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Abstract

Representing the face as a distribution of freely moving patches, which we
refer to as a “free-parts” representation, has recently demonstrated some ben-
efit in the task of face verification. This benefit can be largely attributed to the
representation’s natural ability to deal with local appearance variation within
the face. Hitherto, a major limitation that has hindered thewider adoption of
this type of facial representation, for the task of face verification, has been its
poor ability to take advantage of prior knowledge concerning mismatches in
context; such as pose. This paper goes some way to alleviating these limi-
tations by making two novel contributions: (i) Demonstrating that free-parts
distributions of a client’s face for different poses overlap to such a degree that
a considerable amount of discrimination is preserved in theintersection. (ii)
Through the off-line estimation of subject-independent pose dependent pri-
ors, an alternative to the canonical log-likelihood measure can be employed
that takes advantage of this intersection and is less sensitive to mismatch in
the presence of pose variation.

1 Introduction

Representing a face as an ensemble of local image patches, rather than a holistic monolith
of pixels, has some inherent advantages when trying to matchfaces in real-world sce-
narios. This representation can be especially beneficial inthe presence of heterogeneous
mismatches (i.e. mismatches that do not occur equally across all parts of the image) such
as those occurring from differing pose, shadow, occlusion,expression, etc. In the presence
of these types of heterogenous mismatches any benefit gainedfrom modeling the global
dependencies in a face image is usually lost by the overpowering effect of the mismatch
in appearance globally. However, by trying to match an imagebased purely on its local
appearance (i.e. decomposing a single face image into many sub-face image patches) one
can alleviate this effect, as the effect of the mismatch is usually not occurring equally
across the image (i.e. heterogeneous). A specific representation that embraces this con-
cept is a “free-parts” representation as the patches withinthe face are able to “freely”
move to varying extents by relaxing the position/structureof patches within the face im-
age. A high-level graphical example of how one can obtain a free-parts distribution from
a client image is depicted in Figure 1. This representation has already met with some



success in frontal-face recognition [3], in the presence ofalignment and expression mis-
match.
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Figure 1: A graphical depiction of the process involved in obtaining a “free-parts”
Gaussian mixture model (GMM) distribution from a client image. Note: in a free-parts
representation positional information of where patches inthe image are located are ig-
nored, allowing the patches to “freely” move.

Hitherto, a major limitation that has hindered the wider adoption of this type of facial
representation, for the task of face verification, has been its poor ability to take advantage
of prior knowledge concerning mismatches in context; such as pose. In this paper we
shall refer to this prior knowledge in the form of a world class Wi , wherei is an index to
a pre-defined number of discrete poses. The world class is representative of the general
population of faces for the posei, whose distribution model is usually estimated from a
large ensemble of non-client faces that are separate to those used in the face verification
task. In our work we assume we have world models for all possible poses that will be
encountered in evaluation, which is a reasonable assumption as the world models are
independent of the subjects being verified and can be estimated offline. A fundamental
question being asked in this paper is: how can one incorporate the prior knowledge of
world classesWi ,∀i given there is a mismatch in pose between a client’s gallery and the
claimant’s probe image?

In this paper we make the highly novel claim that prior knowledge of the classesWi ,∀i
can be successfully leveraged to take advantage of the heterogenous nature of pose change
on a face’s local appearance (i.e. some patches of the face will be more prone to 3D
appearance variation, such as the nose, etc., than other patches). Specifically, we propose
one can categorize patches in two images of the same client for differing viewpointsi
and j in three ways: (i) a patch is common to view-pointsi and j, (ii) a patch is common
only to view-pointi, and (iii) a patch is common only to view-pointj. A depiction of this
categorization can be seen in Figure 2. Work by and Kanade andYamada [1] employed
a similar categorization of patches in their work for pose mismatched face recognition,
although their work did not deal with distributions of the patches themselves.

Through the framework of this categorization we present twonovel contributions.
First, that a large amount of discriminative information exists, and can be empirically
measured, in the overlapping portions (i.e. the intersection class) of a free-parts distri-
bution for posesi and j of the same client. Second, that much of this discriminative
information can be extracted, using our prior knowledge of the world models, through the



emphasis and de-emphasis of intersecting and non-intersecting patches respectively. We
presents our results on the pose portion of the FERET [4] database.
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Figure 2: A depiction of the three ways to categorize a patch,given images from the
view-pointsi and j for the same subject classC . Specifically, one can categorize a patch
as: (i) common toi and j (Ci ∩C j ), (ii) common to onlyi (Ci * C j ), and (iii) common to
only j (C j * Ci). For all experiments in this paper the gallery posei will be frontal, with
all probe posesj being non-frontal. Note: patches common toi and j will have different
aspect ratios at each view-point.

2 Problem Definition

Borrowing upon set theory we can formalize the categorizations of patches in Section 1
as the classes: (i)Ci ∩C j (i.e. the intersection), (ii)Ci * C j , and (iii) C j * Ci (i.e. the non-
intersections). A graphical interpretation of these classes in terms of conditional pdfs can
be seen in Figure 3.
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Figure 3: A graphical example of how the pdfs forCi andC j (depicted as Gaussians in
(a) in this example) can be decomposed into (i)Ci ∩C j , (ii) Ci * C j and (iii) C j * Ci as
seen in (b). Where: (i) represents the class of observations that intersect withCi andC j ,
(ii) represents the class of observations of classCi that donot intersect withC j , and (iii)
represents the the class of observations of classC j that donot intersect withCi .

In our work we assume that we have parametric representations of Ci and Wi , for
posei, that encapsulates the sufficient statistics (i.e.λCi ,λWi

) of each class. For the empir-
ical portion of this paper we will make approximations to these parametric forms using
Gaussian mixture models (GMMs)1; for more information on how we obtain the free-parts
representation of an image and then estimate GMMs please refer to appendix Sections A
and B respectively. In practice one typically has a client model for only asingleview-
point, which is usually mismatched to the viewpoint of the claimant images. However,

1For our experimental work we used GMMs with 32 mixture components and diagonal covariance matri-
ces. The dimensionality of the 16×16 observations patches, after a two-dimensional discrete cosine transform
(DCT) based feature extraction, isd = 35.



we do have access to world models for all viewpoints that willbe seen in the claimant
images.

We shall denote patches from the claimant image for posej asD j = {or}
R
r=1 whereo

refers to an individual observation image patch andR is the number of patches in the face
image. One can obtain the client specific posterior probability for a single observation as,

P(Ci |o) =
p(o|Ci)

p(o|Ci)+ p(o|Wi)
(1)

where we assume equal priors between client and world classes. The task of face verifi-
cation, for a free-parts representation, can now be defined as,

L(D j |Ci)
reject

≶

accept
Th (2)

where,

L(D j |Ci) = E{logP(Ci |o)|W j}

=
1
R

R

∑
r=1

logP(Ci |or) (3)

One might note that the notation employed in Equation 3 departs from the canonical
method of expressing the log-likelihood for a set of independent observations. In this
formulation we weight each observation inD j equally when calculating the expectation,
so we say the expectation has been taken with respect toW j ; as all observations (i.e.
patches) inD j are a subset of the world classW j . When a patch in the claimant image
is not a subset of the world class of which the expectation is being taken with respect to,
for example if we were taking the expectation with respect toWi ∩W j , a re-weighting
scheme must be employed as we shall explore in Section 5. The thresholdTh is specified
for a desired false accept rate (FAR) or false reject rate (FRR).

The log-likelihood measure in Equation 3, which we shall refer to as the geometric
mean (GM) log-likelihood, is optimal ifi = j and we assume the observations inD j are
identically and independently distributed (i.i.d.). For the task of face recognition it is com-
mon however, to encounteri 6= j (i.e. the claimant’s pose is not similar to the client model’s
pose) resulting in a mismatch, making the log-likelihood inEquation 3 sub-optimal as will
be discussed further in Section 5. As one never has access toC j if i 6= j the task for the rest
of this paper is to estimate a useful log-likelihood measurebased solely on our knowledge
of the classesCi ,Wi andW j .

3 Face Database and Experiments

Experiments were performed on a subset of the FERET database[4], specifically images
stemming from theba, bb, bc, bd, be, bf, bg, bh, andbi subsets; which approximately refer
to rotation’s about the vertical axis of0o, +60o, +40o, +25o, +15o, −15o, −25o, −40o, −60o

respectively. In all experiments, gallery images stem fromthe frontal poseba with probe
images stemming from all other view-points. The database contains200 subjects which
were randomly divided into setsg1 andg2 both containing90 subjects. The remaining20
subjects were used as an imposter set for our verification experiments. The world set



is used to obtain any non-client data-dependent aspects of the verification system. The
evaluation and imposter sets are where the performance rates for the verification system
are obtained. Theg1 andg2 sets were used interchangeably as the world and evaluation
sets.

Traditionally, before performing the act of face recognition, some sort of geometric
pre-processing has to go on to remove variations in the face due to rotation and scale.
The distance and angle between the eyes has long been regarded as an accurate measure
of scale and rotation in a face. However, this type of geometric normalization, based
purely on the eye position, becomes problematic when faced with depth pose rotation
due to a stretching of the image in the y-axis. In our work we chose to employ the
distance from the eye line to the nose tip vertically to remedy the stretching problem.
The final geometrically normalized cropped faces formed a98×115array of pixels. The
face verification task is the binary process of accepting or rejecting the identity claim (i.e.
the log-likelihood measure) made by a subject under test. A simple measure for overall
performance of a verification system is found by determiningthe equal error rate (EER)
for the system, where FA = FR.

4 Modeling the Intersection Class

One of the major advantages of employing a free-parts representation over more holistic
representations (e.g. Eigenfaces [6]) of the face is the additional avenues it provides for
dealing with mismatch. By modeling the face as a cloud of image patch observations (i.e.
a distribution), one can take advantage of the heterogeneous nature of pose mismatches
at a patch level (i.e. some patches within a face from posei will be of more use than
others when trying to match with a face from a differing posej). From a probabilistic
view point this translates to modeling the intersection class between two poses. Such
an intersection would not be possible with holistic type representations that represent the
face as a single observation, as the global appearance will always differ (i.e. not intersect)
between viewpoints. An example of this concept of intersection can be seen in Figure 3
where one can see that a client’s distribution for two poses can be divided into,

p(o|Ci) = P(Ci ∩C j )p(o|Ci ∩C j )+ [1−P(Ci ∩C j )]p(o|Ci * C j ) (4)

wherep(o|Ci ∩C j ) is the pdf for observations common toCi andC j . Similarly, p(o|Ci * C j )

is the pdf for observationsnot intersecting withC j given that they stem fromCi . Addi-
tionally, P(Ci ∩C j ) is a prior employed to ensure thatp(o|Ci ∩C j ) integrates to unity.

In our work we make the simplifying assumption that all observations (i.e. image
patches) stemming from each class are i.i.d., as this assumption has good generalization
properties when having to do face recognition in the presence of large pixel appearance
variation [3]. In this paper we make the additional simplification that this i.i.d. assumption
extends across poses (i.e. there is no conditional dependence between observations of the
same subject between different poses)2 so as to concentrate solely on leveraging prior
knowledge of the overlap between contexts for improved faceverification performance.

2Although in future work we would like to incorporate conditional dependence between mismatches into our
framework for improved performance.



4.1 How much overlap?

A suitable question to ask before embarking upon the rest of this paper is: how much
discriminating information is contained in the intersection (if there is any intersection?)
of free-parts distributions between poses? In this paper wehave formulated a novel tech-
nique that can obtain an empirical answer to this question. To answer this question we
make the assumption that we have access to models for the classesCi andC j . This isnot
a viable assumption in practice, as one only ever has access to Ci but notC j ; wherei and j
are the gallery and probe poses respectively. We are entertaining this assumption how-
ever, for this section to gain a measure of how much discriminative information exists in
the classCi ∩C j .

Given that we have access to estimates of the parametric models for classesCi andC j

one can define the intersection class pdf as,

P(Ci ∩C j )p(o|Ci ∩C j ) =

{

P(Ci)p(o|Ci), If η j/i(o) > 1
P(C j )p(o|C j), otherwise

(5)

where,

η j/i(o) =
P(C j )p(o|C j )

P(Ci)p(o|Ci)
(6)

the intersecting world pdfp(o|Wi ∩W j ) can be estimated in a similar manner. Substitut-
ing p(o|Ci ∩C j ) andp(o|Wi ∩W j ) into Equation 1 to obtainP(Ci ∩C j |o); we can obtain the
following log-likelihood measure,

L(D j |Ci ∩C j ) = E{logP(Ci ∩C j |o)|W j} (7)

This log-likelihood measure, which we shall refer to as the intersecting geometric mean
(IGM) log-likelihood measure, is optimal from the perspective that it gives us a measure
of performance for claimant observations inD j that intersect with bothCi andC j . We can
interpret the IGM results as a lower bound on verification performance, when trying to
take advantage of the intersection of mismatched distributions from the same client. One
can see a comparison between the baseline GM and the lower bound IGM log-likelihood
measures in Figure 4.

Figure 4 demonstrates two important facts concerning free-parts face verification in
the presence of pose mismatch. First, that there is a large number of common (i.e.
intersecting) observations between a client’sCi and C j models. Second, that the non-
intersecting observations drastically affect performance on the larger mismatched poses
as can be seen from the poor baseline performance of the GM measure. The rest of this
paper will be dedicated to measures that can try and approximate the performance of the
IGM log-likelihood measure given we donot have access toC j .

5 Robust Measures

In previous work [2] concerning the effective combination of conditionally independent
classifiers it has been shown that the multiplication of conditionally independent prob-
abilities is extremely sensitive to mismatch errors due to the geometric mean property
(i.e. the smallest values in a numeric sequence will dominate the geometric mean). In
this paper we propose a similar effect occurs when attempting to calculate the baseline
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Figure 4: A comparison between the baseline GM (3) and theoretical IGM (7) log-
likelihood measures, demonstrating that considerable discriminating information exists
in the intersection of client distributions for mismatchedpose. Note: (a) depicts results
for evaluations on thega set and (b) depicts results for thegb set.

GM log-likelihood measure, where probabilities for non-intersecting observations in the
presence of a heterogeneous mismatch dominate because of their small values.

To alleviate this problem we propose a number of log-likelihood measures that are far
less sensitive to small probabilities stemming from mismatch. Our first proposed measure
is the arithmetic mean (AM) log-likelihood measure,

L(D j |Ci) = logE{P(Ci |o)|W j}

= log
1
R

R

∑
r=1

P(Ci |or) (8)

This measure is motivated by work from Kittler et al. [2] who demonstrated how an arith-
metic sum of conditionally independent probabilities containing error is far less sensitive
than a geometric sum, which is considered optimal if those same probabilities do not con-
tain errors. Additionally, we can incorporate our prior knowledge of the intersection ofWi

andW j into the measure,

L(D j |Ci) = logE{P(Ci |o)|Wi ∩W j}

= log
R

∑
r=1

δ(o)P(Ci |or)

δ(o)
(9)

where,

δ(o) =
p(o|Wi ∩W j )

p(o|W j )
(10)

Note, the expectation in Equation 9 is taken with respect toWi ∩W j , which requires an
unequal weighting of observations inD j . The weighting factorδ(o) described in Equa-
tion 10 is to leverage our knowledge that observations existing in Wi ∩W j will be less
susceptible to mismatch than those observations not lying in the intersection. We refer to
the measure described in Equations 9 and 10 as our world intersection arithmetic mean
(WIAM) log-likelihood measure.



Our third proposed measure endeavors to desensitize the effect of mismatch on our
scores in an alternate manner through the approximation,

p(o|Ci ∪C j ) ≈ P(Ci)p(o|Ci)+ [1−P(Ci)]p(o|W j) (11)

where we assumeP(Ci) = 0.5 for our current framework. This approach attempts to en-
sure that any observations that are unlikely inCi but likely in W j do not adversely affect
the aggregate likelihood. Employing Equations 1 and 11 we can obtain the approxima-
tion P̂(Ci ∪C j |o)3 which can be used to form the likelihood,

L(D j |Ci) = E{logP̂(Ci ∪C j |o)|W j} (12)

which we shall refer to as the world union geometrical mean (WUGM) log-likelihood
measure.

6 Results and Discussion

In Figure 5 one can see verification results for our baseline GM (3) and proposed AM (8),
WIAM (9), WUGM (11) log-likelihood measures. Results are presented on both thega
andgb sets of the FERET database, in Figures 5 (a) and (b) respectively. In these results
one can see that all three proposed measures perform better than the baseline GM measure
for nearly all poses. One can additionally see that our proposed WIAM measure, which
attempts to desensitize the effect of mismatch error on the overall likelihood and empha-
size observations that lie in the intersectionWi ∩W j , has better performance than the AM
and WUGM measures across all poses. This superior performance can be attributed to the
AM and WUGM measures not taking advantage of the prior knowledge we have about
the intersection between world models for differing poses,instead concentrating solely
on desensitizing the effect of mismatch errors.
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Figure 5: Depiction of verification results for the (a)ga and (b)gb sets for our baseline
GM (3) and proposed AM (8), WIAM (9), WUGM (11) log-likelihood measures. One
can see that our proposed WIAM measure gives improved performance in nearly all cir-
cumstances.

In conjunction to the work we have presented in this paper on robust log-likelihood
measures we have also investigated alternate strategies for gaining estimates ofp(o|Ci ∩C j )

3We use the notation̂P(o) to denote an approximation to the real probabilityP(o).



directly, given that we only have prior knowledge ofCi , Wi and W j . In this work we
proposed a GMM estimation strategy based on the EM-algorithm and our prior knowledge
of Wi andW j , which would weight observations in the client setCi based on how likely
they are inWi ∩W j . This approach worked well on synthetic problems where we were
able to employ aCi with a very large number of observations. However, the approach
fell apart in the more realistic situation where one has a meager number of observations
describing the client setCi . This poor result can be attributed to the very nature of the
intersection class between two distributions, as the observations lying in the intersection
are inherently of low likelihood resulting in very erroneous estimates ofp(o|Ci ∩C j ) given
that one only has access toCi .

One can see from the results in Figure 5 that there is a definiteadvantage in employ-
ing our alternate log-likelihood measures in the presence of pose mismatch. However, for
substantial pose mismatch (i.e.θ ≥ +/−40o) the improvement seen is substantially less
than those performances seen for the theoretical IGM (7) measure in Section 4.1. We be-
lieve that this poor result can be explained in a similar manner to the previously described
problems of trying to estimate a client’s intersecting model directly. Due to the claimant
observation setD j being of a finite size, the proportion of observations that have a positive
effect on the modelp(o|Ci) is considerably less thanp(o|Ci ∩C j ). In future work we believe
modeling the dependencies found in the joint distributionp(o|Wi ,W j ) may overcome this
limitation, as one can employ non-intersecting observations, which there are inherently
more of, to aid in the estimation ofp(o|Ci ∩C j ) given we only have access toCi .

7 Conclusions

In this paper we have presented a novel framework that attempts to leverage prior knowl-
edge about the intersection class, for different pose mismatches, to gain improved face
recognition performance. This approach is particularly novel as it attempts to emphasize
and de-emphasize image patches in the face based, on prior knowledge concerning the
overlap of free-parts distributions for mismatched poses.In this work we demonstrated
how one can define the intersection class between two overlapping distributions, and ad-
ditionally gave an empirical measure of the amount of discriminative information existing
in this intersection for the task of verification. This high discrimination is made possible
through the employment of a free-parts representation of the face; that encourages the
viewing of a face image not as a single point, but as a cloud of patch observations best
described as a distribution.

We have additionally demonstrated that there are problems in taking advantage of
the discriminative information contained in this intersection due to the client classC j

being unseen during evaluation, that is we only have access to the client classCi and the
prior world classesWi andW j wherei and j are the discrete viewpoints of the client and
claimant face images respectively. To combat these problems we have proposed a novel
robust log-likelihood measure that: a) de-sensitizes the effect of mismatch on individual
image patches in the overall log-likelihood measure for a claimant, and (b) re-weights
the contribution of patches for the overall log-likelihoodmeasure based on whether they
lie in the intersection of the world modelsWi andW j . In future work we believe that
additional performance improvement can be attained through the joint modeling of the
world classesWi andW j .
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A Free-parts Representation

To gain a free-parts representation for a subject, the subject’s geometrically and statis-
tically normalized images are first decomposed into16× 16 pixel image patches with a
75%overlap between horizontally and vertically adjacent patches. Each image patch has
a two-dimensional discrete cosine transform (DCT) appliedto it in order to compact the
256 elements into a feature vectoro of dimensionalityd. Based on preliminary experi-
ments, we have chosend = 35. Additional information about the generation of the feature
representations can be obtained from [3, 5].

B GMM Estimation

A GMM models the probability distribution of ad dimensional random variableo as the
sum ofM multivariate Gaussian functions,

p(o|λ) = ∑M
m=1wmN (o;µm,Σm) (13)

whereN (o;µ,Σ) denotes the evaluation of a normal distribution for observation o with
mean vectorµ and covariance matrixΣ. The weighting of each mixture component is
denoted bywm and must sum to unity across all components. In our work the covariance
matrices inλ are assumed to be diagonal such that diag{Σ} = σ, as substantial benefit can
be attained by reducing the number of parameters that need tobe estimated.

Given a world modelλW = {wWm
,µWm

,ΣWm
}M

m=1 and training observations from a par-
ticular client,O = {o1, · · · ,oR}, the GMM parameters for that client are estimated through
relevance adaptation (RA) [3] which is a form of MAP estimation incorporating the EM-
algorithm. Please note for the purposes of clarity we have omitted any indexes to view-
point.


