that there is minimal difference in
performance between the aligned and misaligned experiments for
A1. However, there is a catastrophic drop in performance for al-
gorithm A2 for the misaligned experiment.

An immediate observation one can make about the ex-
perimental results in Figures 6 and 7, is that any algorithm
that relies on modeling differential appearance, whether
at the holistic or patch level, intrinsically relies on “some
level” of alignment between the gallery and probe images.
As pose mismatch increases, the alignment of gallery and

probe images tends to degrade; resulting in poorer ver-
ification performance. Assuming independence between
patches, for differential appearance, causes further degra-
dation, albeit slight, in performance as pose mismatch in-
creases.

7. Learning Patch Dependence

It seems obvious from the experiments conducted in pre-
vious sections, that alignment is a problem when one is
employing a model based on differential appearance in the
presence of large pose mismatch; whether it be at a holistic
or patch level. However, techniques that attempt to model
the joint appearance, of a gallery and probe image, employ
large assumptions to make the estimation of such a likeli-
hood function feasible. Algorithms, like the one employed
in A1 (e.g. Eigen Light-Fields, TensorFaces), assume the
joint appearance of a set of gallery and probe images is gov-
erned by a single Gaussian distribution.

In this section we propose an approach, based on a patch
representation of the face, that does not rely on such a con-
straining assumption. In our approach we make the follow-
ing approximation,

p(xg,xp|ω)�
R∏

i=1

p(og
i,xp|λωi) (8)

where og
i refers to an image patch, at position i, within

the gallery image, and xp refers to the whole appearance of
the probe image. In this approach we attempt to learn the
gallery patch dependence with respect to the whole probe
image appearance. Unlike the A3 algorithm, employed in
previous sections, this approximation does not make any
assumptions about the alignment of gallery and probe im-
ages. However unlike the A1 algorithm, our approach
takes advantage of a patch-decomposition of the gallery im-
age. Each gallery-patch/probe-whole appearance likelihood
function is assumed to be Gaussian. PCA is employed to
reduce the total dimensionality of the gallery-patch/probe-
whole representation. Each gallery-patch and probe-whole
representation is normalized for energy, so as limit a bias to-
wards modeling the probe-whole appearance solely. In our
approach, unlike A1, we are also able to approximate an
imposter likelihood function due to the diminished dimen-
sionality of the representation. A match-score is obtained
through the application of Bayes rule in Equation 2.

The performance of our method can be seen in Figure 8
in comparison to the A1 algorithm which showed the best
overall performance in Figure 6. One can see that our ap-
proach demonstrates considerable improvement over the A1
algorithm, especially in the presence of large pose mis-
matches. A detection error tradeoff (DET) curve can be
seen in Figure 9 for the extreme case of 60o angle mis-
match between the probe and frontal gallery image. For
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Figure 8. Results demonstrating the improved verification per-
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method. Note that our algorithm shows considerable improvement
over the A1 algorithm for almost all pose mismatches.
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Figure 9. A detection error tradeoff curve (DET) is depicted here
for the extreme case of 60o mismatch between the probe and
frontal gallery images. One can see that our method outperforms
the A1 algorithm across nearly every operating point, in terms of
FAR and FRR.

nearly every operating point, our method outperforms the
A1 algorithm in terms of FAR and FRR.

8. Conclusions

In this paper we have conducted experiments associ-
ated with three major approaches in pose mismatched face
recognition literature. This comparative analysis demon-
strated that approaches A2 and A3, that rely on differential
appearance at the holistic and patch level respectively, per-
form poorly in the presence of large rotation (i.e. > 40o)
about the vertical axis. Through additional experimentation
we demonstrated that this poor performance can largely be
attributed to the poor alignment of the gallery and probe
images as pose mismatch increases. As a result, algorithms
that do not make assumptions about the alignment of the
gallery-probe image pairs, such as approach A1 which mod-
eled the joint appearance, tended to obtain improved perfor-
mance.

An auxiliary benefit of our work also resulted in an
extension to the original A3 approach, first proposed by
Kanade and Yamada [5]. This novel extension demon-
strated improved performance by employing a log-normal,
rather than, normal distribution for modeling SSD values.
Further, we demonstrated best performance by modeling
the differential patch appearances directly.

Finally, we proposed an algorithm that unifies the ben-
efits of approaches A1 and A3 by learning the dependen-
cies of gallery patches with the whole probe image appear-
ance. This approach has two advantages. First, it makes
no assumption about the alignment between the gallery and
probe image pairs; allowing it to deal with large pose mis-
match. Secondly, it allows for a richer modeling of the
joint appearance by decomposing the gallery image into
an ensemble of statistically independent patches. Our ap-
proach out-performed all other approaches tested in our ex-
periments. The performance of our algorithm in large pose
mismatch was especially encouraging.
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