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Abstract     

 
Image-based rendering (IBR) has become a very active research area in recent years. The spectral analysis 

problem for IBR has not been completely solved. In this paper, we present a new approach to 

parameterizing IBR data, which is applicable to general-purpose IBR spectral analysis. We notice that any 

plenoptic function is generated by light ray emitted/reflected/refracted from the object surface. We 

introduce the surface plenoptic function (SPF), which represents the light rays starting from the object 

surface. Given that radiance along a light ray does not change unless blocked, SPF reduces the dimensions 

of the original plenoptic function to 6D. We are then able to map or transform the SPF to IBR 

representations captured along any camera trajectory. Assuming certain properties on the SPF, we can 

analyze the properties of IBR for generic scenes such as scenes with Lambertian or non-Lambertian 

surfaces and scenes with or without occlusions, and for different sampling strategies such as the lightfield 

and concentric mosaic. We find that in most cases, even though the SPF may be band-limited, the 

frequency spectrum of IBR is not band-limited. We show that non-Lambertian reflections, depth variations 

and occlusions can all broaden the spectrum, with the latter two being more significant. We also show that 

the spectrum of concentric mosaic is similar to that of the lightfield.  

 

Keywords: plenoptic function, image-based rendering, lightfield, concentric mosaic, spectrum analysis.  

 

I. Introduction 

Image-based rendering (IBR) has attracted a lot of attention recently. Proposed by Adelson and Bergen [1] 

as a 7D plenoptic function, IBR models a 3D dynamic scene by recording the light rays at every space 

location, towards every possible direction, over any range of wave-lengths and at any time. By removing 

the time and the wavelength dimensions, McMillan and Bishop [2] defined plenoptic modeling as 

generating a continuous 5D plenoptic function from a set of discrete samples. The concepts of Lightfield by 

Levoy and Hanrahan [3] and Lumigraph by Gortler et al. [4] effectively parameterized the plenoptic 

function into a 4D function under the constraint that the object lies in free space. Shum and He [5] 

proposed concentric mosaic, where the number of dimensions of the plenoptic function is decreased further 

to three by restricting the viewer’s movement inside a circle.   

The principle of the Lightfield [3] can be briefly addressed as follows. In free space, radiance does not 

change along a line unless blocked. The light rays are thus parameterized by their intersections with two 
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planes in arbitrary position. One of the planes is indexed with coordinate ( )vu,  and the other with 

coordinate ( )ts, . In Figure 1, we show an example where the two planes, the camera plane and the focal 

plane, are parallel. This is the most widely used setup. An example light ray is shown and indexed as 

( )0000 ,,, tsvu . The coordinates are then discretized so that a finite number of light rays are recorded. In 

practice, we put a 2D array of cameras on the camera plane, which share the same focal plane. The images 

captured form a 2D image array, as is shown in Figure 2. To create a new view of the object, we just split 

the view into its light rays, which are then calculated by interpolating existing nearby light rays in the 

image array. The new view is then generated by reassembling the split rays together.  

Concentric mosaic [5] further restricts that both the cameras and the viewer are on a plane. The scene is 

captured by mounting a camera at the end of a level beam, and shooting images at regular intervals as the 

beam rotates, as is shown in Figure 3. The light rays are then indexed by the camera position or the beam 

rotation angle α , and the pixel locations ( )vu, . This parameterization is equivalent to having many slit 

cameras rotating around a common center and taking images along the tangent direction, thus the name 

concentric mosaic. The concentric mosaic can be rendered with light ray interpolation, too.  

IBR has many advantages over the traditional model-based rendering. When enough images are captured, 

IBR requires very little or even no geometrical information about the scene to realistically render it. This is 

very attractive due to the difficulty to construct geometrical models for objects in a real-world scene. The 

rendering speed of IBR is linearly proportional to the image size, but not the scene complexity, which 

makes IBR very suitable for rendering realistic scenes with complex geometry. Nevertheless, often a huge 

number of images have to be taken in order to avoid aliasing or ghosting during the rendering. It is 

therefore extremely important to know how many images are enough to capture a scene, based on the 

spectrum analysis of the plenoptic function.  

Recently Chai et al. [6] proposed a method to study the frequency spectrum of lightfield. Assuming 

Lambertian surface and no occlusion, they showed that any image taken at position ( )ts,  can be mapped to 

the image captured at position ( )0,0 . A key conclusion is that the spectral support of a lightfield signal is 

bounded by the minimum and maximum depths of objects in the scene only, no matter how complicated 

the scene is. They claim that by knowing the bound of the support, the maximum sampling density can be 

achieved by compacting copies of the spectral support in the frequency domain. They further proposed the 

“Sampling Curve”, which gives the relationship between the number of images to be taken and the 

knowledge about the scene geometry (number of bits that represents the depth field). Their analysis 

provides a fairly good first-order approximation of the spectrum analysis of IBR. However, the dependency 

on mapping images captured at arbitrary position to one position (as in their case from ( )ts,  to ( )0,0 ) 

prevents it from being applied to more complicated scenes such as non-Lambertian surface, scenes with 

occlusions and other IBR methods such as concentric mosaic.  

Due to the complexity of the problem, few ideas have been proposed to enhance the work in [6]. In [7], 

Chan and Shum proposed to view the plenoptic sampling problem as a multidimensional sampling 
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problem. They showed that depth variation causes the plenoptic function to spread in the frequency 

domain. The same image mapping in [6] is applied in their paper and thus it bears the same disadvantages.  

Marchand-Maillet and Vetterli [8] extended the work for scenes with functional surfaces. They fixed the 

light ray direction and tried to find a one-to-one mapping from the object surface to the camera plane. This 

one-to-one mapping is valid when no occlusion occurs. They showed that even when there is no occlusion, 

a band-limited signal pasted on a functional surface will not result in a band-limited lightfield spectrum. 

The limitation of their analysis is that they did not consider general scenes with occlusions or non-

Lambertian surfaces. Lightfield was the only IBR method that was considered. They also proposed a 

geometrical analysis for ideal sampling of lightfield. Occlusion was discussed, yet no significant and 

practical results were drawn from their analysis.  

Another interesting work was done by Lin and Shum [9]. They performed sampling analysis on both 

lightfield and concentric mosaic with scale-space theory under constant-depth assumption. The bounds are 

derived from the aspect of geometry and based on the goal that no “spurious detail” should be generated 

during the rendering (referred as the causality requirement). Although the viewpoint of their analysis is 

very interesting, the constant-depth assumption is often too strong to describe the real world.  

In this paper, we propose a new method to parameterize the plenoptic function for IBR spectrum analysis. 

Similar to [6], we also work in the Fourier transform domain. However, instead of mapping images 

captured at arbitrary position to one position, we map the IBR representation onto the so-called surface 

plenoptic function (SPF, as defined in Section II). This allows us to solve for occluded, non-Lambertian 

scenes, as well as other IBR capturing methods such as concentric mosaic. For non-Lambertian surface, we 

show that when the surface emission/reflection changes slowly along different directions, the Fourier 

transform of the scene is also expanded by a limited amount. We then show that when the scene has depth 

variations, the spectrum will be broadened due to the nonlinearity between the SPF and the IBR 

representation. We also show that occlusion causes a modulation effect between layers in the scene, which 

generates additional frequency components. Among the three sources we find that depth variations and 

occlusions are often much stronger in spectrum spreading. For concentric mosaic, the same analysis applies 

and similar conclusions as in lightfield can be drawn.  

The paper is organized as follows. In Section II, we present the new method of parameterization. Section 

III gives examples on different scenes sampled with lightfield. Section IV shows the analysis for concentric 

mosaic. Conclusions and future work are given in Section V.  

II. Parameterization Method 

Image-based rendering, as defined by McMillan and Bishop in [2], is to generate a continuous 

representation of the plenoptic function given a set of discrete samples (complete or incomplete) from that 

function. To analyze the spectrum for IBR, it is important to have a close look at how plenoptic function is 

generated. Obviously, any light ray in the free space has a source. It can be either emitted from some light 

source (e.g., the Sun), or reflected by some object surface. If the object is transparent, refraction is also 
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involved. Let the entire surface of all the light sources and objects be S. We can always trace a light ray in 

the free space back to a point on S. In the 3D world where radiance does not change along a line unless 

blocked, the 7D plenoptic function can be reparameterized to 6D including time (1D), wavelength (1D), 

point on the surface S (2D), and azimuth and elevation angles (2D) the light ray is emitted. We name this 

6D function as the surface plenoptic function (SPF). Notice that the reparameterization does not lose any 

information given that radiance does not change along its path.  

The reason we introduce SPF, is that under the same condition, it will have the same dimensionality as 

commonly used IBR representations. For example, when time and wavelength is ignored, SPF is a 4D 

function, the same as lightfield. When cameras and the viewer are constrained on a plane, SPF reduces to 

3D (eliminating the elevation angle), as in concentric mosaic. The property of same dimensionality 

provides us the possibility to easily map between SPF and IBR representations. Such a mapping depends on 

both the scene geometry and the camera trajectory, but not the surface property such as BRDF. If we have 

some knowledge about the scene, in other words, if we know some property about the SPF, related property 

can be derived for the IBR representation. More importantly, the mapping does not require the scene to 

have no occlusions or Lambertian surface, which is very attractive for IBR spectral analysis.  

Without loss of generality, we use the 2D world as example throughout this paper for conciseness. The 

conclusions drawn in this paper are easy to extend to the 3D world. In the 2D world, surface of objects/light 

sources is described with curves. Ignoring time and wavelength, the SPF is 2D: one dimension for 

describing a point on a curve, the other for illustrating the direction of the light ray 

emitted/reflected/refracted. An example scene is shown in Figure 4. The surface can be represented by 

either ( ) 0, =yxSi or 
( )
( )
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i , where s can be the arc length, i be the index for different objects. For a 

certain object i, define its SPF as:  

( )θ,sli  on the curve 
( )
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where πθ 20 <≤  is the direction of the light ray. l is the radiance of the light ray that can be traced back to 

the surface point determined by s. Notice that the above function does not appear to be related with what 

people often use for calculating lightings, such as surface normal, BRDF etc. We intend to do so because it 

is often too complicated if we try to model how the light rays are generated, in addition to the fact that such 

a model does not always exist for real scenes. Therefore, we only consider the resultant lighting effects in 

(1), and assume that we have some knowledge about the SPF. If we are able to model the lighting very 

well, the following analysis can still apply after calculating the lighting effects based on the known model.  

Lambertian is the first assumption we could make for the scene, since it has been exclusively used in the 

literature.  In terms of SPF, Lambertian property gives the following relationship:  

( ) ( )slsl isi =θ,        (2) 
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and its Fourier transform is: ( ) ( ) ( )θθ δ ΩΩ=ΩΩ sissi LL , , where ( )θΩΩ ,siL  is the Fourier transform of 

( )θ,sli , ( )sisL Ω  is the Fourier transform of ( )slis
1.  

In the real world, pure Lambertian objects are rare. Highly reflective surface (like a mirror) is infrequent, 

too. In most cases, light rays from the same point on the object surface tend to be similar and have slow 

changes with respect to their angles. It is therefore reasonable to assume that ( )θΩΩ ,siL  is band-limited in 

θΩ . In other words:  

( ) ( ) ( )θθθ θ
ΩΩΩ=ΩΩ

iBsisi ILL ,,      (3) 

where ( )θθ
Ω

iBI  is the indicator function, which is defined as:  

( )


 <Ω

=Ω
otherwise.             ,0

, if         ,1 i
B

B
I

i

θθ
θθ

     (4) 

and iBθ  defines the bandwidth. Our band-limitness assumption can be connected to the band-limitness of 

the surface BRDF with the signal-processing framework for inverse rendering recently presented by 

Ramamoorthi and Hanrahan [10]. For points on a reflective surface, the outgoing light can be described as 

the convolution of the incoming light and the surface BRDF. If the incoming light is far (thus the incoming 

light can be considered as a delta function with respect to the angle), whenever the BRDF is band-limited, 

the outgoing light will be band-limited.  

In order to capture the plenoptic function or surface plenoptic function, existing IBR approaches align 

cameras on a path/surface and take images for the scene. For example, cameras are placed on a plane in 

lightfield, and on a circle in concentric mosaic. In the 2D world, 2D lightfield has cameras on a line, while 

2D concentric mosaic has cameras on a circle. In general, the cameras can be put along an arbitrary curve, 

as is shown in Figure 4. Let the camera path be ( ) 0, =yxSc or 
( )
( )




=
=

tyy

txx

c

c , where t is the arc length. 

Assume that the optical axes of our cameras are identical to the normals of the camera path. That is, at arc 

length t, the optical axis has direction ( ) ( )( )txty cc ','− , where ( )txc '  and ( )tyc '  are the first order 

derivatives. Denote the direction of the optical axis with angle β, then ( ) ( )
( )ty

tx

c

c

'

'
tan −=β . The image pixels 

can be indexed by the angle between the captured light ray and the optical axis, as is represented by α  in 

Figure 4. Denote the radiance of the light ray captured at arc length t, angle α  as ( )α,tlc . The goal of 

spectral analysis for this specific IBR representation is to find the Fourier transform of ( )α,tlc , denoted as 

( )αΩΩ ,tcL , so that we can determine the minimum number of images we have to capture. Given the 

knowledge we have on the SPF ( )θ,sli  and its Fourier transform ( )θΩΩ ,siL , the strategy is to associate 

                                                 
1 Strictly speaking, at a certain point on the surface, ( )θ,sli  need to be truncated on θ , because we can 

only observe light rays that come out of the object. Therefore, along θΩ  ( )θΩΩ ,siL  cannot be a delta 

function, nor can it be band-limited. However, we assume that this windowing artifact is neglectable.  



 - 7 - 

( )α,tlc  with ( )θ,sli  and hope that we can represent ( )αΩΩ ,tcL  in terms of ( )θΩΩ ,siL . In the next two 

sections, we will show examples where we can apply the above strategy to lightfield and concentric 

mosaic.  

Before moving on to the next section, it is necessary to compare our work to the work by Marchand-Maillet 

and Vetterli in [8]. Being independently developed, they share some similar ideas. For example, both of 

them try to find a mapping between the captured lightfield and the light rays from the object surface. 

However, our approach is more general than that in [8]. We proposed the concept of surface plenoptic 

function, which allows us to analyze virtually any IBR representations, as long as we can represent 

( )αΩΩ ,tcL  in terms of ( )θΩΩ ,siL .  This includes lightfield and concentric mosaic. In addition, we can 

solve for scenes that has occlusions and non-Lambertian surface within our framework.  

III. Analysis of Lightfield 

As shown in Figure 5, 2D lightfield is parameterized by two parallel lines, indexed by t and v, respectively. 

The t line is the camera line, while the v line is the focal line. The distance between the two lines is f, which 

is the focal length of the cameras. It is easy to show that a light ray indexed by pair ( )vt,  has the following 

algebraic equation:  

0=−− ftvyfx        (5) 

Notice that the focal line is indexed locally with respect to where the camera is.  

The relationship between lightfield ( )vtlc ,  and the SPF ( )θ,sli  is as follows. For the same light ray 

emitted/reflected/refracted from a surface point, it must be captured at the corresponding angle. That is:  

( )
v

f=θtan  or 







−= −

f

v1tan
2

3πθ      (6) 

where 00 vvv ≤≤−  and 






−

f

v01tan2  tells the field of view. If the cameras have a limited FOV, which often 

happens in real-life systems, Equation (6) can be linearized as2:  

f

v−=
2

3πθ       (7) 

Another constraint is that the light ray ( )vt,  can be traced back to a cross point on the object surface, whose 

arc length s can be obtained through solving:  

                                                 
2 If the FOV of the camera is 40 degrees, i.e., 

9
tan 01 π=







−

f

v
, linearization as Equation (7) introduces 

4.3% maximum error. In practice, we find such approximation is acceptable, as long as we do not rely too 
much on how the SPF changes along θ  in our analysis.  
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i

      (8) 

When multiple objects exist in the scene or some objects occlude themselves, Equation (8) may have 

multiple answers. We have to figure out which cross point is the closest to the cameras. The closest point 

will occlude all the others. This may make scenes with occlusions hard to analyze. However, for simple 

scenes this is still doable and we will show examples later in this section.  

A. Scene at a constant depth 

The simplest scene we can have for lightfield is one at a constant depth. The surface can be described by:  

( )
( )
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      (9) 

We can solve Equation (8) without concerning about occlusion:  

t
f

vd
sftvdfs +=⇒=−− 0

0 0      (10) 

The lightfield spectrum can be derived as:  
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    (11) 

We can see that the spectrum of the lightfield at constant depth is a rotated version of the SPF spectrum, 

with some constant factor in magnitude and some shift in phase. The rotation angle is determined by the 

scene depth 0d  and the focal length f.  

If the object surface is Lambertian, we have ( ) ( ) ( )θθ δ ΩΩ=ΩΩ sss LL 00 ,  as in Equation (2). Therefore,  

( ) ( ) ( )

( ) ( ) ( )vt

vt

fdj

vtts

fdj

vttvtc

efdfL

efdfLL

Ω−Ω

Ω−Ω

Ω−ΩΩ=

Ω−ΩΩ=ΩΩ

0

0

2

3

00

2

3

00

                 

,,
π

π

δ
    (12) 

This is a tilted line in the ( )vt ΩΩ ,  space, which is the same conclusion as that in [6].    

When the object surface is non-Lambertian but the SPF is band-limited, we have 

( ) ( ) ( )θθθ ΩΩΩ=ΩΩ Ω 0
,,

i
ILL sisi  as in Equation (3). Consequently,  

( ) ( ) ( )

( ) ( ) ( )vtB

fdj

vtt

fdj

vttvtc

fdIefdfL

efdfLL

vt

vt
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Ω−ΩΩ=ΩΩ
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0
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,,
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π

π

  (13) 
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The spectrum is also tilted, but this time it has a finite width 
22

0

02

fd

B

+
θ  perpendicular to the tilted 

spectrum (or 
0

02

d

Bθ  horizontally) because of the indicator function.  

The above analysis is illustrated in Figure 6. A scene at constant depth has two sinusoids (different 

frequency) pasted on it as texture, as shown in Figure 6 (a). Figure 6 (b) is the epipolar image (EPI) when 

the scene is Lambertian. Figure 6 (c) is its Fourier transform. The spectrum has several peaks because the 

texture on the scene object is pure sinusoids. It basically lies on a tilted line with some small horizontal and 

vertical windowing artifact that is due to the truncation of the range of s and θ . We ignored the windowing 

artifacts in our analysis for simplicity. Figure 6 (d) shows the EPI for a non-Lambertian case at the same 

depth. It can be seen that because of the non-Lambertian property, its Fourier transform in Figure 6 (e) is 

expanded towards the normal direction of the tilted line.  

It is possible to approximate a complex scene with multiple constant depth layers. In [6], Chai et al. gave a 

“truncating windows” analysis for non-Lambertian scenes. They showed that if there is no occlusion, the 

spectrum support of each layer looks like a narrow ellipse. The overall spectrum is simply the sum of the 

spectrums for all the layers. As a first order approximation, the overall spectrum will be between two slopes 

– one determined by the minimum depth and the other determined by the maximum depth. This is drawn in 

Figure 7 (a). Without loss of generality we assume in this paper that the spectrum is mainly bounded by the 

resolution of the camera, and the unit of the u axis is 1, so that ππ <Ω<− v . If rectangular sampling is 

applied, at minimum sampling rate the spectrum is replicated as in Figure 7 (b). The corresponding 

maximum sampling distance is ( )maxmin
max 11

2

ddf
t

−
=∆ . The authors of [6] also proposed to use 

maxmin 11

2

dd
dopt +

=  as the best depth to render the scene, which can be easily obtained through Figure 7 

(b).  

If the scene is non-Lambertian, it is clear that the “truncating windows” analysis is still valid except that for 

each layer, the spectrum support becomes a “fatter” ellipse. This causes the original fan-like spectrum to be 

expanded.  If the SPF is band-limited along θΩ , the lightfield bandwidth expansion is also limited, as is 

shown in Figure 8 (a). The dotted region stands for the extra spectrum support caused by the non-

Lambertian surface. A conservative estimation of the amount of expansion is 
min

0

d

Bθ  on each side along the 

horizontal axis tΩ . Therefore, with rectangular sampling, the best way to compact the spectrum is as 

Figure 8 (b), and the sampling rate of non-Lambertian scenes has to be increased. Nevertheless, the effect 

of non-Lambertian property is often difficult to observe in their spectrum because typically the light rays 

from the same surface point change radiance very slowly. We next show an example where we have to take 

more images in order to render correctly because of the non-Lambertian property. We render two spheres 
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(Figure 9 (a) and (b)) - one is Lambertian and the other is a purely reflective surface. Meanwhile, we 

assume that we have a 6-bit depth map of the scene. According to the sampling curve proposed in [6], the 

number of images required for rendering the scene is reduced if we have an accurate depth map. We found 

that at a certain sampling rate, we are able to reconstruct the Lambertian scene very well as in Figure 9 (c). 

However, if we use the same sampling rate for the reflective surface, the reconstruction is very bad (Figure 

9 (d)). This means that we need to sample more images to reconstruct the latter surface.  

B. Scene on a tilted line 

We next study a scene on a tilted line. We write the surface equation as:  

( )
( )




+==
+==

00

00

sin

cos

yssyy

xssxx

ϕ
ϕ

      (14) 

where πϕ <≤0  is an angle that is known. Assuming no occlusion, we can solve Equation (8) as:  

( ) ( )
ϕϕ

ϕϕ
sincos

0sincos 00
00 vf

vyfxft
sftysvxsf

−
+−=⇒=−+−+    (15) 

To guarantee that within each captured image the parameter s is continuous, φ cannot be arbitrary. If 

00 vvv ≤≤− , we can have constraint that 0sincos 0 >− ϕϕ vf .  

The lightfield spectrum is:  
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 (16) 

Unfortunately, even for a scene as simple as a line, Equation (16) is too complex to solve. Here we consider 

a case where Equation (16) can be further simplified. Let the scene be Lambertian, i.e., ( ) ( )slsl s00 , =θ  as 

in Equation (2). We have:  
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 (17) 

If we have a sinusoid pasted as the texture, e.g., ( ) ( )ssl s 00 sin Ω= . Its Fourier transform is:  

( ) ( ) ( )[ ]000 2

1 Ω+Ω−Ω−Ω=Ω ssss j
L δδ      (18) 
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Due to symmetry, let us consider the magnitude of ( )vtcL ΩΩ ,  when 0>Ωt  and 0>Ω s . Let θπγ −=
2

3
 

and 
f

v

f

v 00 ≤≤− γ  due to the limited FOV. Plug into Equation (17) and we have:  

( ) ( )[ ] ( ) ( )







−
Ω≤Ω≤

+
Ω

Ω
Ω

=

−Ω−−Ω=ΩΩ ∫−
Ω−−Ω−

otherwise                                                          ,0
sincossincos

    when ,
sin2                  

sincossincos
2

1
,

0

0

0

0
2

0

0

0

0

00

ϕϕϕϕϕ

γϕγϕϕγϕδ γγ

vf

f

vf

ff

fdeL

t

t

f

v

f

v
fjyxj

tvtc
vt

  (19) 

Figure 10 (a) shows a scene on a line with 6/πϕ = . A single sinusoid is pasted on the line as texture. 

Figure 10 (b) is the EPI of the lightfield, and Figure 10 (c) is its Fourier transform. Notice that our analysis 

matches very well with the example. For example, the spectrum is non-zero only between certain tΩ  

thresholds. In the non-zero region, the spectrum decays when tΩ  increases. The spectrum is bounded for 

vΩ  due to the minimum and maximum depth of the scene, as was described in Section III-A. One thing we 

may notice in this example is that compared with the original SPF (which is just a sinusoid), a scene as 

simple as a tilted line can cause the IBR spectrum to spread a lot. Considering the fact that light rays from a 

certain surface point tend to change slowly in the real world, we may conclude that the spectrum spreading 

in real world scenes is mainly caused by its irregular shape, including the occluding effects which we will 

discuss in the next subsection.  

C. Occlusion between objects 

When occlusion happens, IBR spectral analysis becomes very difficult due to the discontinuity at the 

occlusion boundary. The analysis in [6] will not be valid any more because the light ray correspondence 

between two views may be destroyed by the occlusion. In our framework, solving for occluded scenes 

means finding the closest cross point among multiple solutions for Equation (8). This is not trivial, either. 

However, under some assumptions we are able to do spectral analysis for simple occluded scenes.  

We first assume that objects do not occlude themselves. Marchand-Maillet and Vetterli [8] once derived the 

no-occlusion condition for functional surfaces. Similarly, in our notation, no occlusion requires:  

( )
( ) 0'

'
max

v

f

sx

sy

i

i

s
<       (20) 

where ( )syi '  and ( )sxi '  are first order derivatives. Equation (20) simply means that the slope of the surface 

should not be greater than that of any possible light rays captured. This assumption is, however, hard to 

justify. We treat this as an example where occlusion can be solved under our parameterization. In the 

meantime, in practice mutual occlusions are often more significant than self-occlusions3, and self occluded 

objects can sometimes be decomposed into smaller objects so that the occlusions become mutual.  

                                                 
3 We claim mutual occlusion is more significant than self-occlusion because the former often cause a sharp 
boundary/edge in the EPI, while self-occlusion often does not if the surface normal changes slowly.  
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The second assumption is that given any object in the scene, without considering occlusion, we are able to 

derive its spectrum and its silhouette’s spectrum. Let the number of objects in the scene be N. Let 

( ) 10 ,, −≤≤ Nivtlci  be the N lightfields and ( ) 10 ,, −≤≤ΩΩ NiL vtci  be their Fourier transforms. The 

silhouette lightfield for object i is defined as:  

( ) ( )
10 ,

otherwise                                                                          ,0

object  back to  tracedbecan  ,ray light   when           ,1
, −≤≤





= Ni
ivt

vtsilci  (21) 

Their Fourier transforms are denoted as ( ) 10 ,, −≤≤ΩΩ NiSIL vtci . Notice that the silhouette’s spectrum is 

actually easier to obtain because we can simply use an SPF ( ) 1, =θsli .  

Given the above two assumptions, we are able to find the spectrum of the occluded scene. Since Fourier 

transform is linear, the overall spectrum is simply the sum of individual objects’ spectrums. If an object is 

not occluded, we can just add its spectrum to the overall one. Otherwise, let object i be occluded by M other 

objects ( 1−< NM ). Denote the M occluding objects’ silhouette lightfields as ( ) 10 ,, −≤≤ Mjvtsil
jci . 

The contribution object i has to the overall lightfield can be written as:  

( ) ( ) ( )[ ]∏
−

=
−=

1

0

,1,,
M

j
cici

occ
ci vtsilvtlvtl

j
     (22) 

where ( )vtl occ
ci ,  is the occluded lightfield of object i. Its Fourier transform is:  

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]vtcivtvtcivtvtcivt
occ
ci M

SILSILLL ΩΩ−ΩΩ∗∗ΩΩ−ΩΩ∗ΩΩ=ΩΩ
−

,,,,,,
10

δδ L   (23) 

where ∗  stands for convolution, ( )vt ΩΩ ,δ  is the Fourier transform of constant 1. From Equation (23) we 

can see that the spectrum of an occluded object is its unoccluded spectrum modulated by all the occluding 

objects’ silhouette spectrum. This modulation will bring some additional components to the overall 

spectrum.  

Figure 11 (a) shows an example Lambertian scene that has three objects. Each object is at a constant depth 

and has two sinusoids pasted as texture. Therefore, from what we had in subsection A, if no occlusion is 

considered, for 20 ≤≤ i , ( )vtciL ΩΩ ,  and ( )vtciSIL ΩΩ ,  both lie on a tilted line whose slope is 
f

di , where 

id  is the depth of the object. Since objects at greater depth are occluded by closer objects, we will notice 

additional modulated components along larger slope lines. Moreover, the additional modulated components 

will be along smaller slopes corresponding to the closer object. This is clearly shown in Figure 11 (c).  

The “truncating windows” analysis in [6] can be applied to more complex scenes if occlusions are 

considered. When the scene is heavily occluded, far layers will be blocked by close layers, which causes a 

spectrum modulation as in Equation (22). In worst case, the major occluding objects are at mind , which 

generates additional modulated components along the slope 
f

dmin . The corresponding spectrum is given in 

Figure 12 (a). The dotted support is the additional modulated components. If we still apply the rectangular 

sampling strategy, the spectrum can be compacted as in Figure 12 (b). Notice that we have to increase the 
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minimum sampling rate by a factor of 2. Or, the maximum sampling distance is ( )maxmin
max 11

1

ddf
t

−
=∆ . 

Meanwhile, from Figure 12 (b) we see that the optimal rendering depth becomes mind  instead of optd . In 

general, when the major occluding objects are at distance occd , the spectrum is shown in Figure 12 (c). 

After the most compact rectangular sampling, the spectrum is shown in Figure 12 (d). The minimum 

sampling rate and the optimal rendering depth both depend on occd .  

We give an example to verify the above analysis. In Figure 13 (a) we show an OpenGL scene composed of 

9×9×9 cubes. The cubes stay on a 3D regular grid and have a lot of occlusions. The scene parameters are: 

focal length 128=f , minimum depth 6min =d  and maximum depth 18max =d . All the renderings are 

done through depth-corrected bilinear interpolation. We first sample the scene with the approach in [6], i.e., 

( ) 1406.0
11

2

maxmin
max =

−
=∆

ddf
t . Figure 13 (b) and (c) show the rendered scene with rendering depth 

optd  and mind , respectively. We found that the scene rendered with optd  appears better than the other with 

mind . However, both images appear blurred. In Figure 13 (d) and (e) we increase the sampling rate by a 

factor of 2. Figure 13 (d) is rendered at optd , while Figure 13 (e) is rendered at mind . It is obvious that (e) is 

much better than (d), and (e) is also better than (b). The fact that (e) is much better than (d) proves that the 

additional modulated components have to be considered during the sampling and rendering. If the 

additional modulated components could be ignored, rendering at optd  would have at least generated as 

good results as (e). That is, from Figure 12 (b) if there was no dotted area due to the occlusions, optd  would 

be one of the best rendering depths.  

IV. Analysis on Concentric Mosaic 

2D concentric mosaic is captured by rotating a camera along a circle, as is shown in Figure 14. Let the 

circle radius be R. We index concentric mosaic by two angles, α and β. 00 ααα ≤≤−  represents the angle 

between the light ray and the camera optical axis; β denotes where the camera is on the circle. For 

concentric mosaic, we use polar coordinates instead of rectangular coordinates. The object surfaces are 

represented as ( ) 0, =ϕrSi  or 
( )
( )




=
=

s

srr

i

i

ϕϕ
. The light ray line indexed by pair ( )αβ ,  is:  

( ) 0
sin

sin =
−+

−
ϕβα

αR
r       (24) 
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Equation (24) is fairly complex if we want to solve for α  and β from r and φ. Provided that in practice the 

FOV of the cameras is often limited4, we let αα ≈sin . Because of the setup of concentric mosaic, the 

objects in the scene must be outside the capturing circle, we have αϕβα <−+ . Therefore, we can also 

let ( ) ϕβαϕβα −+≈−+sin . Equation (24) is thus simplified as:  

( ) 0=−−+ αϕβα Rr       (25) 

We also have simple relationship:  

θπβα =++        (26) 

Similar to the analysis in lightfield, light ray ( )βα ,  should be traced back to a cross point on the object 

surface, whose arc length s can be obtained through solving:  

( )
( )

( )







=−−+
=
=

0αϕβα
ϕϕ

Rr

s

srr

i

i

      (27) 

Equation (27) is in great similarity to Equation (8). Therefore, discussions on lightfield can be borrowed 

directly. In this section, we only give a simple example by considering a scene at constant depth.  

A constant depth concentric mosaic scene is described as:  

( )
( )





==

==

0

0

r

s
s

rsrr

i

i

ϕϕ        (28) 

where 0r  is the depth of the scene. We can easily solve Equation (27):  

( ) αβααβα RrsR
r

s
r −+=⇒=−








−+ 0

0
0 0    (29) 

The concentric mosaic spectrum can be derived as:  

( ) ( )
( )( )

( )
( )( )

( ) ( )
R

r
j

R

Rr
j

R

rsr
j

R

Rrs
j

jj

jj
cc

e
R

Rrr

R
L

R

dsd
R

esl

ddeRrl

ddelL

00

000

00
0

0

00

,
1

                 

1
,                 

,                 

,,

ππ
βααβ

πθθπ

αβ

αβ
αβ

αβ

αβ

αβ

αβ

θθ

αβπβααβα

αβαβ

Ω+−Ω−

−−Ω−−−+Ω−

Ω−Ω−

Ω−Ω−








 Ω−−ΩΩ−Ω
=

=

++−+=

=ΩΩ

∫∫

∫∫
∫∫

   (30) 

Again, the spectrum is a rotated version of that of SPF, plus some magnitude change and phase shift. If the 

scene is Lambertian, or ( ) ( ) ( )θθ δ ΩΩ=ΩΩ sss LL 00 , , we further have:  

                                                 
4 When the FOV is about 40 degrees, i.e., 9/0 πα ≈ . Making αα ≈sin  has 2% maximum error. Notice 

that in concentric mosaic we have the same linearization error as in lightfield (Equation (7)).  
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( ) ( ) ( )

( ) ( )
R

r
j

R

Rr
j

s

R

r
j

R

Rr
j

c

e
R

Rrr

R
L

R

e
R

Rrr

R
L

R
L

00

00

00
0

00
0

1
                  

,
1

,

ππ
βααβ

ππ
βααβ

αβ

αβ

αβ

δ
Ω+−Ω−

Ω+−Ω−








 Ω−−Ω







 Ω−Ω
=








 Ω−−ΩΩ−Ω
=ΩΩ

   (31) 

The spectrum lies on a line that has slope 
0

0

r

Rr −=
Ω
Ω

β

α . Since Rr >0 , the slope is always less than 45 

degree. Figure 15 (a) shows an example scene at constant depth with two sinusoids pasted as texture. In 

Figure 15 (b) the coordinates α and β are at different scale so the slope does not map to the true value. 

However, the spectrum in Figure 15 (c) is obviously along a line. If the scale between α and β is the same, 

the line will achieve maximum slope when the depth of the scene becomes infinite. 

V. Conclusions and Future Work 

In this paper, we presented a new approach to analyzing the IBR spectrum. We first defined the surface 

plenoptic function, then showed that any IBR representation can be studied if we can find the light ray 

mapping between the SPF and the IBR representation. We showed examples where the mapping can be 

done for lightfield and concentric mosaic. The non-Lambertian property, scene depth variations and 

occlusions fit naturally into our approach and we were able to analyze the effects of them. We believe that 

this approach greatly improves the understanding of IBR spectral analysis.  

The mapping between SPF and the IBR representation are most likely nonlinear due to the geometry of the 

scene and the camera path. Therefore, even when we start with an SPF that has all good properties such as 

band-limitness, the spectrum of the IBR representation may not be band-limited. The same result was also 

drawn in [8]. This may lead to the conclusion that IBR sampling is impossible. The conclusion might be 

true in theory, but from an engineering point of view, IBR sampling is still doable. Effects such as non-

Lambertian property, depth variations and occlusions all result in finite spreading of the spectrum if we 

ignore small sidebands, and in many cases the amount of spread is predictable. In practice, the first order 

approximation (spectrum is bounded by the slopes determined by the minimum depth and the maximum 

depth) in [6] gives reasonably good results. However, when the scenes are highly reflective or the 

occlusions are very heavy, our more general spectral analysis in Section III better predicts the necessary 

increase in the minimum sampling rate.  

The introduction of SPF opens new directions to many research questions. For example, since the mapping 

between SPF and the IBR representation is determined by both the scene geometry and the camera path, is 

there an “optimal” path that we should use for capturing a certain scene? If the camera path is 

predetermined, and if we know that the SPF has good properties such as band-limitness, it makes sense to 

capture images non-uniformly such that the effective sampling on the SPF is uniform. Work is in progress 

looking into these opportunities.    
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Figure 1 One parameterization of the Lightfield. 
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Figure 2 A sample Lightfield image array: fruit plate. 
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Figure 3 Concentric mosaic capturing.  
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Figure 4 2D surface plenoptic function and general IBR capturing.  
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Figure 5 The lightfield parameterization.  
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Figure 6 Lambertian and non-Lambertian scenes at constant depth.  (a) A scene at constant depth. 

(b) The EPI of the lightfield when the scene is Lambertian. (c) The Fourier transform of (b). (d) The 
EPI of the lightfield when the scene is non-Lambertian. (e) The Fourier transform of (d). 
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Figure 7 Frequency response of a no occlusion EPI and the “optimal” sampling in [6]. (a) Frequency 
support of a scene with no occlusion and Lambertian model. (b) The “Optimal” compacting and the 

reconstruction filter in [6]. 
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Figure 8 Optimal sampling when the scene is non-Lambertian. (a) The spectrum is expanded from 

the Lambertian case. (b) Optimal compacting of the spectrum for rectangular sampling.  
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(a)                                                            (b) 

   
(c) (d) 

Figure 9 An example to show the minimum sampling rate for non-Lambertian surface.  (a) A 
Lambertian sphere. (b) A purely reflective sphere. (c) At a certain sampling rate, we are able to 

reconstruct the scene very well for the Lambertian sphere. (d) At the same sampling rate, the 
reconstruction is very bad for the reflective surface. 
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Figure 10 A tilted planar scene with a sinusoid pasted as texture.  (a) The scene on a tilted line. (b) 

The EPI of the lightfield. (c) The Fourier transform of (b).  
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Figure 11 A three-layer scene with sinusoids pasted as texture.  (a) Three objects on different 

constant depths. (b) The EPI of the lightfield. (c) The Fourier transform of (b).  
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Figure 12 Optimal sampling when there are occlusions.  (a) The most conservative estimation of the 
spectrum when the object at mind  causes the major occlusions  (b) The optimal rectangular sampling 

strategy for compacting (a). (c) The spectrum given that the object at occd  is the main source of 
occlusions. (d) The optimal rectangular sampling strategy for compacting (c).  
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(b)                                                        (c) 

   
(d)                                                        (e) 

Figure 13 An example to show the minimum sampling rate under heavy occlusion.   

(a) The heavily occluded scene. (b) Use the minimum sampling rate in [6], rendered with optd . (c) 

Same as (b) but rendered with mind . (d) Use twice the sampling rate in (b), rendered with optd . (e) 

Same as (d) but rendered with mind . 
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Figure 14 The concentric mosaic parameterization.  
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Figure 15 A constant depth concentric mosaic scene with sinusoids pasted as texture.  (a) A scene at 
constant depth. (b) The EPI of the concentric mosaic when the scene is Lambertian. (c) The Fourier 

transform of (b). 


