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Abstract

Representing the face as a distribution of freely movinglpet, which we
refer to as a “free-parts” representation, has recentlyothestnated some ben-
efitin the task of face verification. This benefit can be largedributed to the
representation’s natural ability to deal with local appeae variation within
the face. Hitherto, a major limitation that has hinderedwder adoption of
this type of facial representation, for the task of facefieation, has been its
poor ability to take advantage of prior knowledge concegmitismatches in
context; such as pose. This paper goes some way to alleyidtase limi-
tations by making two novel contributions: (i) Demonsingtthat free-parts
distributions of a client’s face for different poses overta such a degree that
a considerable amount of discrimination is preserved inrttersection. (ii)
Through the off-line estimation of subject-independeragpdependent pri-
ors, an alternative to the canonical log-likelihood meastan be employed
that takes advantage of this intersection and is less aengitmismatch in
the presence of pose variation.

1 Introduction

Representing a face as an ensemble of local image patcties, tlean a holistic monolith
of pixels, has some inherent advantages when trying to nfatets in real-world sce-
narios. This representation can be especially beneficifleipresence of heterogeneous
mismatches (i.e. mismatches that do not occur equally s@lbparts of the image) such
as those occurring from differing pose, shadow, occlusgpression, etc. In the presence
of these types of heterogenous mismatches any benefit gaoradnodeling the global
dependencies in a face image is usually lost by the overpogveffect of the mismatch
in appearance globally. However, by trying to match an imaaged purely on its local
appearance (i.e. decomposing a single face image into nudRfase image patches) one
can alleviate this effect, as the effect of the mismatch isallg not occurring equally
across the image (i.e. heterogeneous). A specific repagsanthat embraces this con-
cept is a “free-parts” representation as the patches wittenface are able to “freely”
move to varying extents by relaxing the position/structfrpatches within the face im-
age. A high-level graphical example of how one can obtaire-frarts distribution from
a client image is depicted in Figure 1. This representatia® dlready met with some



success in frontal-face recognition [3], in the presencalighment and expression mis-
match.
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Figure 1: A graphical depiction of the process involved irtaifing a “free-parts”
Gaussian mixture model (GMM) distribution from a client igea Note: in a free-parts
representation positional information of where patcheth@image are located are ig-
nored, allowing the patches to “freely” move.

Hitherto, a major limitation that has hindered the widerattn of this type of facial
representation, for the task of face verification, has btsgmdor ability to take advantage
of prior knowledge concerning mismatches in context; siglp@se. In this paper we
shall refer to this prior knowledge in the form of a world das!, wherei is an index to
a pre-defined number of discrete poses. The world class isgeptative of the general
population of faces for the posewhose distribution model is usually estimated from a
large ensemble of non-client faces that are separate te thg®l in the face verification
task. In our work we assume we have world models for all pésgbses that will be
encountered in evaluation, which is a reasonable assumpsdhe world models are
independent of the subjects being verified and can be estihwdfline. A fundamental
guestion being asked in this paper is: how can one incorpahat prior knowledge of
world classes, Vi given there is a mismatch in pose between a client’s galledythe
claimant’s probe image?

In this paper we make the highly novel claim that prior knadge of the classes/, vi
can be successfully leveraged to take advantage of theogetesus nature of pose change
on a face’s local appearance (i.e. some patches of the fdcbemnore prone to 3D
appearance variation, such as the nose, etc., than otlobiegat Specifically, we propose
one can categorize patches in two images of the same cliewliffering viewpointsi
andj in three ways: (i) a patch is common to view-pointandj, (ii) a patch is common
only to view-pointi, and (iii) a patch is common only to view-poiptA depiction of this
categorization can be seen in Figure 2. Work by and Kanadéraméda [1] employed
a similar categorization of patches in their work for posemmtched face recognition,
although their work did not deal with distributions of thetigdees themselves.

Through the framework of this categorization we present hewel contributions.
First, that a large amount of discriminative informatioriséx, and can be empirically
measured, in the overlapping portions (i.e. the intersaatiass) of a free-parts distri-
bution for poses and j of the same client. Second, that much of this discriminative
information can be extracted, using our prior knowledgénefworld models, through the



emphasis and de-emphasis of intersecting and non-interggxatches respectively. We
presents our results on the pose portion of the FERET [4pbdata
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Figure 2: A depiction of the three ways to categorize a pagiyen images from the
view-pointsi andj for the same subject clags Specifically, one can categorize a patch
as: (i) common ta andj (G N ¢), (i) common to onlyi (G € ¢;), and (iii) common to
only j (Gj ¢ G). For all experiments in this paper the gallery posell be frontal, with

all probe poses being non-frontal. Note: patches commorn tnd | will have different
aspect ratios at each view-point.

2 Problem Definition

Borrowing upon set theory we can formalize the categonstiof patches in Section 1
as the classes: (i N ¢j (i.e. the intersection), (ii}5 ¢ ¢;, and (iii) ¢; ¢ G (i.e. the non-
intersections). A graphical interpretation of these @adn terms of conditional pdfs can
be seen in Figure 3.
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Figure 3: A graphical example of how the pdfs fgrand ¢; (depicted as Gaussians in
(a) in this example) can be decomposed intodi) ¢j, (i) G ¢ ¢ and (iii) ¢; € G as
seen in (b). Where: (i) represents the class of observati@isritersect with; and ¢,
(i) represents the class of observations of claghat donot intersect with¢j, and (jii)
represents the the class of observations of afasisat donotintersect withg.

In our work we assume that we have parametric represensatibg, and w4, for
posei, that encapsulates the sufficient statistics figA,,;) of each class. For the empir-
ical portion of this paper we will make approximations tosbgarametric forms using
Gaussian mixture models (GMMs¥or more information on how we obtain the free-parts
representation of an image and then estimate GMMs pleaseteefippendix Sections A
and B respectively. In practice one typically has a cliendeidor only asingleview-
point, which is usually mismatched to the viewpoint of thaimlant images. However,

1For our experimental work we used GMMs with 32 mixture composanid diagonal covariance matri-
ces. The dimensionality of the 2616 observations patches, after a two-dimensional discosi@e transform
(DCT) based feature extraction,ds= 35.



we do have access to world models for all viewpoints that lgllseen in the claimant
images.

We shall denote patches from the claimant image for pasgD; = {o;}R_; whereo
refers to an individual observation image patch &nsithe number of patches in the face
image. One can obtain the client specific posterior proltalidr a single observation as,

Gy p(o|G)

where we assume equal priors between client and world da3s$e task of face verifi-
cation, for a free-parts representation, can now be defiged a

reject
L(Dj|G) s Th 2
accept
where,

L(Dj|G) E{logP(Gilo)| 1} }
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Rr il ( | )

One might note that the notation employed in Equation 3 degdasm the canonical
method of expressing the log-likelihood for a set of indefmn observations. In this
formulation we weight each observationdn equally when calculating the expectation,
so we say the expectation has been taken with respent;tas all observations (i.e.
patches) irD; are a subset of the world clags;. When a patch in the claimant image
is not a subset of the world class of which the expectation is beikgrt with respect to,
for example if we were taking the expectation with respect{on 7/, a re-weighting
scheme must be employed as we shall explore in Section 5. hféghioldT his specified
for a desired false accept rate (FAR) or false reject ratdR)F-R

The log-likelihood measure in Equation 3, which we shaleregd as the geometric
mean (GM) log-likelihood, is optimal if= j and we assume the observationdinare
identically and independently distributed (i.i.d.). Feetask of face recognition it is com-
mon however, to encounteg j (i.e. the claimant’s pose is not similar to the client moslel’
pose) resulting in a mismatch, making the log-likelihoo&guation 3 sub-optimal as will
be discussed further in Section 5. As one never has acces# tio# j the task for the rest
of this paper is to estimate a useful log-likelihood measaged solely on our knowledge
of the classes;, W} and %/,.

3 Face Database and Experiments

Experiments were performed on a subset of the FERET datfdlaspecifically images
stemming from théa, bb, bc, bd, be bf, bg, bh, andbi subsets; which approximately refer
to rotation’s about the vertical axis of, +60°, +40°, +25°, +15°, —15°, —25°, —4(P, —6C°
respectively. In all experiments, gallery images stem fthenfrontal posda with probe
images stemming from all other view-points. The databasgaims200 subjects which
were randomly divided into setd andg2 both containing0 subjects. The remaininzp
subjects were used as an imposter set for our verificatiorrerpnts. The world set



is used to obtain any non-client data-dependent aspecteoferification system. The
evaluation and imposter sets are where the performancefaatéhe verification system
are obtained. Thgl andg2 sets were used interchangeably as the world and evaluation
sets.

Traditionally, before performing the act of face recogmiti some sort of geometric
pre-processing has to go on to remove variations in the faeeta rotation and scale.
The distance and angle between the eyes has long been r@garda accurate measure
of scale and rotation in a face. However, this type of gedmetnrmalization, based
purely on the eye position, becomes problematic when fadéd depth pose rotation
due to a stretching of the image in the y-axis. In our work wesehto employ the
distance from the eye line to the nose tip vertically to reyntte stretching problem.
The final geometrically normalized cropped faces formea-al1l5array of pixels. The
face verification task is the binary process of acceptingjercting the identity claim (i.e.
the log-likelihood measure) made by a subject under testimisle measure for overall
performance of a verification system is found by determirtirgequal error rate (EER)
for the system, where FA = FR.

4 Modeling the Intersection Class

One of the major advantages of employing a free-parts reptason over more holistic
representations (e.g. Eigenfaces [6]) of the face is thé&iaddl avenues it provides for
dealing with mismatch. By modeling the face as a cloud of ienaatch observations (i.e.
a distribution), one can take advantage of the heterogesneature of pose mismatches
at a patch level (i.e. some patches within a face from pagi#l be of more use than
others when trying to match with a face from a differing pgseFrom a probabilistic
view point this translates to modeling the intersectiorsslaetween two poses. Such
an intersection would not be possible with holistic typerespntations that represent the
face as a single observation, as the global appearancdwala differ (i.e. not intersect)
between viewpoints. An example of this concept of inteiseatan be seen in Figure 3
where one can see that a client’s distribution for two posesbe divided into,

p(o|G) =P(GNCj)polGNCy) +[1-P(GNG)lplG € ) (4)

wherep(o|G N () is the pdf for observations commondpandc;. Similarly, p(o|G ¢ ¢j)
is the pdf for observationsot intersecting withc; given that they stem frong;. Addi-
tionally, P(G N () is a prior employed to ensure thalo|G N ¢j) integrates to unity.

In our work we make the simplifying assumption that all obaéions (i.e. image
patches) stemming from each class are i.i.d., as this asgmims good generalization
properties when having to do face recognition in the presefidarge pixel appearance
variation [3]. In this paper we make the additional simpéfion that this i.i.d. assumption
extends across poses (i.e. there is no conditional depead@tween observations of the
same subject between different poges) as to concentrate solely on leveraging prior
knowledge of the overlap between contexts for improved fa&e#ication performance.

2Although in future work we would like to incorporate conditial dependence between mismatches into our
framework for improved performance.



4.1 How much overlap?

A suitable question to ask before embarking upon the reshisfgaper is: how much
discriminating information is contained in the intersent(if there is any intersection?)
of free-parts distributions between poses? In this papdrave formulated a novel tech-
nigue that can obtain an empirical answer to this questiananswer this question we
make the assumption that we have access to models for tteestaisind ¢;. This isnot
a viable assumption in practice, as one only ever has aceesbit notc;; wherei andj
are the gallery and probe poses respectively. We are eintagdhis assumption how-
ever, for this section to gain a measure of how much discatihia information exists in
the clasGi N ¢;j.

Given that we have access to estimates of the parametriclsfodelasses; and ¢
one can define the intersection class pdf as,

P(G)p(oG), Ifnj;(0)>1

P(GNG)plolGN () = { P(Cj)p(o|Cj), otherwise ©)
where,
P(Cj)p(0|C;
110~ o) ©

the intersecting world pdf(o| % N %)) can be estimated in a similar manner. Substitut-
ing p(o]G N ¢j) and p(o] M N W) into Equation 1 to obtaiR(G N Cj|o); we can obtain the
following log-likelihood measure,

L(Dj|G N () = E{logP(G N Cjlo)| W)} (7

This log-likelihood measure, which we shall refer to as thterisecting geometric mean
(IGM) log-likelihood measure, is optimal from the perspeethat it gives us a measure
of performance for claimant observationsOnthat intersect with botla; and ¢j. We can
interpret the IGM results as a lower bound on verificatiorfggenance, when trying to
take advantage of the intersection of mismatched distdbstfrom the same client. One
can see a comparison between the baseline GM and the lowed bGW log-likelihood
measures in Figure 4.

Figure 4 demonstrates two important facts concerning fiiaés face verification in
the presence of pose mismatch. First, that there is a larggb@uof common (i.e.
intersecting) observations between a cliem'sand ¢; models. Second, that the non-
intersecting observations drastically affect perforneaan the larger mismatched poses
as can be seen from the poor baseline performance of the GMumeealhe rest of this
paper will be dedicated to measures that can try and appadeithe performance of the
IGM log-likelihood measure given we dmt have access tg;.

5 Robust Measures

In previous work [2] concerning the effective combinatidrconditionally independent
classifiers it has been shown that the multiplication of déorhlly independent prob-
abilities is extremely sensitive to mismatch errors dueh® geometric mean property
(i.e. the smallest values in a numeric sequence will doraitiz¢ geometric mean). In
this paper we propose a similar effect occurs when attemptircalculate the baseline
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Figure 4: A comparison between the baseline GM (3) and tlieatdGM (7) log-
likelihood measures, demonstrating that considerableridighating information exists
in the intersection of client distributions for mismatchmase. Note: (a) depicts results
for evaluations on thga set and (b) depicts results for theset.

GM log-likelihood measure, where probabilities for noteirsecting observations in the
presence of a heterogeneous mismatch dominate becaussr aitfall values.

To alleviate this problem we propose a number of log-liketith measures that are far
less sensitive to small probabilities stemming from misthaOur first proposed measure
is the arithmetic mean (AM) log-likelihood measure,

L(Dj|G) logE{P(Ci|0)| W} }

l R
log = ZlP(Ci |or) (8)

This measure is motivated by work from Kittler et al. [2] whendonstrated how an arith-
metic sum of conditionally independent probabilities @mihg error is far less sensitive
than a geometric sum, which is considered optimal if thosgegarobabilities do not con-
tain errors. Additionally, we can incorporate our prior lwtedge of the intersection afi}
and/ into the measure,

L(Dj|G) = IogE{P(C|o)\‘Wﬂ’Wj}
— Iogz ;(C|°’) 9)
where,
5(0):% (10)

Note, the expectation in Equation 9 is taken with respeatfo %/, which requires an
unequal weighting of observations . The weighting factob(o) described in Equa-
tion 10 is to leverage our knowledge that observations iexjsh i n %/ will be less
susceptible to mismatch than those observations not Iyittigd intersection. We refer to
the measure described in Equations 9 and 10 as our worldéuion arithmetic mean
(WIAM) log-likelihood measure.



Our third proposed measure endeavors to desensitize et eff mismatch on our
scores in an alternate manner through the approximation,

p(o|G U Cj) = P(G)p(o|G)+ [1—P(G)]p(o| W) (11)

where we assume(G) = 0.5 for our current framework. This approach attempts to en-
sure that any observations that are unlikelyGitout likely in %/ do not adversely affect
the aggregate likelihood. Employing Equations 1 and 11 wedd#ain the approxima-
tion P(G U ¢j|0)® which can be used to form the likelihood,

L(Dj|G) = E{logP(G U Cj|0)| W} } (12)

which we shall refer to as the world union geometrical mean WA) log-likelihood
measure.

6 Results and Discussion

In Figure 5 one can see verification results for our baseliMg(& and proposed AM (8),
WIAM (9), WUGM (11) log-likelihood measures. Results are pred on both thga
andgb sets of the FERET database, in Figures 5 (a) and (b) resplctim these results
one can see that all three proposed measures perform Iettethe baseline GM measure
for nearly all poses. One can additionally see that our ppeddVIAM measure, which
attempts to desensitize the effect of mismatch error ontkeatl likelihood and empha-
size observations that lie in the intersectisfn 7/, has better performance than the AM
and WUGM measures across all poses. This superior perfoertamche attributed to the
AM and WUGM measures not taking advantage of the prior knogdede have about
the intersection between world models for differing posestead concentrating solely
on desensitizing the effect of mismatch errors.
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Figure 5: Depiction of verification results for the (@ and (b)gb sets for our baseline
GM (3) and proposed AM (8), WIAM (9), WUGM (11) log-likelihood @asures. One
can see that our proposed WIAM measure gives improved peafuzenin nearly all cir-
cumstances.

In conjunction to the work we have presented in this paperobust log-likelihood
measures we have also investigated alternate strategigaifing estimates qi(o|G N Cj)

3We use the notatioR(0) to denote an approximation to the real probabiftp).



directly, given that we only have prior knowledge af % and %/. In this work we
proposed a GMM estimation strategy based on the EM-algoréhd our prior knowledge
of #{ and %/, which would weight observations in the client ggbased on how likely
they are inm n#;. This approach worked well on synthetic problems where weewe
able to employ a; with a very large number of observations. However, the agro
fell apart in the more realistic situation where one has ageeaumber of observations
describing the client sef;. This poor result can be attributed to the very nature of the
intersection class between two distributions, as the @hsiens lying in the intersection
are inherently of low likelihood resulting in very erroneoestimates ofi(o|G N Cj) given
that one only has accessd¢p

One can see from the results in Figure 5 that there is a deéiditantage in employ-
ing our alternate log-likelihood measures in the presefpege mismatch. However, for
substantial pose mismatch (i®> +/ — 40°) the improvement seen is substantially less
than those performances seen for the theoretical IGM (7ysorean Section 4.1. We be-
lieve that this poor result can be explained in a similar neao the previously described
problems of trying to estimate a client’s intersecting matieectly. Due to the claimant
observation seb; being of a finite size, the proportion of observations thattepositive
effect on the modeb(o|G) is considerably less thepio|G N ¢j). In future work we believe
modeling the dependencies found in the joint distribup¢s 74/, ) may overcome this
limitation, as one can employ non-intersecting obserwatiovhich there are inherently
more of, to aid in the estimation @{o|G N ¢j) given we only have access th

7 Conclusions

In this paper we have presented a novel framework that attetmpeverage prior knowl-
edge about the intersection class, for different pose ntigmea, to gain improved face
recognition performance. This approach is particularlyat@as it attempts to emphasize
and de-emphasize image patches in the face based, on poetddge concerning the
overlap of free-parts distributions for mismatched podaghis work we demonstrated
how one can define the intersection class between two oyeénigdistributions, and ad-
ditionally gave an empirical measure of the amount of disirative information existing
in this intersection for the task of verification. This higisatimination is made possible
through the employment of a free-parts representation effdbe; that encourages the
viewing of a face image not as a single point, but as a cloudatftpobservations best
described as a distribution.

We have additionally demonstrated that there are problentaking advantage of
the discriminative information contained in this interseic due to the client class;
being unseen during evaluation, that is we only have acoetbetclient clasg; and the
prior world classest} and % wherei andj are the discrete viewpoints of the client and
claimant face images respectively. To combat these prableenhave proposed a novel
robust log-likelihood measure that: a) de-sensitizes tfeeteof mismatch on individual
image patches in the overall log-likelihood measure foraanthnt, and (b) re-weights
the contribution of patches for the overall log-likelihowgasure based on whether they
lie in the intersection of the world modefs{ and 7. In future work we believe that
additional performance improvement can be attained thrdhg joint modeling of the
world classest} and .
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A Free-parts Representation

To gain a free-parts representation for a subject, the stbjgeometrically and statis-
tically normalized images are first decomposed itdo 16 pixel image patches with a
75% overlap between horizontally and vertically adjacent pasc Each image patch has
a two-dimensional discrete cosine transform (DCT) apgigedi in order to compact the
256 elements into a feature vectwpf dimensionalityd. Based on preliminary experi-
ments, we have chosein= 35. Additional information about the generation of the featur
representations can be obtained from [3, 5].

B GMM Estimation

A GMM models the probability distribution of @ dimensional random variabteas the
sum ofM multivariate Gaussian functions,

PON) = 3 s WinAL(0; b, Zim) (13)

whereA((o;, ) denotes the evaluation of a normal distribution for obsmao with
mean vector and covariance matriX. The weighting of each mixture component is
denoted bywy, and must sum to unity across all components. In our work thar@nce
matrices in\ are assumed to be diagonal such that fidg- o, as substantial benefit can
be attained by reducing the number of parameters that ndezl@stimated.

Given a world modeh ;) = {wy,, .1y, . Z4y 1M, and training observations from a par-
ticular client,O0 = {oy,--- ,0r}, the GMM parameters for that client are estimated through
relevance adaptation (RA) [3] which is a form of MAP estirpatincorporating the EM-
algorithm. Please note for the purposes of clarity we havittedhany indexes to view-
point.



