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ABSTRACT

Rapid speaker adaptation is becoming more important in emerging
applications where storage, computation and training utterances
are at a premium (e.g. PDAs, cell phones). Effective adaptation
can be achieved for the task of speaker verification, based on a
maximum a posteriori (MAP) learning framework, by restricting
the client’s parametric model to be a linear combination of param-
eters estimated from training observations and a speaker indepen-
dent “world” model (i.e. relevance adaptation (RA)). Subspace
adaptation (SA) attempts to restrict a client’s parametric represen-
tation to a pre-defined subspace during estimation. In this paper
we elucidate where subspace adaptation outperforms world adap-
tation, demonstrate where and why subspace adaptation is some-
times not as effective and give insights into what cost criteria
should be used to construct the adaptation parametric subspace.
Results are presented on the acoustic portion of the XM2VTS
database for the task of Gaussian mixture model (GMM) based
text-independent speaker verification.

1. INTRODUCTION

The rapid adaptation of speaker models for the purposes of speaker
verification in emerging technologies such as mobile applications
(i.e. cell phones, PDAs), where memory and computational ca-
pacity is at a premium, is a topic of great importance as these tech-
nologies cement themselves into our everyday lives. Unlike mo-
bile speech recognition applications, feasible mobile speaker ver-
ification applications, due to security and cost constraints, require
both the evaluation and estimation of speaker models on the sys-
tem. This paper addresses the latter problem of estimating robust
speaker models from a modest amount of training observations.

Rapid adaptation, borrowed from Kuhn et. al [1], refers to the
ability of a system to estimate robust and accurate speaker mod-
els, whilst avoiding the need for “unacceptably large” amounts of
adaptation observations for each speaker. The definition of “unac-
ceptably large” varies from application to application but for the
task of speaker verification on a low power, mobile device, with a
simple lexicon (i.e. numerical digits) training good speaker mod-
els from only several seconds of speech (eg. five to ten) is ideal in
terms of storage, computation and most importantly the creation of
an ascetically pleasing device (i.e. not requiring the user to train
the device with minutes of speech).

The generic task of automated speaker verification is considered
a mature topic, with current state of the art speaker verification sys-

tems based on hidden Markov models (HMMs) for text-dependent
tasks or Gaussian mixture models (GMMs) for text-independent
tasks [2]. Training of these models is performed using the EM-
algorithm [3], typically differences in adaptation techniques lie
in how the parameters are constrained during the update portion
of the EM-algorithm. For the task of speaker verification it has
been demonstrated [2] good performance can be achieved, using
a maximum a posteriori (MAP) learning paradigm, that restricts
the client’s parametric model to be a linear combination of pa-
rameters estimated from training observations and a speaker in-
dependent “world” model during the learning process. Although
commonly referred to as MAP adaptation [2] we have decided to
refer to the technique as relevance adaptation (RA) as the con-
cept of MAP/Bayesian adaptation does not necessarily have to be
restricted soley to this implementation.

Kuhn et. al [1] recently proposed a new adaptation technique,
referred to as “eigenvoices”, that restricts the client’s parametric
model to vary within a pre-defined subspace defined by preserving
the major modes of variation from a development set of speak-
ers. In its original form the eigenvoice technique employs prin-
cipal component analysis [4] (PCA), however theoretically any
criterion for defining a subspace can be used; this more general
scenario we shall refer to as subspace adaptation (SA). In this pa-
per we have investigated the possible use of linear discriminant
analysis [4] (LDA), which uses a criterion of class separation to
define its subspace, to restrict a client’s parametric representation;
as there has been some speculation [5] over the validity of recon-
struction error as a criterion for forming the subspace.

Experimental results received indicate that criterion, other than
reconstruction error, receive very poor performance during sub-
space adaptation. Additionally, we have shown that SA, where
there is extremely modest amounts of training observations, can
marginally outperform world adaptation. Finally we give some in-
sights into how subspace adaptation aids in model adaptation and
possible avenues for further performance improvement. All exper-
iments were conducted on the acoustic portion of the XM2VTS [6]
database for the task of Gaussian mixture model (GMM) based
text-independent speaker verification.

2. GAUSSIAN MIXTURE MODELS

Gaussian mixture models (GMMs) have been shown [2] empiri-
cally to be the classifier of choice for the task of text-independent
speaker verification. A GMM models the probability distribution
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of a d dimensional statistical variable o as the sum of M multi-
variate Gaussian functions, A GMM models the probability distri-
bution of a d dimensional statistical variable o as the sum of M

multivariate Gaussian functions,

f(o|λ) =

M
∑

m=1

wmN (o; µ
m

,Σm) (1)

where N (o; µ,Σ) denotes the evaluation of a normal distribution
for observation o with mean vector µ and covariance matrix Σ.
The weighting of each mixture component is denoted by wm and
must sum to unity across all mixture components. The parameters
of the model λ = {wm, µ

m
,Σm}M

m=1 can be estimated using the
Expectation Maximization (EM) algorithm [3] based on either a
maximum likelihood (ML) or maximum a posteriori (MAP). K-
means clustering was used to provide initial estimates of these pa-
rameters.

3. RELEVANCE ADAPTATION

MAP adaptation, or Bayesian adaptation as it is commonly re-
ferred to, is a technique for learning based on employing a pri-
ori knowledge of the parametric distribution g(λ). An explicit
form of MAP adaptation, which we refer to as relevance adapta-
tion, has been shown [2, 7] to greatly improve automatic speaker
verification performance over traditional ML training. Generic
MAP adaptation attempts to incorporate the a priori knowledge
in g(λ) into the learning process, which results in trying to esti-
mate an λMAP that satisfies,

λMAP = arg max
λ

f(O|λ)g(λ) (2)

There are a variety of ways to gain a priori information about
the distribution g(λ). In speaker verification, the employment of
a world, or universal background model as it is sometimes referred
to [2], has been shown empirically to greatly improve speaker ver-
ification process. A world model is simply a single model trained
from a large number of speakers representative of the population
of speakers expected during verification, and usually has been es-
timated from a training set independent of the client to be adapted.
This world model is typically trained using the ML criterion (i.e.
no informative prior).

Given a world model λw = {wwm
, µ

wm

,Σwm
}M

m=1 and
training observations from a single client, O = [o1, . . . ,oR], us-
ing the iterative EM-algorithm one can obtain update equations
that incorporate the a prior knowledge in world model, to maxi-
mize the parametric representation of an GMM. Typically in GMM
based speaker verification adaptation is only applied to the means
of the mixture components, for RA this results in the following
update equation,

µ
cm

= (1 − αm)µ
wm

+ αm

∑

R

r=1
γm(or)or

∑

R

r=1
γm(or)

(3)

where γm(o) is the occupation probability for mixture m and αm

is a weight used to tune the relative importance of the prior and is
calculated via a relevance factor τ in,

αm =

∑

R

r=1
γm(or)

τ +
∑

R

r=1
γm(or)

(4)

for our experiments an τ = 16 received good results. The total
number of parameters per client is M × d.

4. SUBSPACE ADAPTATION

Kuhn et. al [1] recently developed a new approach for adapta-
tion that preserves most of the variations between class models,
but in a smaller parametric subspace K << M × d. The main
advantage of such an approach is the decrease in the number of
free parameters needing to be found, allowing for the estimation
of better trained models using less observations. A client model
can be expressed as,

µ
c

= Vx (5)

where V = {vk}
K

k=1 is the concatenated matrix of the K eigen-
vectors/voices vk corresponding to the K largest eigenvalues, µ

c

is the concatenated vector of M mixture component means µ
cm

and x is the parameter vector of client c within the subspace. This
parameter vector can be learned using a modified EM-algorithm as
described by [1].

4.1. Criteria for generating a subspace

There are a myriad of techniques available for generating sub-
spaces depending on specific cost criteria. When little is known
about the nature of the problem (i.e. number of classes, how each
class varies), a criteria of reconstruction error (PCA) often receives
good performance. In this paper we were fortunate to have addi-
tional knowledge of how the parametric representation of clients
vary between different digits, providing an ideal situation for in-
vestigating LDA as a plausible technique for creating a parametric
subspace. Additionally we employed a randomly generated sub-
space, to evaluate the importance of choosing a correct cost crite-
ria

PCA: attempts to generate a subspace based on selecting the
eigenvectors of the scatter matrix S that corresponds to the K

largest eigenvalues. Where,

S =
C

∑

c=1

µ̄
c
µ̄

′

c
(6)

LDA: attempts to generate a subspace based on selecting the
eigenvectors of SbS

−1

w that corresponds to the K largest
eigenvalues. Where,

Sb =

C
∑

c=1

(µ̄
c
− µ̄

0
)(µ̄

c
− µ̄

0
)′ (7)

Sw =

C
∑

c=1

E
{

(µ
c
− µ̄

c
)(µ

c
− µ̄

c
)′

}

(8)

The expectation function in Equation 8 is across the different
parametric representations obtained for the digits ‘zero’ to
‘nine’ for the same client. It must be noted that the resulting
eigenvectors, due to SbS

−1

w not being symmetric, must be
found through simultaneous diagonalization [4] which does
not ensure the resulting eigenvectors are orthonormal. How-
ever, the modified EM-algorithm in [1] requires each trans-
form vector to be orthogonal; which if we assume x to be
distributed according to a normal distribution equates to each
element of x to be independent. To enforce this constraint,
after preserving the eigenvectors corresponding to the K

largest eigenvalues, a set of orthonormal vectors {vk}
K

k=1

were found that spanned the same subspace.
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RAND: although not a criteria for constructing a subspace, a
random transform matrix V was generated for comparison
against PCA and LDA. Similarly to LDA the random trans-
form was constrained to be orthonormal.

where C is the total number of clients used to generate the sub-
space, µ̄

c
is the average parametric representation between dig-

its for client c and µ̄
0

is the average representation between all
clients and digits. Employing LDA and random based techniques
as an alternate method to PCA for generating a subspace serves in
two capacities. First, it gives one insights into how important the
type of cost criteria is in obtaining good performance. Second, it
demonstrates how useful class distinction is as a cost criteria for
generating a compact subspace for adaptation.

5. FRONT-END PROCESSING

For feature extraction we used standard mel-frequency cepstral co-
efficients (MFCC) to generate 13 dimensional feature vector at
10ms intervals. Delta (first derivative) features were appended to
this feature vector to create a 26 dimensional feature vector. Si-
lence detection was performed using the bi-Gaussian method [5],
where a two mode GMM is trained on a representative portion
of the speech corpus with the hope that one Gaussian shall repre-
sent the speech features and the other Gaussian represent the si-
lence features. Individual digit utterances were obtained for each
speaker based on the length of the silence segments and the known
digit order. Log energy and static MFCC coefficients were em-
ployed during the silence detection stage, with good segmentation
results obtained.

6. EXPERIMENTS

Experiments were conducted on the digit acoustic portion of the
XM2VTS [6] database, involving 16 repetitions of the digits ‘zero’
to ‘nine’ for each speaker taken over 4 recording sessions. The use
of digits was chosen as this corresponds to a typical application
scenario of speaker verification in a mobile application. The Lau-
sanne 1 protocol [6] was used for our experiments with 200 speak-
ers in the client set and 70 speakers in the test imposter set. Of the
16 digit sequence repetitions for each speaker, in the client set, 6
were used for training and 10 for testing. In total this resulted in
60 digit utterances of training observations for each client. For our
experiments only a random subset of these training observations
were ever used.

To ensure the separation of clients the first 100 speakers in
the client set were used as a development set to train the world
model λw and generate the subspace V, with the remaining 100
speakers being used for testing. Each client model was tested using
a randomly constructed sequence approximately 4 digits in length,
as this was thought to be a typical in mobile applications (i.e. four
digit security pin).

7. SPEAKER VERIFICATION TASK

The speaker verification task is the binary process of accepting
or rejecting the identity claim made by a subject under test. The
verification process can be expressed simply as the decision rule,

log f(O|λc) − log f(O|λw)
reject

≶
accept

Th (9)

where f(O|λ) =
∏

T

t=1
f(ot|λ) is the likelihood score describ-

ing how likely utterance O = [o1, . . . ,oT ] belongs to the claimant
speaker c and world model w respectively. A threshold Th needs
to be found so as to make the decision. Speaker verification per-
formance is evaluated in terms of two types of error being false
rejection (FR) error, where a true client speaker is rejected against
their own claim, and false acceptance (FA) errors, where an im-
postor is accepted as the falsely claimed speaker. The FA and FR
errors increase or decrease in contrast to each other based on the
decision threshold Th set within the system. A simple measure
for overall performance of a verification system is found by de-
termining the equal error rate (EER) for the system, where FA =
FR.

8. RESULTS

Results were obtained for SA using various types and sizes of sub-
space. RA obtained results using a relevance factor of τ = 0
and 16. Results for both SA and RA can be seen in Figure 1. Tests
were constructed with the emphasis being placed on how well the
client models generalize, irrespective of what digit utterance was
being said. To this end the training digits used to train each client
model were drawn randomly from the pool of 60 digit utterances
available for each client.
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Fig. 1. A comparison between RA and SA across varying amounts
of randomly drawn training digits.

9. DISCUSSION

From the results in Figure 1 one can see that SA actually performs
slightly better than RA when extremely modest amounts of obser-
vations are used for adaptation (i.e. 3 random digit utterances) us-
ing a PCA based subspace. This result is significant as SA seems
to be able to constrain client models more effectively than RA,
indicating that SA may have benefits over RA for speaker verifi-
cation when adaptation data is at a premium. A cautionary note
must be made to emphasize that SA performance, in its current
form, is not significantly better than RA but the result is of impor-
tance concerning the further investigation and development of SA.
From previous testing we have found a subspace size of K = 20,
for PCA based SA, received best results when small amounts of
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data was used for adaptation. If one starts increasing the subspace
size (e.g. K = 30) the overall performance across all amounts of
data improves; but at the cost of performance when the amount of
adaptation data is small.

SA using a LDA or randomly generated (RAND) subspace per-
forms quite poorly across all amounts of adaptation data. Poor
performances were received for LDA and RAND subspaces irre-
spective of the subspace size K selected. For comparative pur-
poses an K = 20 and 30 is depicted for LDA and an K = 30
for RAND. A considerable gap in performance can be seen be-
tween these spaces and the energy conserving PCA subspace. As
expected good results are attained for RA using a relevance fac-
tor τ = 16. Results for τ = 0 are also shown to depict the ML
case when no adaptation is performed. One can see that when there
is a large amount of adaptation data, as expected, ML and the MAP
based RA approach each other, however with modest amounts of
adaptation data the performance of ML is quite poor. When the
number of observations for adaptation increases then the perfor-
mance of the PCA based SA technique steadily degrades relative
to the RA results.

One can attempt to explain these results if one thinks about SA
as a quantized approximation to MAP adaptation. By enforcing a
client’s parametric representation to vary only within a pre-defined
subspace one is essentially forming a binarized informative prior
where parameters are able to vary freely within the subspace and
are clamped within the residual space (i.e. where the parameters
are not allowed to vary at all outside the subspace). This prior dis-
tribution is however improper (i.e. integrates to infinity within the
subspace) so that it cannot be formulated naturally within the tra-
ditional MAP framework due to the prior not satisfying belonging
to the conjugate family.

This quantization performs well when K is relatively small as
it circumvents the “curse” of dimensionality, as the larger the di-
mensionality of x gets the more observations are required to gain
adequate statistics. The increased stability stemming from the di-
mensionality reduction comes at cost, with less parametric varia-
tion available to discriminate between speaker classes. However,
this harsh quantization tends to perform badly as K is increased
with minimal amounts of adaptation data as their are too many de-
grees of freedom available within the subspace. PCA is obviously
a good, if not the best, criteria to employ for designing the para-
metric subspace as it ensures that the most varying portion of a
client’s parametric representation lies in the unclamped subspace.
Other techniques like LDA or randomly generated subspaces tend
to perform poorly as they often clamp these highly varying por-
tions, due to their differing criteria. SA using PCA actually suffers
from “catastrophic adaptation” as the number of adaptation obser-
vations increase. Catastrophic adaptation refers to the case where
the adaptation performance attained is worse than the performance
of the classifier with no adaptation (i.e. the ML (τ = 0) case). As
Kuhn et. al [1] highlighted this can be fundamentally attributed to
the SA technique being inherently limited in the degrees of free-
dom the parametric representation can take on; such that in the
limiting case with vast amounts of adaptation data, unlike MAP
based RA, SA will not approach ML performance.

10. FUTURE WORK

The catastrophic adaptation problem faced by SA is inherently re-
lated to the harsh quantization that occurs from defining a subspace
outside of which parameters cannot vary. An obvious shortcoming

of SA currently is there is no constraint on variation of parameters
within the subspace. It is felt by the authors that the incorporation
of constraints, such as the eigenvalues of the space, could aid in
improving performance. The integration of such a concept within
the traditional MAP framework will be a topic of future research.
An additional problem still remains however in the limiting case
of SA, as catastrophic adaptation will still occur due to the sup-
pression of any variation of parameters outside the subspace.

Both these problems have been discussed and solutions postu-
lated for generic machine learning problems that employ PCA [8].
PCA, although attractive as a technique for gaining a tractable like-
lihood estimate of g(λ) in a low dimensional space, does suffer
from a critical flaw. It does not define a proper probability model
in the space of inputs. This is because the density is not normalised
within the principal subspace. Techniques like probabilistic princi-
pal component analysis (PPCA) may hold the answer to such con-
cerns as it defines a stochastic description of the full space whilst
still taking advantage of subspace redundancies. Work by Kim and
Kim [9] has already attempted to formulate such a framework for
the task of speech recognition.
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