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Abstract 

Video streaming over packet-loss networks faces the challenges that the networks are error-prone, 

transmission bandwidth is limited and fluctuating, the user device capabilities vary, and networks 

are heterogeneous. These challenges necessitate the need for smart adaptation of the precoded 

video. The focus of the thesis is error-resilient rate shaping for streaming precoded video over 

packet-loss networks. Given the packet-loss characteristic of the networks, the precoded video 

consists of channel-coded as well as source-coded bits. Error-resilient rate shaping is a filtering 

process that adapts the bit rates of the precoded video, in order to deliver the best video quality 

given the network condition at the time of delivery. We first illustrate “baseline rate shaping 

(BRS)” of the proposed error-resilient rate shaping as a baseline. Having introduced BRS with 

coarse decisions in rate adaptation, more sophisticated error-resilient rate shaping is proposed for 

layer-coded videos, namely, the enhancement layer video and the base layer video. “Fine-grained 

rate shaping (FGRS)” is proposed for streaming the enhancement layer video, and “error-

concealment aware rate shaping (ECARS)” is proposed for streaming the base layer video. FGRS 

and ECARS are formulated as rate-distortion (R-D) optimization problems. A two-stage R-D 

optimization approach is proposed to solve the R-D optimization problem in a fast and accurate 

manner. FGRS makes use of the fine granularity property of the MPEG-4 fine-granularity-

scalability bitstream and outperforms ad-hoc unequal packet-loss protection methods. ECARS 

takes into account error concealment (EC) performed at the receiver to deliver the part of 

precoded video that cannot be EC-reconstructed well. Frame dependency due to predictive coding 

and/or temporal EC is also considered in ECARS by means of feedback from the receiver. 

Experiments are conducted under various channel conditions and for various types of the video to 

demonstrate the effectiveness of the proposed scheme. Finally, we see that network conditions are 

needed in optimizing the streaming performance. In the last part of the thesis, we focus on 

modeling the video traffic so that we may use the syntactic traffic to probe the network to 

determine the network condition and optimize the proposed error-resilient rate shaping 

accordingly. 
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1. Introduction 

Video streaming over packet-loss networks faces the challenges that the networks are error-prone, 

transmission bandwidth is limited and fluctuating, the user device capabilities vary, and networks 

are heterogeneous. These challenges necessitate the need for smart adaptation of the precoded 

video. We propose in the thesis study an error-resilient rate shaping framework (Figure 1) for 

video streaming over packet-loss networks. 

 

Precoded
Video

Source/ 
Channel 
Encoding

Wireless
Network
Wireless
Network

Rate ShapingRate ShapingRate Shaping

Bandwidth
Error Rate

 

Figure 1. Rate shaping for error-resilient video streaming 

 

Rate shaping is a technique to selectively drop part of the pre (source- and/or channel-) 

coded bitstream before the bitstream is sent to the network. To ensure that the shaped bitstream 

can best survive the hostile network condition, rate shaping takes into account the network 

information as the channel error rate and the available bandwidth, as well as the video source 

statistics. In addition to rate shaping at the sender, post-processing error concealment can be 

performed at the receiver to recover the decoded video quality. Furthermore, knowing the 

receiver can replenish the video data by error concealment, error concealment aware rate shaping 

can take place at the sender to deliver better quality videos than non- error concealment aware 

rate shaping. 
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The proposed error-resilient rate shaping has many advantages over other error-resilient 

video transport mechanisms [59], namely, error-resilient video coding and joint source-channel 

coding. 

• Error-resilient rate shaping vs. error-resilient video coding 

In many situations, the video encoder and decoder are fixed and allow for no modifications to 

include error-resilient video coding features, such as reversible variable length coding and 

independent segment prediction, etc. The proposed error-resilient rate shaping does not need 

to alter the original video encoder and decoder, thus can be adopted by systems, for example 

the commercial video-on-demand system, in which tremendous amount of work to modify 

the video coders is needed. 

• Error-resilient rate shaping vs. joint source-channel coding 

By varying the source and channel encoder parameters, joint source-channel coding [10][29] 

[55][63] allocates the bits for source and channel encoders to achieve the best video quality 

given the current network condition. Joint source-channel coding techniques are limited by 

only providing end-to-end optimization at the time of encoding and are not suitable for 

streaming the precoded video. The encoded bitstream may not be optimal for transmission 

along a different path or along the same path at later time. Moreover, rate adaptation for each 

link might be needed in a heterogeneous network. Rate shaping can optimize the video 

streaming performance for each link. 

1.1. Error-Resilient Rate Shaping: Baseline Rate Shaping (BRS) 

Dynamic rate shaping (DRS) [16][17][27][65][66] was first introduced in 1995 to adapt the rates 

of the pre source-coded (pre-compressed) video to the dynamically varying bandwidth 

constraints. On the other hand, to protect the video from losses in the packet-loss networks, 

source-coded video bitstream is often protected by forward error correction (FEC) codes [46][61]. 

Redundant information, known as parity bits, is added to the original source-coded bits. 

Conventional DRS does not consider shaping for the parity bits in addition to the source-coding 

bits, that is, pre source- and channel- coded bitstream. 

We propose a new framework of rate shaping: error-resilient rate shaping, which adapts 

the rates of the pre source- and channel- coded bitstream to the conditions of the packet-loss 

networks. The baseline approach of the proposed error-resilient rate shaping is first introduced, 

which we call “baseline rate shaping (BRS)”. BRS optimizes the video streaming performance in 
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a rate-distortion (R-D) sense. Two R-D optimization algorithms: BRS by mode decision and BRS 

by discrete R-D combination are presented. 

1.2. Rate Shaping for Enhancement Layer Video: Fine-Grained Rate Shaping (FGRS) 

The baseline approach BRS of the proposed error-resilient rate shaping makes decisions on a 

coarse level. To incorporate a finer granularity, we propose “fine-grained rate shaping (FGRS)” 

for streaming the enhancement layer video and “error-concealment aware rate shaping (ECARS)” 

for streaming the base layer video.  

We adopt MPEG-4 fine granularity scalability (FGS) [32] for source coding, and erasure 

codes [46][61] for FEC coding. Unlike conventional scalability techniques such as SNR 

scalability, MPEG-4 FGS video bitstream is partially decodable over a wide range of bit rates. 

The more bits of the FGS bitstream is received, the better the video quality is. In addition, it has 

been known that partial FEC coded bitstream is still decodable within the error correction 

capability if erasure codes are used. Thus, both FGS and erasure codes provide fine-granularity 

properties in video quality and in packet-loss protection. Given the FEC coded FGS bitstream as 

the precoded video, FGRS adapts the rates of the precoded video considering the current packet-

loss rate. There are conceptually infinitely many possible combinations of dropping portion of the 

FGS bitstream and portion of the FEC codes. FGRS seeks the optimal solution in the R-D sense. 

A new two-stage R-D optimization approach is proposed to select part of the precoded video to 

drop. 

1.3. Rate Shaping for Base Layer Video: Error Concealment Aware Rate Shaping 

(ECARS) 

To have a finer-granular decision instead of the coarse decision made by BRS, “error-

concealment aware rate shaping (ECARS)” for streaming the base layer video is proposed in 

addition to FGRS for streaming the enhancement layer video. Taking into account that the 

receiver may perform error concealment (EC) if any video data is lost during the transmission, 

ECARS makes rate-shaping decisions accordingly.  

Frame dependency is usually inherent in video bitstream due to predictive coding. In 

addition, temporal EC might introduce extra frame dependency. Feedback from the receiver to 

the sender might be helpful in addressing the frame dependency problem in rate shaping. We then 

introduce two types of ECARS algorithms: without feedback and with feedback. Both evaluate 

the gains of sending some parts of the precoded video as opposed to not sending them. The gain 
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metrics are then included in the R-D optimization formulation. Finally, the two-stage R-D 

optimization approach is adopted to solve for the R-D optimization problem. 

In the case of no feedback, ECARS evaluates the gain considering a particular EC 

method used at the receiver. In order to incorporate the frame dependency into the rate shaping 

process, we propose to send the location (and mean) of the corrupted macroblock back to the 

sender, and use such feedback information to determine the gain in the R-D optimized ECARS. 

1.4. Modeling of Video Traffic  

To both the video service providers and the network designers, it is important to have a good 

model for the video traffic. A good model for video traffic allows for better admission control, 

scheduling, network resource allocation policies, etc., that guarantee a desired quality of service 

(QoS) as well as a better utilization of the network resources. A good model captures essential 

characteristics of the real video traffic. The synthetic trace generated by such a model can be used 

to test the network. In this thesis study, video traffic modeling is useful in helping to gather 

network conditions. 

We present a new stochastic process called the punctured autoregressive (AR) process, 

and use it to model the video traffic. To model the video traffic, we propose to use punctured 

autoregressive processes modulated by a doubly Markov process. The doubly Markov process 

models the state of a video frame while the autoregressive process describes the number of bits of 

a frame at one particular state. The punctured autoregressive process considers the timing 

information between frames of the same state and thus gives better modeling performance. The 

model captures the long-range dependency (LRD) characteristics as well as the short-range 

dependency (SRD) characteristics of the video traffic. Queuing behavior of the punctured 

autoregressive process is also closer to the real video traffic than the conventional autoregressive 

process. 

1.5. Organization of Thesis 

This thesis is organized as follows. Chapter 2 describes the fundamentals of the proposed error-

resilient rate shaping. Conventional rate shaping is first introduced followed by description of the 

characteristics of the packet-loss networks. The baseline approach of the proposed error-resilient 

rate shaping is then presented. 
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Chapter 3 describes one of the main ideas of the proposed error-resilient rate shaping: 

“fine-grained rate shaping (FGRS)” for streaming the enhancement layer video. The proposed 

two-stage R-D optimization approach will be detailed as well.  

Chapter 4 describes the other main idea of the proposed error-resilient rate shaping: 

“error concealment aware rate shaping (ECARS)” for streaming the base layer video. The focus 

in this chapter is to determine the gain used for R-D optimization. Two cases of ECARS are 

discussed: ECARS without feedback and ECARS with feedback. 

Chapter 5 discusses about the use of “punctured AR processes” for video traffic 

modeling. The synthetic traffic generated can be used to probe the network conditions that are 

eventually fed to the error-resilient rate shaping system. 

We summarize the study in Chapter 6 with conclusion, contribution of the thesis, and 

future directions.  
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2. Rate Shaping for Error-Resilient Video 

Streaming 

Error-resilient rate shaping is a filtering process that, given a precoded bitstream and the network 

condition, generates an alterative bitstream that adapts to the network condition. Considering rate 

shaping for video streaming over the packet-loss networks, the precoded bitstream should be both 

source- and channel- coded to be error resilient. We will illustrate the baseline approach of the 

proposed error-resilient rate shaping as fundamentals for more advanced rate shaping in the later 

chapters. In this chapter, we first introduce the conventional rate shaping where the rate 

adaptation is performed on pre source-coded video only. We then brief some characteristics of 

packet-loss networks, given that we aim to solve the problem of error-resilient video streaming. 

Finally, we introduce the baseline approach of our proposed error-resilient rate shaping, which is 

called baseline rate shaping (BRS). 

2.1. Conventional Rate Shaping 

Rate shaping is a filtering process that, given a pre source-coded bitstream and the target 

bandwidth, generates an alterative bitstream that satisfies such a bandwidth constraint. If the 

bandwidth constraint varies over time, it is called dynamic rate shaping (DRS) 

[16][17][27][65][66]. Without rate shaping, the bitstream that exceeds the bandwidth constraint 

will be discarded indiscriminately by the network. The resulting video quality will be degraded 

unexpectedly.  

In a wide sense, the format of the video bitstream, e.g. from MPEG-1 to MPEG-4, the 

resolution of the video, the frame rate of the video, may all be manipulated to achieve the target 

bit rates. Such kind of rate shaping is usually called transcoding [48][49][56]. The other kind of 

rate shaping is done by means of re-quantization of discrete cosine transform (DCT) coefficients. 

In re-quantization [4][41][60], the entire set of already quantized DCT is mapped to new values at 

a coarser level of quantization thus resulting in a rate reduction. In [41], local and global activity 

criteria are used to determine the re-quantization step size. In [60], optimal selection of the re-
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quantization step size is examined for Intra-coded frames. In [4], optimal selection of the re-

quantization step size is analyzed for all frame types. 

The focus in this section will be rate shaping in a strict sense. That is, rate shaping drops 

part of the pre source coded video that is considered less critical to the quality of the decoded 

video, without changing the content of the bitstream. In [16][17][27], selective transmission of 

transform (DCT) coefficients is presented. In [65][66], rate shaping is achieved by block 

dropping and the additional error concealment at the receiver. We will describe these two types of 

strict-sense rate shaping in the following. 

2.1.1. Rate Shaping by Selective Transmission of Transform Coefficients 

DRS presented in [16][17][27] proposed to selectively send some of the transform coefficients to 

satisfy the bandwidth constraints. There are two cases of DRS, constrained and general (or 

unconstrained). In constrained DRS, the number of DCT run-length codes within each block that 

will be kept is called the “breakpoint”. All DCT coefficients that are above the breakpoint are to 

be eliminated from the bitstream. In general DRS, the breakpoint becomes a 64-element binary 

vector, indicating which coefficients within each block will be kept. 

1) Constrained DRS of Intra-Coded Pictures 

If the video is Intra-coded, there is no dependency between frames. The rate shaping errors in 

the current frame will not propagate to the next frames. The problem formulation is as 

follows: 

minimize ( )∑
=

N

i
ii bD

1

, where ( ) ( )2∑
≥

=
ibk

iii kEbD  (2.1) 

 

subject to ( ) BbR
N

i
ii ≤∑

=1

 (2.2) 

where { }64,,2,1 L∈ib  is the breakpoint for block i , N  is the number of blocks considered, 

( )kEi  is the DCT coefficient at the k th position, and ( )ii bR  is the rate required to send 

block i  till the breakpoint. 

This problem can be converted to a linear programming/integer programming 

problem with Lagrange multipliers as follows: 

 ( ) ( )






 + ∑∑

==

N

i
ii

N

i
ii bRbD

11

min λ  (2.3) 
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The problem can be solved by an iterative bisection algorithm [19][42][43]. 

2) Constrained DRS of Intra-Coded Pictures 

If the video is Inter-coded with I, P, and B pictures, the dependency between frames adds 

complexity to the problem. The rate shaping errors are the summation of the accumulated 

errors (motion compensation of the accumulated errors from the previous frames) and the 

errors from the current frame (errors from shaping of DCT coefficients of the current frame). 

The problem formulation is as follows: 

minimize 

( )∑
=

N

i
ii bD

1

ˆ , where 

( ) ( ) ( )( ) ( ) ( )[ ]∑∑
≥

++=
ibk

iii
k

iii kEkEkAkAbD 22 2ˆ ξ  

(2.4) 

 

subject to ( ) BbR
N

i
ii ≤∑

=1

 (2.5) 

where ( )kAi  represents the accumulated error and ( )kξ  maps the run-length position to zig-

zag scan position. The problem can be solved with the same algorithms as the case of 

constrained DRS of Intra-coded pictures with the new definition of distortion ( )ii bD̂ . 

3) Unconstrained DRS  

In unconstrained DRS, the breakpoint is denoted as a vector with binary elements, { }k
ii b=b , 

where { }Ni ,,2,1 L∈  and { }Kk ,,2,1 L∈ . The problem formulation for Intra-coded pictures 

is: 

minimize ( )∑
=

N

i
iiD

1

b , where ( ) ( )2∑=
k

i
k

iii kEbD b  (2.6) 

 

subject to ( ) BR
N

i
ii ≤∑

=1

b  (2.7) 

And the problem formulation for Inter-coded pictures is: 

 minimize 

( )∑
=

N

i
iiD

1

b , where 

( ) ( ) ( )( ) ( ) ( )22
2 ∑∑∑ ++=

k
i

k
i

k
iii

k
i

k
iii kEbkEkAbkAD ξb  

(2.8) 



 9

 
subject to ( ) BR

N

i
ii ≤∑

=1

b  (2.9) 

The problems can be solved by Lagrange multiplier with bisection-based algorithm [19] or 

descent-based algorithm [20]. 

2.1.2. Rate Shaping by Block Dropping 

Instead of dropping the DCT coefficients, rate shaping can also be achieved by block dropping 

and the additional error concealment at the receiver [65][66]. Rate shaping makes a decision on 

which DCT blocks to drop depending how much the distortion is if these blocks are to be 

reconstructed with error concealment ([64] and Figure 2) at the receiver. 

 

  

(a) (b) 

Figure 2. Geometric-structure-based error concealment for 50% block loss: (a) without error 
concealment; (b) with error concealment 

 

The problem formulation is of Intra-coded pictures is: 

minimize                ( )XXD ,  (2.10)
 

subject to                ( ) BXR ≤  (2.11)

where X  is the original image, X̂  is the MPEG-quantized image with bit rate ( )XR ˆ , and X  is 

the shaped-followed-by-concealed version of X̂ , with bit rate ( )XR . The problem can be solved 

by tree pruning algorithm [11]. Similar to 2.1.1, the i th reconstructed frame iX  consists of the 
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motion compensated result from the previous frame ( )1−ii XM , where ( )⋅iM  denotes the motion 

compensation, and the reconstructed coefficients from the current frame ie . 

 ( ) iiii eXMX += −1  (2.12) 

After the modification of (2.12), the rest rate-distortion optimization follows. 

The above two types of conventional rate shaping select to drop either some of the 

transform coefficients or the blocks in order to adapt the bit rate of the pre source-coded (no 

channel-coded) video. The conventional rate shaping however is not suitable for video streaming 

over packet-loss networks, where the precoded video is both source- and channel- coded. We will 

describe in the next section some characteristics of packet-loss networks.  

2.2. Video Transport over Packet-Loss Networks 

Packet-loss networks are generally with time-varying packet loss rate and fluctuating bandwidth. 

Bandwidth can be the bandwidth of circuit-switched networks, or is provided by the network 

management layer. It can also be the estimated effective bandwidth. In the study, we regard the 

bandwidth constraints as the target bit rates the output bitstream is trying to satisfy. Packet losses 

are due to two reasons: the packets never arrive (or arrive too late over a certain threshold) and 

the arrived packets contain bit errors. In the study, we focus on the second packet-loss scenario 

since the first one usually results from router queue overflows, packet reordering, etc., that are 

beyond the scope of forward error correction (FEC) codes. 

The sources of bit errors in a wireless channel are noise, shadowing, fading, intersymbol 

interference, etc. We adopt a simple finite-state Markov chain for wireless channel bit error 

simulation (detailed in Appendix B). To derive some interesting results about how the size of the 

packet s  and the transition probability (equivalently the burstiness) affect the packet loss rate pe , 

we simplify the model to make 01 == eeG , 10 == eeB , pt =0,1 , and qt =1,0 . The mean bit 

error rate (BER) be  is related to the transition probabilities p  and q  by ( )qppeb += . With 

bit error rate be , transition probability p , and packet size s , the packet loss rate of the s -bit 

packet is, 

 ( )( ) 1111 −−−−= s
bp pee  (2.13) 
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We observe two properties from (2.13) given the same bit error rate be : (i) the smaller 

the transition probability p , the smaller the packet loss rate pe , and (ii) the smaller the packet 

size s , the smaller the packet loss rate pe . These two properties are shown in Figure 3 with 

410−=be . We will see the use of these properties in the later chapters. 

 

0 20
40 60

80 100

0

0.01

0.02

0.03
0

0.2

0.4

0.6

0.8

1

packet size in bits: s

eb = 10 ** (-4)

transition probability: p

pa
ck

et
 lo

ss
 ra

te
: e

p

 

Figure 3. Packet loss rate as a function of the transition probability and the packet size 

 

Besides the two properties we have just seen, it is also known that to detect the loss of 

packets, some information as the packet number has to be added to each packet. The smaller the 

packet is, the heavier the overhead is. Therefore, it is a trade-off between the selection of the 

packet size and the resulting packet loss rate. We use 280=s  (bits) herein. Users can select the 

packet size s  according to real system consideration. 

2.3. Error-Resilient Rate Shaping: Baseline Rate Shaping (BRS) 

To protect the video from transmission errors, source-coded video bitstream is often protected by 

forward error correction (FEC) codes [46][61]. Redundant information, known as parity bits, is 

added to the original source-coded bits. Parity bits are included in the precoded video because 

FEC encoding at the time of transmission may not be feasible given the capability of the node 

that is transporting the video. On the other hand, this node should be able to perform rate shaping 

for both the source- and channel- coded bitstream since rate shaping has less complexity than full 

decoding. This node is able to perform full decoding if it wants to view the content of the video. 
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Error-resilient rate shaping is in need to adapt the bit rates of the pre source- and 

channel- coded video. The adaptation of bit rates is natural for wireless transmission in the 

wireless LAN etc., given the fluctuating characteristic of the channel rates. It is also known that 

the devices used as clients of streaming applications vary a lot in their computation powers, 

connection bandwidths, etc.  

The proposed error-resilient rate shaping can be performed either at the source (the video 

server), at the application-aware network node (the proxy), or at the receiver, as shown in Figure 

4. It is worth noted that, unlike joint source-channel techniques that allocate the bits for the source 

and channel coders to achieve the best video quality, the proposed error-resilient rate shaping 

performs the rate adaptation for the precoded video at the time of delivery. The decision, as to 

select which part of the precoded video to drop, varies from time to time. There is no need to 

reassign bits to the source and channel coders as proposed by the joint source-channel techniques. 

In addition, rate shaping can be applied to adapt to the network condition of each link along the 

path of transmission. This is in particular suitable for wireless video transport, since wireless 

networks are heterogeneous in nature. One single joint source-channel coded bitstream cannot be 

optimal for all links along the path of transmission from the sender to the receiver. Rate shaping 

on the other hand can optimize the video transport of each link. 
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Figure 4. A general video transport system 

 

We start introducing the error-resilient rate shaping with the baseline approach, “baseline 

rate shaping (BRS)”. More advanced error-resilient rate shaping will be introduced in the 

following chapters. BRS system will be illustrated first followed by the rate-distortion (R-D) 

optimization algorithm for BRS. 
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2.3.1. System Description of Video Transport with BRS 

There are three stages for transmitting the video from the sender to the receiver: (i) precoding, (ii) 

streaming with rate shaping, and (iii) decoding, as shown from Figure 5 to Figure 7. 
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Figure 5. System diagram of the precoding process: scalable encoding followed by FEC encoding 
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Figure 6. Transport of the precoded video with BRS 
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Figure 7. System diagram of the decoding process: FEC decoding followed by scalable decoding 
 

The precoding process (Figure 5) consists of source coding using scalable video coding 

[22][40][52] and FEC coding. Scalable video coding provides the prioritized bitstream for rate 

shaping. The concept of rate shaping works for any prioritized video bitstream in general1. 

Without loss of generality, we consider using signal-to-noise-ratio (SNR) scalability. We use 

Reed-Solomon codes [61] as the FEC codes. 

In Figure 6, the pre source and channel coded bitstream is then passed through BRS to 

adjust the bit rate before being sent to the wireless networks. BRS seeks to perform the best 

bandwidth adaptation at the given packet loss rate. The distortion here is described by the 

distortion in peak-signal-to-noise-ratio (PSNR). Packet loss rate, instead of bit error rate, is 

                                                      

1 For example in DRS, prioritized video bitstream from high to low priorities, is offered by low to high frequency DCT 

coefficients. Data partitioning for the single-layered non-scalable coded bitstream can also give the prioritized 

bitstream. 
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considered since the shaped precoded video will be transmitted in packets. In summary, 

considering the packet loss rate and the bandwidth, BRS reduces the bit rate of the precoded 

video in the R-D optimized manner (will be elaborated later). 

The decoding process (Figure 7) consists of FEC decoding followed by scalable 

decoding.  

2.3.2. Algorithms for BRS 

Rate-distortion (R-D) optimization algorithms are taken by BRS to deliver the best video quality. 

We will describe in the following two R-D optimization algorithms: BRS by mode decision and 

BRS by discrete R-D combination, depending on how much delay rate shaping allows. 

2.3.2.1. BRS by Mode Decision 

Let us consider the case in which the video sequence is scalable coded into two layers: one base 

layer and one enhancement layer. These two layers are FEC coded with unequal packet loss 

protection (UPP) capabilities. Therefore, there are four segments in the precoded video. The first 

segment consists of the bits of the base layer video bitstream (upper left segment of Figure 8 (a)). 

The second segment consists of the bits of the enhancement layer video bitstream (upper right 

segment of Figure 8 (a)). The third segment consists of the parity bits for the base layer video 

bitstream (lower left segment of Figure 8 (a)). The fourth segment consists of the parity bits for 

the enhancement layer video bitstream (lower right segment of Figure 8 (a)). BRS decides a 

subset of the four segments to send. There is some constraint to yield a valid combination. For 

example, if the segment that consists of the parity bits for the base layer video bitstream is 

selected, the segment that consists of the bits of the base layer video bitstream must be selected as 

well. In this case with two layers of video bitstream, there are six valid combinations shown in 

Figure 8 (b)~(g). We call each valid combination a state. Each state is represented by a pair of 

integers ( )yx, , where x  is the number of segments selected counting from the segment 

consisting of the bits of the base layer, and y  is the number of segments selected counting from 

the segment consisting of the parity bits for the base layer. The two integers x  and y  satisfy the 

relationship of yx ≥ . 
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(a) (b) (c) (d) (e) (f) (g) 

Figure 8. (a) All four segments of the precoded video and (b)~(g) available states for BRS: (b) state 
(0,0), (c) state (1,0), (d) state (1,1), (e) state (2,0), (f) state (2,1), and (g) state (2,2) 

 

Each state of a frame has its R-D performance represented by a dot in the R-D map 

shown in Figure 9 (a) or (b), where B  represents the bandwidth constraint. The constellations of 

state R-D performances of different frames are different because of variations of the video source 

and the packet loss rate. If the bandwidth requirement “B” of each frame is given and used, BRS 

performs mode decision by selecting the state that gives the least distortion. For example in 

Figure 9, state (1, 1) of Frame 1 and state (2, 0) of Frame 2 are chosen. 
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Figure 9. R-D maps of: (a) Frame 1, (b) Frame 2, and so on 

 

2.3.2.2. BRS by Discrete R-D Combination 

By allowing for some delay in making the rate shaping decision, BRS can deliver the precoded 

video with a better quality. By allowing for delay, we mean to accumulate the total bandwidth 

budget for a group of pictures (GOP) and to allocate the bandwidth intelligently among frames in 

a GOP. Video bitstream is typically coded with variable bit rate in order to maintain a constant 

video quality. Therefore, we want to allocate different number of bits to different frames in a 

GOP to utilize the total bandwidth more efficiently. 
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Assume that there are F  frames in a GOP and the total bandwidth budget for these F  frames is 

C . Let ( )ix  be the state (represented by a pair of integers mentioned in the last subsection) 

chosen for frame i , and let ( )ixiD ,  and ( )ixiR ,  be the resulting distortion and rate allocated at 

frame i  respectively. The goal of the rate shaper is to: 

minimize ( )∑
=

F

i
ixiD

1
,  (2.14) 

 

subject to ( ) CR
F

i
ixi ≤∑

=1
,  (2.15) 

The discrete R-D combination algorithm [7][43] finds the solution by first eliminating the 

states that are inside the convex hull of states (Figure 10 (a) and (b)) for each frame. The 

algorithm then allocates the rate step by step to the frame that can utilize the rate more efficiently. 

That is, among frame m  and frame n , if frame m  gives a better ratio of distortion decrease over 

rate increase by moving from the current state ( )mu  to the next state ( ) 1+mu , than frame n , 

then the rate is allocated to frame m  (the next state ( ) 1+mu  of frame m  is circled in Figure 10 

(c)) from the available total bandwidth budget. The allocation process continues until the total 

bandwidth budget has been consumed completely. 
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Figure 10. Discrete R-D combination algorithm: (a)(b) elimination of states inside the convex hull of 
each frame, and (c) allocation of rate to the frame m  that utilizes the rate more efficiently 

 

To summarize for this chapter, we introduce the conventional rate shaping that is applied to the 

pre source-coded video, brief the characteristics of packet-loss networks, and provide the baseline 

approach, BRS, of the proposed error-resilient rate shaping. 
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3. Rate Shaping for Enhancement Layer 

Video 

The baseline approach BRS of the proposed error-resilient rate shaping makes decisions on a 

coarse level. One out of six states, is selected by BRS for streaming the precoded video. To 

incorporate a finer granularity, we propose “fine-grained rate shaping (FGRS)” for streaming the 

enhancement layer video and “error-concealment aware rate shaping (ECARS)” for streaming the 

base layer video. We will talk about FGRS in this chapter and ECARS in the next chapter.  

We adopt MPEG-4 fine granularity scalability (FGS) [32] for source coding, and erasure 

codes [46][61] for FEC coding. Unlike conventional scalability techniques such as SNR 

scalability, MPEG-4 FGS provides the video bitstream that is partially decodable over a wide 

range of bit rates. The more bits of the FGS bitstream is received, the better the video quality is. 

In addition, it has been known that partial FEC coded bitstream is still decodable within the error 

correction capability if erasure codes are used. Thus, both FGS and erasure codes provide fine-

granularity properties in video quality and in packet-loss protection. Given the FEC coded FGS 

bitstream as the precoded video, “fine-grained rate shaping (FGRS)” is proposed for bandwidth 

adaptation considering the current packet-loss rate. There are conceptually infinitely many 

possible combinations of dropping portion of the FGS bitstream and portion of the FEC codes. 

FGRS seeks the optimal solution in the R-D sense. A new two-stage R-D optimization is 

proposed to select part of the precoded video to drop. 

The proposed “two-stage R-D optimization” aims for both efficiency and optimality by 

using model-based hyper-surface and hill-climbing based refinement. In Stage 1, a model-based 

hyper-surface is first trained with a set of rate and gain pairs. We then find the solution that sits in 

the intersection of the hyper-surface and the bandwidth constraint. In Stage 2, the near-optimal 

solution from Stage 1 (because the model can only approximate the true relationship between rate 

and gain) is then refined with the hill-climbing based approach. We can see that Stage 1 aims to 

find the optimal solution globally with the model-based hyper-surface and Stage 2 refines the 

solution locally. 
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This chapter is organized as follows. We first introduce the system of FGRS. Background 

materials as MPEG-4 FGS and Reed-Solomon codes will also be mentioned. We then elaborate 

on algorithms for FGRS, with the R-D problem formulation followed by the two-stage R-D 

optimization. Experiments are carried out to show the superior performance of the proposed 

FGRS to naïve unequally packet-loss protection methods. Finally, concluding remarks are given. 

3.1. Rate Shaping for Enhancement Layer Video: Fine-Grained Rate Shaping (FGRS) 

As mentioned, BRS performs the bandwidth adaptation for the precoded video by selecting the 

best state of each frame at the given packet-loss rate. Since the packet loss rate and the bandwidth 

at any given time could lie in any value over a wide range of values, we would like to extend the 

notion of BRS to allow for finer-grained decisions. There prompts the need for source and 

channel coding techniques that offer fine granularities in terms of video quality and packet loss 

protection, respectively. 

Fine granularity scalability (FGS) has been proposed to provide bitstreams that are still 

decodable when truncated. That is, FGS enhancement layer bitstream is decodable at any bit rate 

over a wide range of values. With such a property, FGS was adopted by MPEG-4 for streaming 

applications [32]. Through FGS encoding, two layers of bitstream are generated: one base layer 

and one enhancement layer (Figure 11). The base layer is predictive coded while the 

enhancement layer only uses the corresponding base layer as the reference. 

 

I B P B PBase layer

Enhancement 
layer

I B P B PBase layer

Enhancement 
layer

 

Figure 11. Dependency graph of the FGS base layer and enhancement layer. Base layer allows for 
temporal prediction with P and B frames. Enhancement layer is encoded with reference to the base 

layer only 
 

On the other hand, it has also been known that the erasure codes provide “fine-grained” packet-

loss protection with more and more symbols2 received at the FEC decoder [46][61]. The “shaped” 
                                                      

2 “Symbols” are used instead of “bits” since the Reed-Solomon codes used in the study use a symbol as the 

encoding/decoding unit. We use 14 bits to form one symbol. The selection of symbol size in bits is up to the user. 
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erasure code is still decodable if the number of erasures/losses from the transmission is no more 

than symbols)unsent  of(number 1min −−d . An erasure code can successfully decode the 

message with the number of erasures up to 1min −d , considering both the unsent symbols and the 

losses taken place in the transmission. Therefore, the more symbols are sent, the better the sent 

bitstream can cope with the losses.  

We use Reed-Solomon codes as the erasure codes. In Reed-Solomon codes, 1min −d  

equals kn − , where k  is the message size in symbols and n  is the code size in symbols. Thus, 

the partial code of size nr ≤  is still decodable if the number of losses from the transmission is no 

more than kr − . 

After understanding the background materials of MPEG-4 FGS and Reed-Solomon 

codes, let us introduce the system for streaming the precoded video. As BRS, there are three 

stages for transmitting the video from the sender to the receiver: (i) precoding, (ii) streaming with 

rate shaping, and (iii) decoding, as shown from Figure 12 to Figure 14. 

 

Video
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encoder
FEC
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FGS enhancement

layer bitstream

Base layer
bitstream

FEC coded FGS 
enhancement
layer bitstream

Video
FGS

encoder
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FGS enhancement

layer bitstream
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bitstream

FEC coded FGS 
enhancement
layer bitstream

 

Figure 12. System diagram of the precoding process: FGS encoding followed by FEC encoding 
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(a) (b) 

Figure 13. Transport of the precoded bitstreams: (a) transport of the FEC coded FGS enhancement 
layer bitstream with rate shaper via the wireless network, and (b) transport of the base layer 

bitstream via the secure channel 
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Figure 14. System diagram of the decoding process: FEC decoding followed by FGS decoding 
 

Through FGS encoding, two layers of bitstream are generated: one base layer and one 

enhancement layer (Figure 11). We will consider hereafter the bandwidth adaptation and packet 

loss resilience for the FGS enhancement layer bitstream only, assuming that the base layer 

bitstream is reliably transmitted as shown in Figure 13 (b). 

Let us look at the FGS enhancement layer bitstream for a frame. FGS enhancement layer 

bitstream consists of bits of all the bit-planes for this frame. The most significant bit-plane (MSB 

plane) is coded before the less significant bit-planes until the least significant bit-plane (LSB 

plane). In addition, since the data in each bit-plane is variable length coded (VLC), if some part of 

the bit-plane is corrupted (due to packet losses), the remaining part of the bit-plane becomes un-

decodable. The importance of the bits of the enhancement layer decreases from the beginning to 

the end. 

Before appending the parity symbols to the FGS enhancement layer bitstream, we first 

divide all the symbols for this frame into several sublayers (Figure 15 (a)). The way to divide the 

symbols into sublayers is arbitrary except that the later sublayers are longer than the previous 

ones, hkkk ≥≥≥ L21 , since we want to achieve unequal packet loss protection (UPP). A 

natural way of division is to let Sublayer 1 consist of symbols of the MSB plane, Sublayer 2 

consist of symbols of the MSB-1 plane, …, and Sublayer h  consist of symbols of the LSB plane. 

Each sublayer is then FEC encoded with erasure codes to the same length n  (Figure 15 (b)). The 

precoded video is stored and can be used at the time of delivery. 
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(a) (b) 

Figure 15. Precoded video: (a) FGS enhancement layer bitstream in sublayers, and (b) FEC coded 
FGS enhancement layer bitstream 

 

At the transport stage, FEC coded FGS bitstream is passed through FGRS for bandwidth 

adaptation under the current packet loss rate. Note again that FGRS is different from joint source-

channel coding based approaches, which perform FEC encoding for the FGS bitstream at the time 

of delivery with a bit allocation scheme that achieves certain objectives, as proposed by van der 

Schaar and Radha [55] and Yang et al. [63]. Packetization is performed after error-resilient rate 

shaping.  

3.2. Algorithms for FGRS 

With the precoded video, bandwidth adaptation can be achieved by methods shown in Figure 16. 

The dark bars in Figure 16 (a) and Figure 16 (d) are selected to be sent. Figure 16 (a) shows how 

to adapt the bandwidth by randomly dropping part of the precoded video (or randomly keeping 

part of the precoded video). Bandwidth adaptation can also be achieved by naïvely dropping the 

symbols in the order shown in Figure 16 (b). Given a certain bandwidth requirement for this 

frame, Sublayer 1 has more parity symbols kept than Sublayer 2 and so on. Shaped bitstream with 

such a naive bandwidth adaptation scheme has UPP to the sublayers. We will refer to this method 

as “UPPRS1” hereafter. In addition, bandwidth adaptation can be achieved by first dropping the 

symbols from higher sublayers as shown in Figure 16 (c), which we refer to as “UPPRS2” 

hereafter. However, none of the above methods are optimal. We propose FGRS (Figure 16 (d)) 

for bandwidth adaptation given the current network condition.  
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Figure 16. Bandwidth adaptation with (a) random dropping; (b) UPPRS1; (c) UPPRS2; and (d) 
FGRS 

 

Let us start from the problem formulation and continue with the two-stage R-D 

optimization to solve for the FGRS problem. 

3.2.1. Problem Formulation 

A FGS enhancement layer bitstream provides better and better video quality as more and more 

sublayers are correctly decoded. In other words, the total distortion is decreased as more 

sublayers are correctly decoded. With Sublayer 1 correctly decoded, we reduce the total distortion 

by 1G  (accumulated gain is 1G ); with Sublayer 2 correctly decoded, we reduce the total 

distortion further by 2G  (accumulated gain is 21 GG + ); and so on. If Sublayer i  is corrupted, 

the following Sublayers 1+i , 2+i , etc., become un-decodable. Note that iG  of Sublayer i  can 

either (1) be calculated given the FGS bitstream, after performing partial decoding in order to get 
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the values of gain; or (2) be embedded in the bitstream as the “meta-data”. iG  of Sublayer i  is 

different for every frame.  

Since the precoded video is transmitted over error prone wireless networks, sublayers are 

subject to loss and have certain recovery rates given a particular rate shaping decision. The 

expected accumulated gain is then: 
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where h  is the number of sublayers of this frame, and jv  is the recovery rate of Sublayer j  that 

is a function of jr  as shown later. Sublayer j  is recoverable (or successfully decodable) if the 

number of erasures resulting from the lossy transmission is no more than jj kr − . jk  is the 

message (the symbols from the FGS bitstream) size in Sublayer j , and jr  is the number of 

symbols selected to be sent in Sublayer j . With Reed-Solomon codes used, ii kr ≥  with the 

exception of the last sublayer (not necessary the Sublayer h , can be the sublayer before that); and 

the whole sublayer is considered lost if the number of erasures is beyond the error-correction 

capability ii kr − . 

The recovery rate jv  is the summation of the probabilities that no loss occur, one erasure 

occurs, and so on until jj kr −  erasures occur.  
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If each erasure occurs as a Bernoulli trail with probability me , the probability of having l  

erasures out of jr  symbols is, 
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The symbol loss rate can be derived from the packet loss rate as ( ) s
m

pm ee −−= 11 , where s  is 

the packet size and m  is the symbol size in bits.  

If the erasures come from a finite-state Markov model, for example, a two-state Markov 

model with symbol loss rates 1,me  and 2,me , the probability of having l  erasures out of jr  

symbols is: 
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where 1,jr  is the number of symbols out of jr  symbols that originates from State 1 of the two-

state Markov model, and 2,jr  is the number of symbols out of jr  symbols that originates from 

State 2 of the two-state Markov model. We can see that (3.4) is the convolution of two binomial 

distributions.  

By choosing different combinations of the number of symbols for each sublayer, the 

expected accumulated gain will be different. The rate-shaping problem can be formulated as 

follows: 

maximize ∑ ∏
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where B  is the bandwidth constraint of this frame. 

To solve this problem, we propose a new two-stage R-D optimization approach. The two-

stage R-D optimization first finds the near-optimal solution globally. The near-optimal global 

solution is then refined by a hill climbing approach. Prior work on R-D optimization includes 

[12][43][45][50]. The proposed two-stage R-D optimization is different from [12][43][45][50] in 

three folds. First, the model-based Stage 1 allows us to examine fewer samples from all the 

operational R-D states. Second, the proposed distortion measure (or “expected accumulated gain” 

in the terminology of the thesis) accounts for the effects of packet loss as well as the channel 

codes by means of recovery rates. Finally, the proposed two-stage R-D optimization approach can 

avoid the potential problem that the solution could be trapped in the local maximum or reach the 

local maximum very slowly. 
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Packetization is performed after error-resilient rate shaping. That is, symbols are grouped 

into packets after the decision of [ ]hrrr L21=r  has been made. Small packet is desirable 

to make use of the fine-grained decision resulted from FGRS. For example, a big packet that 

contains all the symbols from a frame could be unrecoverable if it is decided to be dropped by the 

lower layers (for example, the link layer detects a CRC check error for this big packet).  

3.2.2. Two-Stage R-D Optimization: Stage 1 

We can see from (3.1) to (3.4) that the expected accumulated gain G  is related to 

[ ]hrrr L21=r  implicitly through the recovery rates [ ]hvvv L21=v . We can 

instead find a model-based hyper-surface that explicitly relates r  and G . The model parameters 

can be trained from a set of training data ( )G,r , where r  values are chosen by the user and G  

values can be computed from (3.1) to (3.4). The optimal solution is the feasible solution within 

the intersection of the hyper-surface and the bandwidth constraint as illustrated in Figure 17. A 

complex model, with a lot of parameters, can be used to describe as close as possible the true 

distribution of the R-D states. The solution obtained from the intersection will be as close to 

optimal as possible. However, the number of ( )G,r  pairs needed to train the model-based hyper-

surface increases with the number of parameters. 

 

G

r2

r1
r1+r2=B

 

Figure 17. Intersection of the model-based hyper-surface (dark surface) and the bandwidth 
constraint (gray plane), illustrated with 2=h  

 

In the study, we use a quadratic equation to describe the relation between r  and G  as 

follows: 
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To distinguish the hyper-surface model Ĝ  from the real expected gain G , we denote the former 

with a “head” sign. The model parameters ia , ijb , ic , and d  are trained differently for each 

frame. They can be solved by surface fitting with a set of training data ( )G,r  obtained by (3.1)-

(3.4). For example, the parameters can be computed by: 
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where the left super index of G  is the index of the training data, R  is a matrix consisting Ξ  

rows of ( )1s,'s,'s,'2
ijii rrrr . The complexity of computing ia ’s, ijb ’s, ic ’s, and d  relates 

to the number of parameters 12 ++ hh  and the number of training data Ξ , using (3.8). Note that 

the number of training data Ξ  is in general much greater than the number of parameters 

12 ++ hh . Thus, a more complex model, such as a third-order model with 123 +++ hhh  

parameters, will not be suitable since it requires much more training data. In addition, Second-

order Taylor expansion can approximate nicely in general every function. (3.7) can be seen as a 

second-order approximation to (3.1). To reduce the computation complexity in reality, we can 

also choose a smaller h . 

With (3.7), the near-optimal solution can be obtained by the use of Lagrange multiplier as 

follows. 
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By setting 0=
∂
∂
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where λ  is: 
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The near-optimal solution can be solved recursively starting from the initial condition that all 

sublayers are allocated with equal number of symbols, 
h

B
rrr h ==== L21  using (3.10) and 

(3.11). 

3.2.3. Two-Stage R-D Optimization: Stage 2 

Stage 1 of the two-stage R-D optimization gives a near-optimal solution. The solution can be 

refined by a hill-climbing based approach (Figure 18). The solution from Stage 1 is perturbed in 

order to yield a larger expected accumulated gain. The process can be iterated until the solution 

reaches a stopping criterion such as the convergence. 

 

 While (stop == false) 
z i  = r i  for all i=1~h 
For (j=1; j<=h; j++)       

For (k=1; k<=h; k++) 
z k  = z k  + delta for k==j //Increase sublayer j 
z k  = z k  - delta/(h - 1) for k!=j //Decrease others 

End - for 
Evaluate  G j 

End - for 
Find the j* with the largest  G j * . 
For (i=1; i<=h; i++)  

r i = r i  + delta for i==j* 
r i = r i  - delta/(h - 1) for i!=j*  

End - for 
Calculate the stop criterion. 

End - while  

Figure 18. Pseudo-codes of the hill-climbing algorithm 

 

The idea of allocating bandwidth optimally for sublayers can be extended to a higher 

level to allocate bandwidth efficiently among frames in a GOP. The problem formulation is 

slightly different from the original (3.5)-(3.6) as follows: 
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where F  is the number of frames in a GOP. FGRS will incur delay with duration of F  frames if 

it allows for optimization among frames in a GOP. 

To summarize, the proposed FGRS achieves the best streaming performance for FEC 

coded FGS bitstream with the two-stage R-D optimization. The two-stage R-D optimization 

obtains the optimal solution by first finding the near-optimal solution globally, then refining the 

solution with the hill-climbing based approach. 

3.3. Experiment 

We will show in this section the effectiveness of FGRS in streaming the precoded video over 

packet-loss networks. Four methods (mentioned in Figure 16) will be compared side-by-side: 

random dropping (with legend “rand”), UPPRS1 (with legend “upprs1”), UPPRS2 (with legend 

“upprs2”), and FGRS (with legend “fgrs”). 

The test video sequences are “akiyo”, “foreman”, and “stefan” in common intermediate 

format (CIF) (Figure 19 (a)-(c)). Sequence “akiyo” represents a video sequence with lower bit 

rate due to simpler texture and less motion. Sequence “foreman” represents a video sequence with 

medium bit rate with regular texture and motion. Sequence “stefan” represents a video sequence 

with higher bit rate with complex texture and faster motion. The frame rate of MPEG-4 FGS 

coding is three frames/sec. The source-coding rates of the FGS enhancement layer bitstream of 

the three sequences are 354.69 kbits/sec, 747.74 kbits/sec, and 975.70 kbits/sec. The FEC coded 

bitstreams (before being shaped) of these three sequences have rates 3440.5 kbits/sec, 5275.5 

kbits/sec, 6147.1 kbits/sec, respectively.  

 

   

(a) (b) (c) 

Figure 19. Test video sequences in CIF: (a) akiyo, (b) foreman, and (c) stefan 
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The bandwidth of the simulated networks fluctuates between 200 kbits/sec and 1100 

kbits/sec. The bit error rate (BER) of the channel also fluctuates according to the two-state 

Markov chain model detailed in Appendix B. The wireless channel simulation parameters can be 

found in B.2. Some of the BER traces are shown in Figure 20. Under the same network condition 

(the same BER trace and the same bandwidth trace), the results shown in the following are tested 

for 10 different seeds for pseudo-random simulations. That is, the “overall PSNR” result shown is 

the average of 10 different tests. The frame-by-frame PSNR result is an instance out of of the 10 

tests. 

 

   

(a) (b) (c) 

Figure 20. Sample BER traces of the wireless channel: (a) mobile unit at 2 km/h; (a) mobile unit at 6 
km/h; (a) mobile unit at 10 km/h 

 

Given the gain embedded in the bitstream, FGRS consumes on the average <0.01% (the 

denominator is the bit rates of the source-coded bitstream) of the original precoded video to carry 

the sublayer gain information (“meta-data”). The performance improvement of FGRS in PSNR 

over non- rate shaping based methods is on the average 8 dB. On the other hand, if the gain is not 

embedded in the bitstream for rate shaping, no extra bits are needed to carry the sublayer gain 

information. Partial decoding to obtain the sublayer gain information is required. 

In the following experiment results, we first show an example of how each method 

allocates the rates among sublayers (Figure 21). We then show the performance in terms of the 

overall PSNR of different sequences (from Figure 22 to Figure 24), and the performance in terms 

of the overall PSNR at various wireless channel conditions (from Figure 25 to Figure 27). Finally, 

we show the performance in terms of the frame-by-frame PSNR for sequence “foreman” (from 

Figure 28 to Figure 30). 
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Figure 21 shows that with the bandwidth constraint specified, Method “rand” allocates 

the rates randomly among the nine sublayers; Method “upprs1” allocates the rates equally among 

the nine sublayers; Method “upprs2” allocates the rates all to the first sublayer; and Method 

“fgrs” allocates the rates smartly among the nine sublayers (some sublayers are even not allocated 

with rates). The bit allocation process of FGRS happens automatically by the proposed two-stage 

R-D optimization considering the current network condition. 

 

 

Figure 21. Sublayer bit allocations of all methods at 10 km/h and SNR=20 dB for Sequence 
“foreman” 

 

From Figure 22 to Figure 24, the performance in terms of the overall PSNR of the Y, U, 

and V components, of different sequences is shown. We can see that for each sequence, for all Y, 

U, and V components, “fgrs” performs the best among all four methods. Given the same network 

condition, Sequence “akiyo” has higher PSNR than “foreman”; and Sequence “foreman” has 

higher PSNR than “stefan”. The sequence with texture that is more complex and faster motion, 

such as “stefan”, gives smaller PSNR value given the same bandwidth budget. Results are 

consistent for Y, U, and V, components. 
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Figure 22. Performance (PSNR of the Y component) of all methods at 10 km/h and SNR=20 dB for 
Sequences “akiyo”, “foreman”, and “stefan” 

 

 

Figure 23. Performance (PSNR of the U component) of all methods at 10 km/h and SNR=20 dB for 
Sequences “akiyo”, “foreman”, and “stefan” 

 

 

Figure 24. Performance (PSNR of the V component) of all methods at 10 km/h and SNR=20 dB for 
Sequences “akiyo”, “foreman”, and “stefan” 
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The performance in terms of the overall PSNR of the Y, U, and V components at various 

wireless channel conditions is shown from Figure 25 to Figure 27. Figure 25 (a), Figure 26 (a), 

and Figure 27 (a) show the 3-D plots of the overall PSNR. Figure 25 (b), Figure 26 (b), and 

Figure 27 (b) show the top views (seen from the top of the z-axis) of the 3-D plots. The color 

shown in the top view represents the color of the method that outperforms the others. At all 

wireless channel conditions, “fgrs” outperforms all other methods. 

Figure 25 (c), Figure 26 (c), and Figure 27 (c) show the overall PSNR at various speeds 

at dB 10SNR = . Fixed SNR value gives the same bit error rate (BER) of the wireless channel. 

The higher the speed is, the more bursty the bit error of the wireless channel is. In other words, 

the larger the transition probability is. From the results, we see that the PSNR drops as the speed 

increases. This matches with what we have mentioned in Section 2.2 that the higher the transition 

probability is, the higher the packet-loss rate is, given the same bit error rate. Higher packet-loss 

rate has the effect of requiring more parity bits in the shaped bitstream, and higher probability of 

corrupting the packets that carries the shaped bitstream, thus, the PSNR value is lower. 

Figure 25 (d), Figure 26 (d), and Figure 27 (d) show the overall PSNR at various SNR at 

km/h 10speed = . Fixed speed gives the same burstiness of the bit errors of the wireless channel. 

The larger the SNR is, the smaller the BER is. We see from the results that the PSNR value 

increases with SNR. Also from Section 2.2, we know that the smaller the BER is, the smaller the 

packet-loss rate is, given the same burstiness. Smaller packet-loss rate then leads to a higher 

PSNR.  

Results are consistent for Y, U, and V, components for all the figures shown from Figure 

25 to Figure 27. 

 

  

(a) (b) 
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(c) (d) 

Figure 25. Performance (PSNR of the Y component) of all methods at various wireless channel 
conditions for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top view of 

PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 
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(a) (b) 

  

(c) (d) 

Figure 26. Performance (PSNR of the U component) of all methods at various wireless channel 
conditions for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top view of 

PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 
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(a) (b) 

  

(c) (d) 

Figure 27. Performance (PSNR of the V component) of all methods at various wireless channel 
conditions for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top view of 

PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 

 

Finally, we show the performance in terms of the frame-by-frame PSNR of the Y, U, and 

V components for sequence “foreman” (from Figure 28 to Figure 30). We see that “fgrs” 

performs the best among all. Sample frames of Method “upprs1” and “fgrs” are also shown in 

Figure 31 to demonstrate visually the merit of fine-grained rate shaping. 
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Figure 28. Frame-by-frame PSNR of the Y component of all methods at 10 km/h and SNR=20 dB for 
Sequence “foreman” 

 

 

Figure 29. Frame-by-frame PSNR of the U component of all methods at 10 km/h and SNR=20 dB for 
Sequence “foreman” 
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Figure 30. Frame-by-frame PSNR of the V component of all methods at 10 km/h and SNR=20 dB for 
Sequence “foreman” 

 

  

(a) (b) 

Figure 31. A sample frame of (a) “upprs1” and (b) “fgrs” at 10 km/h and SNR=20 dB for Sequence 
“stefan” 

 

3.4. Conclusion 

To incorporate finer scalability to error-resilient rate shaping, we proposed fine-grained rate 

shaping (FGRS) for streaming the enhancement layer video, given that the base layer video is 

reliably transmitted. FGRS uses the proposed two-stage R-D optimization approach to adapt the 

rates of the FEC coded FGS enhancement layer bitstream, given the network condition. The two-

stage R-D optimization first obtains the near-optimal solution that sits in intersection of the 

model-based hyper-surface and the bandwidth constraint. The near-optimal solution is then 
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refined by a hill-climbing based approach. The two-stage R-D optimization aims for both the 

efficiency and the optimality. The proposed FGRS outperforms the other naïve methods. 
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4. Rate Shaping for Base Layer Video 

To have a finer-granular decision instead of the coarse decision made by BRS, we propose “error-

concealment aware rate shaping (ECARS)” for streaming the base layer video in addition to 

FGRS for streaming the enhancement layer video, illustrated in the last chapter. Taking into 

account that the receiver may perform error concealment (EC) if any video data is lost during the 

transmission, ECARS makes rate shaping decisions accordingly. Related work that utilized EC 

information for rate shaping on pre source- coded bitstream only can be found in [66]. 

Frame dependency is usually inherent in video bitstream due to predictive coding. In 

addition, temporal EC might introduce extra frame dependency. Feedback from the receiver to 

the sender might be helpful in addressing the frame dependency problem in rate shaping. We then 

introduce two types of ECARS algorithms: without feedback and with feedback. Both evaluate 

the gains of sending some parts of the precoded video as opposed to not sending them. The gain 

metrics are then included in the R-D optimization formulation. Finally, the two-stage R-D 

optimization approach is adopted to solve for the R-D optimization problem. In the case of no 

feedback, ECARS evaluates the gains considering a particular EC method used at the receiver. In 

order to incorporate the frame dependency into the rate shaping process, we propose to send the 

location (and mean) of the corrupted macroblock back to the sender, and use such feedback 

information to determine the gains used in the R-D optimized ECARS.  

This chapter is organized as follows. We first introduce the system of ECARS. 

Background materials as EC methods and timely feedback follow. We then elaborate on 

algorithms for both types of ECARS: without feedback and with feedback. Experiments are 

carried out to show the performance of the proposed ECARS. Finally, concluding remarks are 

given. 

4.1. Rate Shaping for Base Layer Video: Error Concealment Aware Rate Shaping 

(ECARS) 

There are three stages for transmitting the video from the sender to the receiver: (i) precoding, (ii) 

streaming with rate shaping, and (iii) decoding, as shown from Figure 32 to Figure 34. 
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Figure 32. System diagram of the precoding process: source encoding (which can be EC aware) 
followed by FEC encoding 
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Figure 33. Transport of the precoded video with ECARS 
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Figure 34. System diagram of the decoding process: FEC decoding followed by source decoding 

 

In the precoding process (shown in Figure 32), video is encoded by both the source 

encoder and the FEC encoder. The precoding process is done before the time of delivery. The 

precoding process may be aware of the EC method used at the receiver, which we will describe 

later. In the streaming stage (shown in Figure 33), ECARS takes the network conditions as 

bandwidth and packet-loss rate, and possibly the feedback from the receiver, into account. The 

decoding process (shown in Figure 34) consists of FEC decoding followed by scalable decoding. 

4.2. Background for ECARS 

We will describe briefly on error concealment (EC) methods, EC aware precoding, and timely 

feedback in this section. 

4.2.1. Error Concealment 

EC relies on some a priori knowledge to reconstruct the lost video content. Such a prior can 

come from spatial or temporal neighbors. For example, we can assume that the pixel values are 

smooth across the boundary of the lost and retained regions. To recover lost data with the 

smoothness assumption, interpolation or optimization based on certain objective functions are 
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often used. Figure 35 and Figure 36 show corrupted frames and the corresponding reconstructed 

frames. The black regions in Figure 35 (a) and Figure 36 (a) indicate losses of the video data. 

Figure 35 shows an EC method using spatial interpolation from the neighboring pixels. Figure 36 

shows an EC method using temporal interpolation. That is, if some pixel values are lost, the 

decoder copies the pixel values from the previous frame at the corresponding locations to the 

current frame. The EC method using temporal interpolation can be extended to copying the pixel 

values from the previous frame at the motion-compensated locations. The motion vectors used for 

motion compensation either are assumed error-free or can be estimated at the decoder [3][31]. 

We use the simple temporal interpolation method in the study. Future extension includes 

using motion-compensated temporal interpolation, or more sophisticated EC methods as 

mentioned in [8][9]. 

 

  

(a) (b) 

Figure 35. EC example by spatial interpolation: (a) the corrupted frame without EC, and (b) the 
reconstructed frame with EC 

 

  

(a) (b)  

Figure 36. EC example by temporal interpolation: (a) the corrupted frame without EC, and (b) the 
reconstructed frame with EC 

 

4.2.2. Error Concealment Aware Precoding 

In addition to ECARS, the precoding process can be EC aware to prioritize the precoded video 

based on the gain. We present an example EC aware precoding process by means of macroblock 
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(MB) prioritization. A MB in a frame is ranked according to its gain, which depends on how well 

this MB can be reconstructed by the EC method used at the receiver. The gain of sending a MB is 

large if the EC method used at the receiver cannot reconstruct this MB very well. 

Let us consider that a simple temporal interpolation based EC method is adopted. Figure 

37 provides us with an illustration of EC aware MB prioritization. If MB ( )1,1  is lost in Frame n , 

it cannot be well reconstructed by MB ( )1,1  from Frame 1−n . On the other hand, if MB ( )3,0  is 

lost in Frame n , it can be well reconstructed by MB ( )3,0  from Frame 1−n . Therefore, we 

should rank MB ( )1,1  with higher priority than MB ( )3,0 . 

We can use square sum of the pixel differences between the original MB and the EC-

reconstructed MB as the measure for priority. The larger the square sum is, the larger the gain for 

this MB is, thus, the higher the priority of this MB is. Assuming that the neighboring MB of the 

MB considered are decoded without errors, the MB gain jg  is defined as follows: 

 ( )∑
=

−−=
255

0

2

u
jujujuj spcg , frame ain  MB ofnumber ~1=j  (4.1) 

where u 3  is the coefficient index in a MB, juc  is the coefficient of the EC-reconstructed MB, 

jup  is the prediction value of this MB, and jus  is the residue value of this MB. juju sp +  is the 

ideal value without any transmission error or rate adaptation by rate shaping. ( )jujuju spc +−  is 

to see how far the EC value is from the ideal value. The assumption that the neighboring MB are 

decoded without errors is valid if the packet losses are not too bursty. 

 

 

                                                      

3 We consider only the Y components in the MB without loss of generality. Thus, there are four 88×  blocks or 256  

coefficients inside. 
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(a) (b) (c) 

Figure 37. (a) Frame 1−n , (b) Frame n , and (c) MB indices. EC aware MB prioritization— MB 
(1,1) has higher priority than MB (0, 3) 

 

An observation to make is that the conventional video coding can be considered as a 

special case of the proposed EC aware MB prioritization. Let us consider the case where no 

motion vector is used in video coding. The MB with large residues is encoded and transmitted, 

while the MB with small residues does not need to be transmitted since the small residues will 

become zero after quantization. This case translates to the case of EC aware MB prioritization 

using temporal interpolation with zero motion vectors. Let us consider another case where motion 

vectors are included in video coding. This then translates to the case of EC aware MB 

prioritization using temporal interpolation with motion vectors. We can see that the proposed EC 

aware MB prioritization is more general since it is not limited to any specific error concealment 

method. 

The source-coded bitstream with EC aware MB prioritization can be appended with 

parity bits from the FEC coding. First, the bits of the highest priority MB is placed followed by 

the bits of the second highest priority MB and so on, as shown in Figure 38 (a). To label the MB 

after the MB are ordered by their priorities, 446 bytes of complementary information of the MB 

labels are needed if the video is in common intermediate format (CIF). The bits are then divided 

into sublayers as shown in Figure 38 (b). Sublayer 1+i  has more bits than Sublayer i  since we 

want to achieve UPP for the sublayers when appended with the parity bits. For example, we can 

let Sublayer 1 consists of bits from the first 10 highest priority MB, Sublayer 2 consists of bits 

from the following 20 highest priority MB, and so on. Each sublayer is then appended with parity 

bits from the FEC coding as shown in Figure 38 (c). 
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(a) (b) (c) 

Figure 38. Precoded video: (a) MB prioritized bitstream, (b) MB prioritized bitstream in sublayers, 
and (c) FEC coded MB prioritized bitstream 

 

Also, with the MB gain defined, we can define the sublayer gain correspondingly as: 

 
{ }

∑
∈

=
ij

ji gG
Sublayer   tobelong that MB of indices  

, frame ain   sublayers ofnumber ~1=i  (4.2) 

Note again that ECARS can perform rate adaptation with or without EC aware precoding as long 

as the precoded video is provided with sublayer gains. The sublayer gain will be used later in the 

R-D optimized ECARS. 

4.2.3. Timely Feedback 

In the system of ECARS with feedback, feedback information from the receiver is utilized. 

Feedback can be carried out by RTCP message [44]. To understand whether feedback 

information is timely, i.e. within one frame interval4, let us examine the one-way transmission 

time [25]. 

                                                      

4 The ITU-T recommends the following limits for one-way transmission time according to ITU-T Recommendation G. 

131 [26]. However, the limit in the rate shaping system with feedback is a frame interval since the rate shaping decision 

is made on each frame interval. 

• 0 to 150 ms: Acceptable for most user applications. 

• 150 to 400 ms: Acceptable provided that administrations are aware of the transmission time impact on the 

transmission quality of user applications. 

• above 400 ms: Unacceptable for general network planning purposes; however, it is recognized that in some 

exceptional cases this limit will be exceeded. 
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The transmission time is the aggregate of several components, e.g. group delay in cables 

and equipment processing times, etc. In addition, one-way transmission time of the national 

extension circuits and the international circuits must be taken into account. 

The transmission time for the national extension circuits can be estimated as follows: 

a) In purely analogue networks, the transmission time will probably not exceed: 

 12 + (0.004 × distance in kilometers) ms (4.3) 

Here the factor 0.004 is based on the assumption that national trunk circuits will be 

routed over high-velocity plant (250 km/ms). The 12 ms constant term makes allowance 

for terminal equipment and for the probable presence in the national network of a certain 

quantity of loaded cables (e.g. three pairs of channel translating equipments plus about 

160 km of H 88/36 loaded cables). For an average size country, the one-way propagation 

time will be less than 18 ms. 

b) In mixed analogue/digital networks, the transmission time can generally be estimated by 

the equation given for purely analogue networks. However, under certain unfavorable 

conditions, increased delay may occur compared with the purely analogue case. This 

occurs in particular when digital exchanges are connected with analogue transmission 

systems through PCM/FDM equipment in tandem, or trans-multiplexers. With the 

growing degree of digitalization, the transmission time will gradually approach the 

condition of purely digital networks. 

c) In purely digital networks between local exchanges, based on optical fiber systems (e.g. 

an IDN), the transmission time will probably not exceed: 

 3 + (0.005 × distance in kilometers) ms (4.4) 

The 3 ms constant term makes allowance for one pair of PCM coder and decoder and for 

five digitally switched exchanges. The value 0.005 is a mean value for optical fiber 

systems; for coaxial cable systems and radio-relay systems 0.004 is to be used. 

d) In purely digital networks between subscribers (e.g. an ISDN), the delay of c) above has 

to be increased by up to 3.6 ms if burst-mode (time compression multiplexing) 

transmission is used on 2-W local subscriber lines. 

 

The transmission time for the international circuits can use values of Table 1 below. 

 

Table 1. One-way transmission time 
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Transmission or processing system 
Contribution to one-way 

transmission time Remarks 

Terrestrial coaxial cable or radio-relay 
system: FDM and digital transmission 

4 µs/km  

Optical fiber cable system, digital 
transmission 

5 µs/km (Note 1) Allows for delay in repeaters 
and regenerators 

Submarine coaxial cable system 6 µs/km  

Submarine optical fiber system: 
– transmit terminal 
– receive terminal 

 
13 ms 
10 ms 

 
Worst case 

Satellite system: 
– 400 km altitude 
– 14 000 km altitude 
– 36 000 km altitude 

 
12 ms 

110 ms 
260 ms 

 
Propagation through space 
only (between earth stations) 

FDM channel modulator or demodulator 0.75 ms (Note 2)  

PLMS (Public Land Mobile System)  
– objective 40 ms 

80-110 ms  

H.260-series video coders and decoders Further study (Note 3)  

DCME per pair: 
for speech, VBD, and non-remodulated 
fax 

 

30 ms 

Half the sum of transmission 
times in both directions of 
transmission 

DCME per pair: 
for speech, VBD, and non-remodulated 
fax 

 

30 ms 

 

DCME in conjunction with ITU-T Rec. 
G.763 or ITU-T Rec. G.767) per pair: 
for remodulated fax 

 

 

200 ms 

 

PCME per pair: 
– with speech and non-remodulated 

VBD 
– with remodulated VBD 

 
 

35 ms 
70 ms 

 

Transmultiplexer 1.5 ms (Note 4)  

Digital transit exchange, 
digital-digital 

0.45 ms (Note 5)  

Digital local exchange, 
analogue-analogue 

1.5 ms (Note 5)  

Digital local exchange, analogue 
subscriber line-digital junction 

0.975 ms (Note 5)  

Digital local exchange, digital subscriber 
line-digital junction 

0.825 ms (Note 5)  

Echo cancellers 0.5 ms (Note 6)  

ATM (CBR using AAL1) 6.0 ms (Note 7)  
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NOTE 1 – This value is provisional and is under study. 
NOTE 2 – These values allow for group-delay distortion around frequencies of peak speech energy and 
for delay of intermediate higher order multiplex and through-connecting equipment. 
NOTE 3 – Further study required. Delay for these devices is usually non-constant, and the range varies 
by implementation. Current implementations are on the order of several hundred milliseconds and 
considerable delay is added to audio channels to achieve lip-synchronization. Manufacturers are 
encouraged to reduce their contribution to transmission time, in accordance with this ITU-T 
Recommendation. 
NOTE 4 – For satellite digital communications where the transmultiplexer is located at the earth station, 
this value may be increased to 3.3 ms. 
NOTE 5 – These are mean values: depending on traffic loading, higher values can be encountered, 
e.g. 0.75 ms (1.950 ms, 1.350 ms, or 1.250 ms) with 0.95 probability of not exceeding.  
NOTE 6 – This is averaged for both directions of transmission. 
NOTE 7 – This is the cell formation delay of 64 kbits/s stream when it completely fills the cell (one voice 
channel per VC). In practical applications, additional delay will result, e.g. from cell loss detection and 
buffering. Other delays may be applicable to other AALs and cell mapping arrangements, and are for 
further study. 

 

Since rate shaping is performed at each link, the transmission time from one hop to the other is 

considered. We can see from (4.3), (4.4), and Table 1 that the feedback consumes in general less 

than 33 ms (assuming the video frame rate is 30 frames/sec) to get back to the sender. 

4.3. Algorithms for ECARS 

To explain the algorithms for ECARS, let us start from a simple example as an extension to BRS.  

Let us consider that the precoded video consists of two layers of video bitstream, namely, the 

base layer and the enhancement layer. Each layer is protected by some parity bits from the FEC 

coding. The setting is shown earlier in Figure 8 (a). The rate shaper is extended to give a finer 

decision on how many symbols to send (or how many symbols to drop) for each layer, instead of 

deciding which segment(s) to drop. Since the rate shaper is aware of the EC method used at the 

receiver, it can evaluate how much distortion it will result in if the rate shaper decides to send a 

certain amount of symbols for each layer. In other words, the rate shaper can evaluate how much 

gain it will get if it decides to send this certain amount of symbols for each layer. In general, the 

base layer can be reconstructed well with EC since the base layer consists of coarse information 

of the video that can be easily reconstructed. On the other hand, the enhancement layer, which 

consists of fine details of the video, cannot be easily reconstructed. The EC aware rate shaper 

may assign a higher gain on sending symbols in the enhancement layer than the symbols in the 

base layer. Notice that the example given here is just for understanding. We are not going to 

prioritize the bitstream in terms of base and enhancement layers. Instead, all the discussions 
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hereafter will occur in the base layer as said in the very beginning of the chapter. The 

prioritization takes place when we order the macroblocks (MB) by their MB gains.  

4.3.1. ECARS without Feedback 

Suppose ECARS is given the precoded video with sublayers. Each sublayer consists of symbols 

from source coding, which is shown as the upper portion of each stripe in Figure 39 (a), and 

symbols from channel coding, which is shown as the lower portion of each stripe in Figure 39 (a). 

The darken bars in Figure 39 (b) represent the symbols to be sent by ECARS. 
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(a) (b) 

Figure 39. (a) Precoded video in sublayers and (b) ECARS decision on which symbols to send 

 

The problem formulation for ECARS is as follows. The total gain is increased (or the 

total distortion is decreased) as more sublayers are correctly decoded. With Sublayer 1 correctly 

decoded, the total gain is increased by 1G  (accumulated gain is 1G ); with Sublayer 2 correctly 

decoded, the total gain is increased further by 2G  (accumulated gain is 21 GG + ); and so on. 

Note that iG  of Sublayer i  can either (1) be calculated given the bitstream and the EC method 

used by the receiver, after performing partial decoding in order to get the values of gain; or (2) be 

embedded in the bitstream as the “meta-data”. ECARS is EC aware because the gain iG  is 

dependent on the EC method used by the receiver. iG  of Sublayer i  is different for every frame. 

The expected accumulated gain is then: 
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 (4.5) 

where h  is the number of sublayers of this frame, and iv  is the recovery rate of Sublayer i . The 

definition of iv  and the rest of the R-D optimization follow what is stated and proposed in 

Section 3.2 except the change of definition in the expected accumulated gain shown above in 

(4.5). 

4.3.2. ECARS with Feedback 

As we have discussed, the goal of rate shaping is to achieve the maximal expected accumulated 

gain. We should consider the frame dependency in the process of R-D optimization, since the 

reconstructed result of the previous frame will affect the following frames if the video is 

predictive coded, and/or the EC method performed at the receiver utilizes the temporal 

information. We propose to use feedback information from the receiver to carry information 

about the previous reconstructed frame for the use of the current frame in rate shaping.  

Notice that in our setup, the forward and feedback transmissions share the same amount 

of bandwidth. In addition, the use of feedback in ECARS does not suggest an increase in channel 

capacity. The total bandwidth stays the same. Feedback is to inform the rate shaper for 

transmission of “more useful” data (with a larger gain) rather than “less useful” (with a smaller 

gain). 

If the EC method used at the receiver is precisely known by the rate shaper, with the 

information where the macroblock is corrupted being sent back, the rate shaper can imitate what 

the decoder gets. Knowing what the decoder gets, the rate shaper can calculate the MB gain for 

R-D optimization. In the later experiments, we will use “ecars-ideal” to represent that the location 

of the corrupted macroblock is sent back and the EC method used at the receiver is known. 

If the EC method used at the receiver is not precisely known by the rate shaper, we can 

try to approximate what the gain should be by sending back information as (i) the location of the 

corrupted macroblock; or (ii) the mean of the corrupted macroblock in addition to the location of 

the corrupted macroblock. In the later experiments, we will use “ecars-nf” to represent no 

feedback is used and the gain information is embedded in the bitstream, “ecars-loc” to represent 

feedback with the location of the corrupted macroblock is used, and “ecars-mean” to represent 

feedback with the location and mean of the corrupted macroblock is used. Note that none of the 
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rate shaping methods, “ecars-nf”, “ecars-loc”, “ecars-mean” know the precise EC method at the 

sender. 

For “ecars-loc”, we will explain how to determine the gain ig ′  of each MB with respect 

to three cases where frame dependency can occur. The three cases are denoted as (0,1), (1,2), and 

(1,1). An “1” in the first field represents Inter-coding, and a “0” in the first field represents Intra-

coding. An “1” in the second field represents an EC method that utilizes the temporal 

information, and “2” in the second field represents an EC method that utilizes only the spatial 

information from the neighbors. Likewise, we will explain how to determine the gain with respect 

to (0,1), (1,2), and (1,1) for “ecars-mean”. 

In general, the MB gain jg ′  of each MB remains the same as jg  if the corresponding MB 

of the previous frame is successfully decoded. We then see how to determine the MB gain jg ′  of 

each MB if the corresponding MB of the previous frame is corrupted. 

4.3.2.1. ECARS with Feedback: ECARS-LOC 

• (0,1): If a MB of the previous frame is corrupted, we want to increase the MB gain of the 

corresponding MB of the current frame. Temporal EC will use information from the 

corrupted MB of the previous frame if the corresponding MB of the current frame cannot 

be decoded successfully. Thus, we want to make sure that the MB of the current frame is 

sent with good protection. A natural way is to double the value of MB gain jg  as: 

 jj gg 2=′ , frame ain  MB ofnumber ~1=j  (4.6) 

• (1,2) and (1,1): If a MB of the previous frame is corrupted, we want to decrease the MB 

gain of the corresponding MB of the current frame. We do not want to use the corrupted 

MB of the previous frame for predictive coding. Sending the residues of the MB of the 

current frame is useless if the prediction to this MB is already erroneous. A natural way is 

to set the MB gain to zero as: 

 0=′jg , frame ain  MB ofnumber ~1=j  (4.7) 

Having determined the MB gains, they are grouped together to form the sublayer gain iG , where 

frame ain   sublayers ofnumber ~1=i . Again, the rest of the R-D optimization follows what is 

stated and proposed in Section 3.2 except the change of definition in the expected accumulated 

gain. 
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4.3.2.2. ECARS with Feedback: ECARS-MEAN 

The method proposed in Section 4.3.2.1 is heuristic. We know that the MB gain jg ′  remains the 

same as jg  if the corresponding MB of the previous frame is successfully decoded. If the 

corresponding MB of the previous frame is corrupted, we can determine the MB gain jg ′  from 

jg  by examining “how different” the corrupted corresponding MB of the previous frame is from 

the successfully decoded counterpart. 

The further apart the corrupted MB is from its successfully decoded counterpart, the more 

we should change the gain of the MB of the current frame. The corrupted MB of the previous 

frame will affect either the prediction of the corresponding MB of the current frame, the EC 

reconstruction of the corresponding MB of the current frame, or both. We propose to send the 

mean of the prediction of the MB for the current frame jp′  and the mean of the EC reconstruction 

of the MB for the current frame jc′ , both affected by the corrupted MB of the previous frame, 

back to the sender for calculation of jg ′ . 

Recall that the original definition of the MB gain jg  of the current frame is 

( )∑
=

−−=
255

0

2

u
jujujuj spcg  from (4.1). Now the MB of the previous frame is corrupted, the MB 

gain jg ′  of the current frame should be: 
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(4.8) 

since the gain is defined as the distortion decrease comparing sending the MB of the current 

frame with not sending but reconstructing the MB by EC. With the EC method known and the 

location where the MB is corrupted, the rate shaper can calculate the exact values of jup′  and 

juc′ , where 562~1=u . Those values jup′  and juc′  are to be used by (4.8). However, if the EC 

method is not precisely known at the rate shaper (which is usually the case since the receiver 
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might not want to disclose its own EC method), we can instead consider only the means jp′  and 

jc′  back to the sender to approximate jg ′  as follows: 
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(4.9) 

Without subscript u , the above values in the numerator and the denominator represent means. 

Similarly, having determined the MB gains, they are grouped together to form the sublayer gain 

iG , where frame ain  sublayers ofnumber ~1=i . The rest of the R-D optimization follows what is 

stated and proposed in Section 3.2 except the change of definition in the expected accumulated 

gain. 

The idea of allocating bandwidth optimally for sublayers can be extended to a higher 

level to allocate bandwidth efficiently among frames in a GOP. The problem formulation is then: 
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where F  is the number of frames in a GOP. ECARS will incur delay with duration of F  frames 

if it allows for optimization among frames in a GOP. 

Note again the packetization is performed after error-resilient rate shaping. That is, 

symbols are grouped into packets after the decision of [ ]hrrr L21=r  has been made. 

Small packet is desirable to make use of the fine-grained decision resulted from ECARS. For 

example, a big packet that contains all the symbols from a frame could be unrecoverable if it is 

decided to be dropped by the lower layers (for example, the link layer detects a CRC check error 

for this big packet). 

4.4. Experiment 

We will show in this section the effectiveness of ECARS in streaming the precoded video over 

packet-loss networks. Seven methods will be compared side-by-side: random dropping (with 

legend “rand”), UPPRS1 (with legend “upprs1”), UPPRS2 (with legend “upprs2”), and non-

ECARS (with legend “n-ecars”), ECARS without feedback (with legend “ecars-nf”), ECARS 
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with location feedback (with legend “ecars-loc”), and ECARS with mean and location feedback 

(with legend “ecars-mean”). One ideal method (as the performance bound) where EC method at 

the receiver is precisely known will be shown as well. 

The test video sequences are “akiyo”, “foreman”, and “stefan” in CIF format. Sequence 

“akiyo” represents a video sequence with lower bit rate due to simpler texture and less motion. 

Sequence “foreman” represents a video sequence with medium bit rate with regular texture and 

motion. Sequence “stefan” represents a video sequence with higher bit rate with complex texture 

and faster motion. The frame rate is 30 frames/sec.  

The bandwidth of the simulated networks fluctuates between 2 Mbits/sec and 11 

Mbits/sec. The bandwidth of the forward channel is subtracted by the amount of bits the feedback 

channel requires if there is some feedback sent back from the receiver. The bit error rate (BER) of 

the channel also fluctuates according to the two-state Markov chain model detailed in Appendix 

B. The wireless channel simulation parameters can be found in B.2. Under the same network 

condition (the same BER trace and the same bandwidth trace), the results shown in the following 

are tested for 10 different seeds for pseudo-random simulations. That is, the “overall PSNR” 

result shown is the average of 10 different tests. The frame-by-frame PSNR result is an instance 

of the 10 tests. 

Given the gain embedded in the bitstream, ECARS consumes on the average <1% (the 

denominator is the bit rates of the source-coded bitstream) of the original precoded video to carry 

the gain information (“meta-data”). The performance improvement of ECARS in PSNR over 

non- rate shaping based methods is on the average 8 dB.  

In the following, we will present the results of: 

• Rate shaping vs. non- rate shaping (i.e., rate shaping vs. UPPRS) 

• ECARS vs. Non-ECARS 

• ECARS with feedback vs. ECARS without feedback 

• ECARS with EC method known vs. ECARS without EC method known 

• All seven methods 

The reference that the results of all methods compared to in computing the PSNR, is the 

result of a video bitstream that is transmitted with no packet loss and with unlimited bandwidth.  
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4.4.1. Rate Shaping vs. UPPRS 

We will compare the results of rate shaping based method “n-ecars” with the non- rate shaping 

based method “upprs1” here. Results of Case (0, 1) are shown in Figure 40 and Figure 41; results 

of Case (1, 2) are shown in Figure 42 and Figure 43; and results of Case (0, 1) are shown in 

Figure 44 and Figure 45. 

The performance in terms of the overall PSNR at various wireless channel conditions is 

shown in Figure 40, Figure 42, and Figure 44. Figure 40 (a), Figure 42 (a), and Figure 44 (a) 

show the 3-D plots of the overall PSNR. Figure 40 (b), Figure 42 (b), and Figure 44 (b) show the 

top views (seen from the top of the z-axis) of the 3-D plots. The color shown in the top view 

represents the color of the method that outperforms the others. At all wireless channel conditions, 

“n-ecars” outperforms “upprs1”. Even though “n-ecars” is not EC aware, it still performs rate 

shaping by R-D optimization. 

Figure 40 (c), Figure 42 (c), and Figure 44 (c) show the overall PSNR at various speeds 

at dB 10SNR = . Fixed SNR value gives the same bit error rate (BER) of the wireless channel. 

The higher the speed is, the more bursty the bit error of the wireless channel is. In other words, 

the larger the transition probability is. The higher the transition probability is, the higher the 

packet-loss rate is, given the same BER. On the other hand, the EC performance degrades as the 

error becomes more bursty because EC relies on spatial or temporal neighbors. Neighbors are 

usually corrupted if the error is bursty. Therefore, from the results, we do not see the correlation 

between the overall PSNR and the speed. 

Figure 40 (d), Figure 42 (d), and Figure 44 (d) show the overall PSNR at various SNR at 

km/h 10speed = . Fixed speed gives the same burstiness of the bit errors of the wireless channel. 

The larger the SNR is, the smaller the BER is. We see from the results that the PSNR value 

increases with SNR. Also from Section 2.2, we know that the smaller the BER is, the smaller the 

packet-loss rate is, given the same burstiness. Smaller packet-loss rate then leads to a higher 

PSNR. 

Frame-by-frame PSNR performance is shown in Figure 41, Figure 43, and Figure 45. We 

also see that “n-ecars” outperforms “upprs1”. 
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(a) (b) 

  

(c) (d) 

Figure 40. Performance of Methods “upprs1” and “n-ecars” at various wireless channel conditions 
with Case (0, 1) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top 

view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 

 

 

Figure 41. Frame-by-frame PSNR of Methods “upprs1” and “n-ecars” at 10 km/h and SNR=20 dB 
with Case (0, 1) for Sequence “foreman” 
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(a) (b) 

  

(c) (d) 

Figure 42. Performance of Methods “upprs1” and “n-ecars” at various wireless channel conditions 
with Case (1, 2) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top 

view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 

 

 

Figure 43. Frame-by-frame PSNR of Methods “upprs1” and “n-ecars” at 10 km/h and SNR=20 dB 
with Case (1, 2) for Sequence “foreman” 
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(a) (b) 

  

(c) (d) 

Figure 44. Performance of Methods “upprs1” and “n-ecars” at various wireless channel conditions 
with Case (1, 1) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top 

view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 

 

 

Figure 45. Frame-by-frame PSNR of Methods “upprs1” and “n-ecars” at 10 km/h and SNR=20 dB 
with Case (1, 1) for Sequence “foreman” 
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4.4.2. ECARS vs. Non-ECARS 

We will compare the results of EC aware rate shaping “ecars-nf” with the non- EC aware rate 

shaping “n-ecars” here. Results of Case (0, 1) are shown in Figure 46 and Figure 47; results of 

Case (1, 2) are shown in Figure 48 and Figure 49; and results of Case (0, 1) are shown in Figure 

50 and Figure 51. 

The performance in terms of the overall PSNR at various wireless channel conditions is 

shown in Figure 46, Figure 48, and Figure 50. Figure 46 (a), Figure 48 (a), and Figure 50 (a) 

show the 3-D plots of the overall PSNR. Figure 46 (b), Figure 48 (b), and Figure 50 (b) show the 

top views (seen from the top of the z-axis) of the 3-D plots. The color shown in the top view 

represents the color of the method that outperforms the others. At all wireless channel conditions, 

“ecars-nf” outperforms “n-ecars”.  

Figure 46 (c), Figure 48 (c), and Figure 50 (c) show the overall PSNR at various speeds 

at dB 10SNR = . Fixed SNR value gives the same bit error rate (BER) of the wireless channel. 

The higher the speed is, the more bursty the bit error of the wireless channel is. In other words, 

the larger the transition probability is. The higher the transition probability is, the higher the 

packet-loss rate is, given the same BER. On the other hand, the EC performance degrades as the 

error becomes more bursty because EC relies on spatial or temporal neighbors. Neighbors are 

usually corrupted if the error is bursty. Therefore, from the results, we do not see the correlation 

between the overall PSNR and the speed. 

Figure 46 (d), Figure 48 (d), and Figure 50 (d) show the overall PSNR at various SNR at 

km/h 10speed = . Fixed speed gives the same burstiness of the bit errors of the wireless channel. 

The larger the SNR is, the smaller the BER is. We see from the results that the PSNR value 

increases with SNR. Also from Section 2.2, we know that the smaller the BER is, the smaller the 

packet-loss rate is, given the same burstiness. Smaller packet-loss rate then leads to a higher 

PSNR. 

Frame-by-frame PSNR performance is shown in Figure 47, Figure 49, and Figure 51. We 

also see that “ecars-nf” outperforms “n-ecars”. 
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(a) (b) 

  

(c) (d) 

Figure 46. Performance of Methods “n-ecars” and “ecars-nf” at various wireless channel conditions 
with Case (0, 1) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top 

view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 

 

 

Figure 47. Frame-by-frame PSNR of Methods “n-ecars” and “ecars-nf” at 10 km/h and SNR=20 dB 
with Case (0, 1) for Sequence “foreman” 
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(a) (b) 

  

(c) (d) 

Figure 48. Performance of Methods “n-ecars” and “ecars-nf” at various wireless channel conditions 
with Case (1, 2) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top 

view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 

 

 

Figure 49. Frame-by-frame PSNR of Methods “n-ecars” and “ecars-nf” at 10 km/h and SNR=20 dB 
with Case (1, 2) for Sequence “foreman” 
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(a) (b) 

  

(c) (d) 

Figure 50. Performance of Methods “n-ecars” and “ecars-nf” at various wireless channel conditions 
with Case (1, 1) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top 

view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 

 

 

Figure 51. Frame-by-frame PSNR of Methods “n-ecars” and “ecars-nf” at 10 km/h and SNR=20 dB 
with Case (1, 1) for Sequence “foreman” 
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4.4.3. ECARS with Feedback vs. ECARS without Feedback 

We will compare the results of EC aware rate shaping with feedback “ecars-loc” and “ecars-

mean” with the EC aware rate shaping without feedback “ecars-nf” here. Results of Case (0, 1) 

are shown in Figure 52 and Figure 53; results of Case (1, 2) are shown in Figure 54 and Figure 

55; and results of Case (0, 1) are shown in Figure 56 and Figure 57. 

The performance in terms of the overall PSNR at various wireless channel conditions is 

shown in Figure 52, Figure 54, and Figure 56. Figure 52 (a), Figure 54 (a), and Figure 56 (a) 

show the 3-D plots of the overall PSNR. Figure 52 (b), Figure 54 (b), and Figure 56 (b) show the 

top views (seen from the top of the z-axis) of the 3-D plots. The color shown in the top view 

represents the color of the method that outperforms the others. “ecars-mean” outperforms “ecars-

loc” and “ecars-nf” at most of the channel conditions with small margins. 

Figure 52 (c), Figure 54 (c), and Figure 56 (c) show the overall PSNR at various speeds 

at dB 10SNR = . Fixed SNR value gives the same bit error rate (BER) of the wireless channel. 

The higher the speed is, the more bursty the bit error of the wireless channel is. In other words, 

the larger the transition probability is. The higher the transition probability is, the higher the 

packet-loss rate is, given the same BER. On the other hand, the EC performance degrades as the 

error becomes more bursty because EC relies on spatial or temporal neighbors. Neighbors are 

usually corrupted if the error is bursty. Therefore, from the results, we do not see the correlation 

between the overall PSNR and the speed. 

Figure 52 (d), Figure 54 (d), and Figure 56 (d) show the overall PSNR at various SNR at 

km/h 10speed = . Fixed speed gives the same burstiness of the bit errors of the wireless channel. 

The larger the SNR is, the smaller the BER is. We see from the results that the PSNR value 

increases with SNR. Also from Section 2.2, we know that the smaller the BER is, the smaller the 

packet-loss rate is, given the same burstiness. Smaller packet-loss rate then leads to a higher 

PSNR. 

Frame-by-frame PSNR performance is shown in Figure 53, Figure 55, and Figure 57. We 

also see that “ecars-mean” outperforms “ecars-loc” and “ecars-nf” at most of the channel 

conditions with small margins. 
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(a) (b) 

  

(c) (d) 

Figure 52. Performance of Methods “ecars-nf”, “ecars-loc”, and “ecars-mean” at various wireless 
channel conditions with Case (0, 1) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds 
and SNR; (b) top view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at 

various SNR 

 

 

Figure 53. Frame-by-frame PSNR of Methods “ecars-nf”, “ecars-loc”, and “ecars-mean” at 10 km/h 
and SNR=20 dB with Case (0, 1) for Sequence “foreman” 
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(a) (b) 

  

(c) (d) 

Figure 54. Performance of Methods “ecars-nf”, “ecars-loc”, and “ecars-mean” at various wireless 
channel conditions with Case (1, 2) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds 
and SNR; (b) top view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at 

various SNR 
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Figure 55. Frame-by-frame PSNR of Methods “ecars-nf”, “ecars-loc”, and “ecars-mean” at 10 km/h 
and SNR=20 dB with Case (1, 2) for Sequence “foreman” 

 

  

(a) (b) 

  

(c) (d) 

Figure 56. Performance of Methods “ecars-nf”, “ecars-loc”, and “ecars-mean” at various wireless 
channel conditions with Case (1, 1) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds 
and SNR; (b) top view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at 

various SNR 
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Figure 57. Frame-by-frame PSNR of Methods “ecars-nf”, “ecars-loc”, and “ecars-mean” at 10 km/h 
and SNR=20 dB with Case (1, 1) for Sequence “foreman” 

 

To understand why the improvement of “ecars-mean” over “ecars-nf” is marginal, let us 

consider that the pixel value can be modeled as an AR(1) Gauss-Markov process [51]. 

 
nnn exx 2

1 1 ρσρ −+= −  (4.12) 

Using the pixel value of the previous frame to conceal the error in the current frame can result in 

the distortion as follows. That is, jc  is from the previous frame. 

 ( )[ ] ( )ρσ −=− − 12 22
1nn xxE  (4.13) 

If the previous frame is corrupted, we use the one before the previous frame to conceal the error 

in the current frame. That is, jc′  is from the one before the previous frame. The resulting 

distortion is: 

 ( )[ ] ( )222
2 12 ρσ −=− −nn xxE  (4.14) 

If 1→ρ  (which is reasonable for natural images), the distortions in (4.13) and (4.14) are almost 

identical. Therefore, we conclude that the gain jg ′  does not change a lot with the feedback. 

In addition to the analysis, let us examine “ecars-ideal” with respect to “ecars-loc” to see 

the limitation of the best ECARS method with feedback in the following subsection. 

4.4.4. ECARS with EC Method Known vs. ECARS without EC Method Known 

We will compare the results of ECARS with feedback knowing exactly the EC method “ecars-

ideal”, with ECARS with feedback without knowing exactly the EC method “ecars-loc” here. In 
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general, rate shaper does not know exactly the EC method used at the receiver. Thus, “ecars-

ideal” is usually not the case since the receiver might not want to disclose its own EC method. 

The comparison in this subsection is served for information only. 

Results of Case (0, 1) are shown in Figure 58 and Figure 59; results of Case (1, 2) are 

shown in Figure 60 and Figure 61; and results of Case (0, 1) are shown in Figure 62 and Figure 

63. 

The performance in terms of the overall PSNR at various wireless channel conditions is 

shown in Figure 58, Figure 60, and Figure 62. Figure 58 (a), Figure 60 (a), and Figure 62 (a) 

show the 3-D plots of the overall PSNR. Figure 58 (b), Figure 60 (b), and Figure 62 (b) show the 

top views (seen from the top of the z-axis) of the 3-D plots. The color shown in the top view 

represents the color of the method that outperforms the others. At all wireless channel conditions, 

“ecars-nf” outperforms “n-ecars”. Figure 58 (c), Figure 60 (c), and Figure 62 (c) show the overall 

PSNR at various speeds at dB 10SNR = . Figure 58 (d), Figure 60 (d), and Figure 62 (d) show 

the overall PSNR at various SNR at km/h 10speed = . Frame-by-frame PSNR performance is 

shown in Figure 59, Figure 61, and Figure 63. We also see that “ecars-nf” outperforms “n-ecars”. 

 

  

(a) (b) 
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(c) (d) 

Figure 58. Performance of Methods “ecars-loc” and “ecars-ideal” at various wireless channel 
conditions with Case (0, 1) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and 
SNR; (b) top view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at 

various SNR 

 

 

Figure 59. Frame-by-frame PSNR of Methods “ecars-loc” and “ecars-ideal” at 10 km/h and SNR=20 
dB with Case (0, 1) for Sequence “foreman” 
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(a) (b) 

  

(c) (d) 

Figure 60. Performance of Methods “ecars-loc” and “ecars-ideal” at various wireless channel 
conditions with Case (1, 2) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and 
SNR; (b) top view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at 

various SNR 

 

 

Figure 61. Frame-by-frame PSNR of Methods “ecars-loc” and “ecars-ideal” at 10 km/h and SNR=20 
dB with Case (1, 2) for Sequence “foreman” 
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(a) (b) 

  

(c) (d) 

Figure 62. Performance of Methods “ecars-loc” and “ecars-ideal” at various wireless channel 
conditions with Case (1, 1) for Sequence “foreman”: (a) 3-D view of PSNR at various speeds and 
SNR; (b) top view of PSNR at various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at 

various SNR 
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Figure 63. Frame-by-frame PSNR of Methods “ecars-loc” and “ecars-ideal” at 10 km/h and SNR=20 
dB with Case (1, 1) for Sequence “foreman” 

 

We can see that “ecars-ideal” on the average outperforms “ecars-loc” by 0.1~0.3 dB, 

which falls in the same range by which “ecars-mean” outperforms “ecars-loc”. We conclude that 

“ecars-mean” is an almost ideal ECARS method with feedback without requiring the knowledge 

of the exact EC method used at the receiver. 

4.4.5. All Methods 

Sample results of methods where exact EC methods are not required are shown here. Figure 64 

shows an example of how each method allocates the rates among sublayers. With the bandwidth 

constraint specified, Method “rand” allocates the rates randomly among the 27 sublayers; Method 

“upprs1” allocates the rates equally among the 27 sublayers; Method “upprs2” allocates the rates 

to the earlier sublayers; and Methods “n-ecars”, “ecars-nf”, “ecars-loc”, and “ecars-mean” 

allocate the rates smartly among the 27 sublayers (some sublayers are even not allocated with 

rates) depending on different definitions of the MB gain. The bit allocation processes of “n-

ecars”, “ecars-nf”, “ecars-loc”, and “ecars-mean” happen automatically by the proposed two-

stage R-D optimization considering the current network condition. 
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Figure 64. Sublayer bit allocations of all methods at 10 km/h and SNR=20 dB with Case (1, 1) for 
Sequence “foreman” 

 

We then recap the performance of all seven methods (shown from Figure 65 to Figure 

70). We can see that “ecars-mean” outperforms all the others most of the time. Rate shaping 

based methods “n-ecars”, “ecars-nf”, “ecars-loc”, and “ecars-mean” outperform naïve methods 

“rand”, “upprs1”, and “upprs2” at all time. 

 

  

(a) (b) 
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(c) (d) 

Figure 65. Performance of all methods at various wireless channel conditions with Case (0, 1) for 
Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top view of PSNR at 

various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 

 

 

Figure 66. Frame-by-frame PSNR of all methods at 10 km/h and SNR=20 dB with Case (0, 1) for 
Sequence “foreman” 
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(a) (b) 

  

(c) (d) 

Figure 67. Performance of all methods at various wireless channel conditions with Case (1, 2) for 
Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top view of PSNR at 

various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 

 

 

Figure 68. Frame-by-frame PSNR of all methods at 10 km/h and SNR=20 dB with Case (1, 2) for 
Sequence “foreman” 

 



 75

  

(a) (b) 

  

(c) (d) 

Figure 69. Performance of all methods at various wireless channel conditions with Case (1, 1) for 
Sequence “foreman”: (a) 3-D view of PSNR at various speeds and SNR; (b) top view of PSNR at 

various speeds and SNR; (c) PSNR at various speeds; (d) PSNR at various SNR 

 

 

Figure 70. Frame-by-frame PSNR of all methods at 10 km/h and SNR=20 dB with Case (1, 1) for 
Sequence “foreman” 
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From Figure 71 to Figure 73, the performance in overall PSNR of different sequences is 

shown. Given the same network condition, Sequence “akiyo” has higher PSNR than “foreman”; 

and Sequence “foreman” has higher PSNR than “stefan”. The sequence with texture that is more 

complex and faster motion, such as “stefan”, gives smaller PSNR value given the same 

bandwidth budget.  

 

 

Figure 71. Performance of all methods at 10 km/h and SNR=20 dB with Case (0, 1) for Sequences 
“akiyo”, “foreman”, and “stefan” 

 

 

Figure 72. Performance of all methods at 10 km/h and SNR=20 dB with Case (1, 2) for Sequences 
“akiyo”, “foreman”, and “stefan” 
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Figure 73. Performance of all methods at 10 km/h and SNR=20 dB with Case (1, 1) for Sequences 
“akiyo”, “foreman”, and “stefan” 

 

Finally, sample frames of Method “n-ecars” and “ecars-mean” are shown in Figure 74 to 

demonstrate visually the merit of ECARS with location and mean information as feedbacks. 

 

  

(a) (b) 

Figure 74. A sample frame of (a) “n-ecars” and (b) “ecars-mean” at 10 km/h and SNR=20 dB with 
Case (1, 1) for Sequence “foreman” 

 

4.5. Conclusion 

We proposed in this paper error concealment aware rate shaping (ECARS) for video transport 

over wireless networks. ECARS is applied to pre source- and channel- coded video. ECARS first 

evaluates the gain of sending the MB of the precoded video, as opposed to not sending it but 

reconstructing it by EC. Then given a certain packet loss rate, the expected accumulated gain can 
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be derived and be included in the R-D optimization problem formulation. Finally, ECARS 

performs R-D optimization by the proposed two-stage R-D optimization approach.  

Two types of ECARS algorithms: without feedback and with feedback from the receiver, 

were proposed to account for the frame dependency problem in rate shaping. In the case of no 

feedback, ECARS evaluates the MB gain considering a particular EC method used at the receiver. 

The case of ECARS with feedback is needed if the video is predictive coded, and/or the EC 

method performed at the receiver utilizes the temporal information. In order to incorporate the 

frame dependency into the rate shaping process, we propose to send the location (and mean) of 

the corrupted MB back to the sender, and use such feedback information to determine the MB 

gain in the R-D optimized ECARS. Experiments have shown that ECARS is better than other 

naïve methods. Moreover, ECARS has improved performance with the aids of the feedback 

information. 

The way the MB are grouped into sublayers in this paper is fixed and is not part of the 

ECARS R-D optimization, since how MB are grouped should be considered in the precoding 

process but not in the rate shaping stage. In the future, we can consider R-D optimization on the 

way MB are grouped into sublayers (that is, the number of source-coded symbols that go to each 

sublayer) given the rate shaping problem is solved. 
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5. Modeling of Video Traffic 

We present a new stochastic process called the punctured autoregressive (AR) process, and use it 

to model the variable bit rate (VBR) video traffic. To model the VBR video traffic, we propose to 

use punctured autoregressive processes modulated by a doubly Markov process. The doubly 

Markov process models the state of each video frame while the autoregressive processes describe 

the number of bits of each frame at each state. The punctured autoregressive process considers the 

timing information between frames of the same state and thus gives better modeling performance. 

The model captures the long-range dependency (LRD) characteristics as well as the short-range 

dependency (SRD) characteristics of the video traffic. Queuing behavior of the punctured 

autoregressive process is also closer to the real video traffic than the conventional autoregressive 

process. 

This chapter is organized as follows. We first introduce some prior work on VBR traffic 

modeling. We then introduce “punctured AR process” as opposed to the conventional AR 

process. The proposed doubly Markov process modulated punctured AR process as well as the 

conventional non-punctured version are both described for their usage in traffic modeling. 

Experiments are conducted to compare the proposed punctured process with the non-punctured 

process. Finally, conclusion remarks are given. 

5.1. Introduction 

To both the video service providers and the network designers, it is important to have a good 

model for the video traffic. A good model for video traffic allows for better admission control, 

scheduling, network resource allocation policies, etc., that guarantee a desired quality of service 

(QoS) as well as a better utilization of the network resources. A good model captures essential 

characteristics of the real video traffic. The synthetic trace generated by such a model can be used 

to test the network performance under a certain, for example, admission control policy. 

Therefore, the network designers can design a network that is more friendly to the video traffic 

and thus delivers a better video service. 

Because of the importance of both the variable bit rate (VBR) video traffic modeling and 

the wireless channel dynamic modeling, many models have been proposed. To evaluate different 



 80

models, there are generally three criteria to be taken into account— (1) A good model should 

capture the statistical properties of the real trace. A trace is defined as a sequence of data we 

intend to model. In the case of VBR video traffic modeling, a trace is a sequence of numbers, 

each represents the number of bits to encode each Group of Blocks (GOB)/frame/Group of 

Pictures (GOP). In the case of wireless channel modeling, a trace is a sequence of numbers, each 

represents the channel bit error rate (BER) at different time instant. The statistical properties 

should include those that are related to the long-range dependency (LRD) of the trace as well as 

those that are related to the short-range dependency (SRD) of the trace [1]. (2) The synthetic 

video trace should be similar to the real video trace in terms of the queuing behavior. Likewise, 

the synthetic trace of the wireless channel should be similar to the real trace in terms of the QoS 

behavior. (3) The model should be simple and easy to be analyzed. Related discussion on how to 

evaluate the performance of the models can be found in [28][37][47]. 

Video traffic modeling is challenging in several aspects. First, video is usually encoded 

with VBR to be adaptive to the video content. Second, depending on different coding schemes, 

the video trace has very different properties. Popular video coding schemes include H.263 [52] 

and MPEG-4 [40]. The video frame can be Intra (I), Predictive (P), or Bidirectionally predictive 

(B) encoded. The GOP structure, which is defined as frames enclosed by two I frames including 

the leading I frame, can be fixed or dynamic. A fixed GOP structure that is commonly used is 

IBBPBBPBBPBB. 

Existing work for video traffic modeling includes DAR [24], which fails to capture the 

LRD property of the video traffic. Models such as [14][36][58][67] are constrained by a fixed 

GOP structure. Non-statistical methods as [33][62] are usually more difficult to analyze. The 

wavelet-based model [38] and the autoregressive process (AR) based model [35] do not capture 

the dynamic nature of the video traffic nicely. In general, it is preferred to use a Markov chain 

like process to model the dynamic nature of the video traffic. Models such as [30] are too 

complex. We propose to build a model based on the work done by [53], which models the video 

traffic as a doubly Markov process with AR processes inside each Markov state. However, the 

model of [53] does not use the timing information between frames of the same Markov state. 

Here, we explicitly use the timing information between frames of the same Markov state and refer 

to the new model as a “doubly Markov process modulated punctured AR process”. It is shown 

that the proposed model outperforms the model of [53] in terms of statistics, both SRD and LRD, 

queuing behavior, and has the same complexity in terms of the number of model parameters. 
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5.2. Punctured Autoregressive Modeling 

A conventional autoregressive (AR) process nx  is defined as follows: 

 
nnn exx 2

1 1 ρσρ −+= − , L,2,1=n  (5.1) 

where n  is the time index of the process, ρ  describes the dependency of the sample at time n  

with the previous sample at time 1−n , 2σ  is the variance of the process nx , and ne  is a 

Gaussian random variable with mean 0  and variance 1 to characterize the random nature of the 

process. 

Consider the case where more than one AR processes are interleaved together such as 

shown in Figure 75 (a). At time instant 1, AR process nx  takes place; at time instant 2, AR 

process ny  takes place; and so on. Conventional method to train two sets of AR parameters of 

sequences nx  and ny  is by splitting the single process in Figure 75 (a) to two separate processes 

as shown in Figure 75 (b) and Figure 75 (c). Each one of the processes represents the training 

sequence of nx  or ny  regardless of the time index associated with each sample. For example, the 

sequence in Figure 75 (b) is used as if samples are: 

 987654321
~~~~~~~~~ xxxxxxxxx  (5.2) 

where 11
~ xx = , 32

~ xx = , and so on. 

 

x1 y2 x3 x4 x5 x6 y7 y8 x9 y10 x11 x12 x13 y14 …

x1 x3 x4 x5 x6 x9 x11 x12 x13 …

y2 y7 y8 y10 y14 …(a)

(b)

(c)  

Figure 75. Two interleaved autoregressive processes nx  and ny : (a) the interleaved process; (b) 

autoregressive process nx ; (c) autoregressive process ny . 

 

To synthesize samples using this model, two separate AR processes are generated with 

parameters trained by nx~  and ny~ . Synthetic samples generated by parameters trained by nx~  are 

taken one after the other to form the final synthetic process. Synthetic samples generated by 
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parameters trained by ny~  are formed in a similar way. In brief, “no synthetic samples are 

skipped”. 

It can be seen that the conventional method does not take into account the timing 

information of the two processes in both the training and synthesis stages. To consider the timing 

information, we propose to train and synthesize the AR processes as follows (Figure 76). First 

split the single process in Figure 76 (a) to two separate processes as shown in Figure 76 (b) and 

Figure 76 (c). Notice that the timing information is utilized while leaving the sample of nx  blank 

if at some particular time instance the original process is with the other process ny  (Figure 76 

(b)). Similarly, the sample of ny  is blank if at some time instance the original process is with the 

other process nx  (Figure 76 (c)). 

 

x1 _ x3 x4 x5 x6 _ _ x9 _ x11 x12 x13 _ …

_ y2 _ _ _ _ y7 y8 _ y10 _ _ _ y14 …
x1 y2 x3 x4 x5 x6 y7 y8 x9 y10 x11 x12 x13 y14 …

(a)

(b)

(c)  

Figure 76. Two interleaved autoregressive processes nx  and ny : (a) the interleaved process; (b) 

punctured autoregressive process nx ; (c) punctured autoregressive process ny . 

 

To train the punctured AR processes, we find the value Xρ~  of the process 

987654321
~~~~~~~~~ xxxxxxxxx . We also construct the histogram of the sample spacing. For example in 

Figure 76 (b), the histogram has values [5, 2, 1] at spacing [1, 2, 3]. Recall that in the simplest 

case where all the samples are adjacent to each other, the histogram has values [8, 0, 0] at spacing 

[1, 2, 3]. The Xρ  of the process in Figure 76 (b) can be found by solving the following equation: 

 ( ) X
XXX ρρρρ ~

125

125 321

=
++

++  (5.3) 

The value of Yρ  in Figure 76 (c) can be solved in the same way. 

To synthesize samples using this model, two separate AR processes are generated by Xρ  

and Yρ . The final synthetic process is formed by some means of multiplexing/modulation of the 

two synthetic processes. Samples are not taken one after the other but with consideration of how 

separate the samples of the same type are. In brief, “some synthetic samples are skipped”. 
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Punctured AR processes can be modulated by different processes. In this study, we specifically 

consider the Markov process. 

5.3. Variable Bit Rate Video Traffic Modeling 

Before we proceed to the proposed model for VBR video traffic, let us briefly describe the 

method proposed by [53] with which we will compare (Figure 77). The model comprises of two 

layers of Markov process. Without loss of generality, we consider two frame types, I and P. The 

doubly Markov process models I and P frame transitions, as well as different frame activities. The 

outer Markov process describes how I and P frames transit. The frame type can be further 

categorized into different activity levels. Frames of higher activity level consume more number of 

bits, while frames of lower activity level consume less number of bits. The inner Markov process 

describes how the frames of different activity levels transit. This model is not constrained by a 

fixed GOP structure. There are six states in total, namely, I frame in high activity level, I frame in 

medium activity level, I frame in low activity level, P frame in high activity level, P frame in 

medium activity level, and P frame in low activity level. 

Each state is modeled as an AR process with different AR parameters. We can consider 

this as a slightly more complex process than the one described in Figure 75. There are two states 

in Figure 75 (a) while there are six states in this model. The AR parameters are trained in the way 

described in Figure 75 of in a conventional non-punctured manner. The synthetic trace is 

generated by procedures described in the last section. 

To simply the model, the inner Markov process of I frames is characterized by initial 

probabilities of three activity levels only. Since I frames are usually far apart in a video sequence, 

they do not need to modeled as a Markov process. Such simplification will have similar 

performance as the full model. We call this model Method 1, as shown in Figure 77 (a), for later 

discussion. 

We propose to model the VBR video traffic as a doubly Markov modulated punctured 

AR process. This new model explicitly considers the timing information between two frames of 

the same state. Again, this is a slightly more complex process than the one described in Figure 76. 

There are two states in Figure 76 (a) while there are six states in this model. The AR parameters 

are trained in the way described in Figure 76 in a punctured manner. The synthetic trace is 

generated by procedures described in the last section. We call this model Method 2, as shown in 

Figure 77 (b), for later discussion. 
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(a) (b) 

Figure 77. Models for VBR video traffic— (a) Method 1: Doubly Markov modulated AR process; (b) 
Method 2: Doubly Markov modulated punctured AR process. 

 

5.4. Experiment 

We now compare the performance of the non-punctured Method 1 with the proposed punctured 

Method 2. To evaluate the performance of the models, we consider four performance metrics: (1) 

first order statistics by means of the quantile-quantile (Q-Q) plot; (2) second order statistics by 

means of the auto-correlation function (ACF); (3) LRD property by means of the Hurst parameter 

from the range/standard deviation (R/S) plot; and (4) queuing behavior by means of the packet 

loss rate and the queuing delay. Definitions of the performance metrics can be found in 

[28][37][47]. 

The experiment setting is as follows. Two different types of TV programs are recorded: 

“news” as shown in Figure 78 (a) and “talk show” as shown in Figure 78 (b). The two TV 

programs are encoded using video compression codec H.263 to generate the real video traces. 

Both of them are encoded with frame rate of 15 frames/sec and with duration of 30 minutes each. 

The video trace of the clip “news” is shown in Figure 79 (a) and (b) with different scales. The 

video traces are then fed into both models: Method 1 and Method 2 to generate synthetic traces. 

The performances of the two models are evaluated. 

 

  

(a) (b) 

Figure 78. Test videos: (a) news; (b) talk show 
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(a) (b) 

Figure 79. Sample traces from the TV program “news”: (a) a 200 second trace; (b) a 20 second trace. 

 

The performance comparison is summarized in Table 2. MSE refers to mean square error 

compared to the real trace. It can be seen that the proposed Method 2 outperforms Method 1 in all 

five aspects. The MSE improvement is computed by |(MSE of Method 2) – (MSE of Method 1)| / 

(MSE of Method 1). Detailed discussion associated with each performance metric will be 

presented later. 

 

Table 2 Summary of performance comparison between modeling methods Method 1 and Method 2 

 MSE of  

Q-Q plot 

MSE of  

ACF 

Hurst 

parameter 

MSE of  

packet loss rate 

MSE of 

queuing delay 

Real   0.2530   

Method 1 1.2048e+7 1.1126e+14 0.1538 

(98e-4 in SE) 

9.7846e-4 4.6553e-4 

Method 2 0.1747e+7 0.4054e+14 0.2725 

(3.8025e-4 in SE) 

9.6003e-4 3.4044e-4 

MSE improvement 85.50% 63.56% 96.12% 1.88% 26.87% 

 

Figure 80 (a)(b) shows the performance of both models in terms of first and second order 

statistics. The first order statistics in Figure 80 (a) is shown by the Q-Q plot. The Q-Q plot is 

constructed by a pair of cumulative distribution functions (CDF). The closer one CDF is to the 

other CDF in one pair, the more the curve will look like a straight line xy = . In Figure 80 (a), a 

dotted straight line is plotted as a reference. We have two pairs of CDF to compare: the synthetic 
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trace by Method 1 with respect to the real video trace and the synthetic trace by Method 2 with 

respect to the real video trace. The dashed-dotted curve in Figure 80 (a) refers to the first pair. 

The solid curve in Figure 80 (a) refers to the second pair. It is shown that the curve of Method 2 is 

closer to the reference dotted straight line than the curve of Method 1. 

The second order statistics in Figure 80 (b) is shown by the ACF. The dotted curve in 

Figure 80 (b) refers to the ACF of the real video trace. The dashed-dotted curve in Figure 80 (b) 

refers to the ACF of the synthetic trace by Method 1. The solid curve in Figure 80 (b) refers to the 

ACF of the synthetic trace by Method 2. It is shown that the curve of Method 2 is closer to the 

reference curve than the curve of Method 1. 
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(a) (b) 

Figure 80. First and second order statistics of the synthetic traces generated by Method 1 and 
Method 2 with respect to the real video trace of the clip “news”. (a) First order statistics: Q-Q plot; 

(b) Second order statistics: ACF. 

 

The LRD property in Figure 81 is shown by means of the Hurst parameter, which is the 

slope of the linear regression line of the points in a R/S plot. Figure 81 (a) shows the R/S plot of 

the real video trace. The linear regression line is shown as a dotted line. Figure 81 (b) shows the 

R/S plot of the synthetic trace by Method 1. Figure 81 (c) shows the R/S plot of the synthetic 

trace by Method 2. It is shown that the synthetic trace by Method 2 has closer Hurst parameter 

value to the real video trace than the synthetic trace by Method 1. 
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(a) (b) (c) 

Figure 81. LRD properties of three traces by Hurst parameter from the R/S plots: (a) real video 
trace; (b) synthetic trace by Method 1; (c) synthetic trace by Method 2 

 

The queuing behavior of the traces is evaluated by means of the packet loss rate and the 

queuing delay. Packet loss rate and queuing delay are measured at different drain rates and buffer 

sizes. The network is a leaky bucket with drain rate R  and time to drain RM , where M  is the 

buffer size. The queuing performance of the real trace is shown in Figure 82. The queuing 

performances of the synthetic traces by both Method 1 and Method 2 have similar look. However, 

the synthetic trace by Method 2 has smaller MSE in both the packet loss rate and the delay than 

the synthetic trace by Method 1 (Table 2). 

 

  

(a) (b) 

Figure 82. Queuing behavior of the real video trace: (a) packet loss rate; (b) queuing delay. 

 

5.5. Conclusion 

We proposed a new punctured AR processes to model the video traffic. The punctured AR 

processes are modulated by Markov processes. The punctured AR processes explicitly consider 
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the timing information between samples of each state. Thus, it outperforms the conventional 

approach in VBR video traffic modeling. A good set of performance metrics are experimented 

showing the novelty of the proposed model in different aspects, especially in the queuing 

behavior. 
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6. Summary and Future Directions 

This thesis provides an error-resilient rate shaping framework for streaming video over packet-

loss networks. The challenges in transmitting multimedia data over packet-loss networks urge the 

need of closer collaboration between the application layer and the network layer. The proposed 

error-resilient rate shaping acts as a filtering process to adapt the precoded video from the 

application layer according to the network conditions given by the network layer. 

After introducing the fundamentals in Chapter 2, Chapter 3 and Chapter 4 constitute the 

proposed error-resilient rate shaping system for streaming the enhancement layer video and base 

layer video. FGRS is applied to streaming enhancement layer video and ECARS is applied to 

streaming base layer video. 

The contribution of the thesis lies in: 

• Error-resilient rate shaping for pre source- and channel- coded video 

None of the prior rate shaping work considers rate adaptation of pre source- and channel- 

coded video. Pre source- and channel- coded video is useful for streaming over packet-loss 

networks. This thesis provides a R-D optimized solution for streaming the pre source- and 

channel- coded video. 

o Given the gain embedded in the bitstream, FGRS and ECARS consume on the 

average <0.01% and <1% (the denominator is the bit rates of the source-coded 

bitstream), respectively, of the original precoded video to carry the gain information 

(“meta-data”). The performance improvement of FGRS and ECARS in PSNR over 

non rate shaping based methods is on the average 8 dB. On the other hand, if the gain 

is not embedded in the bitstream for rate shaping, no extra bits are needed to carry the 

gain information. Partial decoding to obtain the gain information is required. 

o FGRS provides an error-resilient rate shaping scheme for pre- channel coded MPEG-

4 FGS bitstream. 

o ECARS provides an error-resilient rate shaping scheme for source- and channel- 

coded bitstream that is aware of the error concealment method used at the receiver. 

• Two-stage R-D optimization algorithm 
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First stage of the two-stage R-D optimization algorithm provides a model-based approach to 

find the near-optimal solution. With the refinement of the second stage, the proposed two-

stage R-D optimization algorithm finds the solution fast and accurately. 

• Error-resilient rate shaping vs. error-resilient video coding 

The proposed error-resilient rate shaping does not need to alter the original video encoder and 

decoder, thus can be adopted by systems, in which tremendous amount of work to modify the 

video coders is needed. 

• Error-resilient rate shaping vs. joint source-channel coding 

Joint source-channel coding techniques are limited by only providing the optimization at the 

time of encoding and are not suitable for streaming the precoded video. The encoded 

bitstream may not be optimal for transmission along a different path or along the same path at 

later time. Rate shaping can optimize the video streaming performance adaptive to each link. 

Future work includes replacing streaming by simulcast with rate shaping. Simulcast is 

adopted in the current video streaming applications. Multiple streams of different qualities are 

sent concurrently to satisfy the needs of different users with different device capabilities and 

access bandwidths. We can see that the bandwidth utilization is not efficient given the concurrent 

transmissions of multiple streams. Moreover, it is not only inflexible in adapting the bit rates 

according to the available bandwidths, but also intolerant to the packet losses. The proposed 

error-resilient rate shaping provides a solution to overcome the shortages of the current video 

streaming with simulcast. The precoded video can be adapted to any bit rates to make use of the 

available bandwidths. Hence, the video quality will not be constrained to a limited amount of 

quality steps. The R-D optimized decision of rate shaping also guarantees the shaped bitstream to 

have the best error-resiliency given the current network condition.  

For example, we can modify “End System Multicast (ESM)” [13], which currently adopts 

a simulcast approach for multicasting (Figure 83), to incorporate the propose rate shaping (Figure 

84). In that, ESM does not need to transmit two video bitstream concurrently to the host 

computers. The rate shaping mechanism resides in the parent host computer adapts the rates for 

the child host computer. Each host computer can enjoy video with fine granular quality. 
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Figure 83. End system multicast (ESM) with simulcast 
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Figure 84. End system multicast (ESM) with rate shaping 
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Appendix A. Second-Generation Error 

Concealment 

When transmitting video data over error prone channels, the video data may suffer from losses or 

errors. Error concealment is an effective way to recover the lost information at the decoder. 

Compared to other error control mechanisms such as FEC [61] and automatic retransmission 

request (ARQ) [34], error concealment has the advantages of not consuming extra bandwidth as 

FEC and not introducing retransmission delay as ARQ. On the other hand, error concealment can 

be used to supplement FEC and ARQ when both FEC and ARQ fail to overcome the transmission 

errors [5]. 

Error concealment is performed after error detection. That is, error concealment needs to 

be preceded with some error detection mechanism to know where the errors in the decoded video 

locate. For example, error detection provides information as which part of the received video 

bitstream is corrupted. Various methods, such as checking the video bitstream syntax, monitoring 

the packet numbers of the received video data, etc., can be applied [2][23]. In this work, we 

assume that the errors are located and such information is available to us. We focus on the 

reconstruction for the lost video.  

All error concealment methods reconstruct the lost video content by making use of some 

a priori knowledge about the video content. Most existing error concealment methods, which we 

refer to as first-generation error concealment, build such a prior in a heuristic manner by 

assuming smoothness or continuity of the pixel values, etc. The proposed second-generation 

error concealment methods train context-based models as the a prior. Methods of such a 

framework have advantages over first-generation error concealment, as the context-based model 

is created specifically for the video content hence can capture the statistical variations of the 

content more effectively. 

It is important for a second-generation error concealment approach to choose a model 

that can represent the video content effectively. Principal component analysis (PCA) has long 

been used to model visual content of images. The most well known example is using eigenfaces 

to represent human faces [54]. In this work, we introduce two new adaptive models “adaptive 
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mixture principal component analysis” (AMPCA, prior name “updating mixture of principal 

components” (UMPC)) [8][9] and “adaptive probabilistic principal component analysis” 

(APPCA) for second-generation error concealment. AMPCA and APPCA are very suitable for 

error concealment applications in that it updates with non-stationary video data. 

A.1. Adaptive Mixture of Principal Component Analysis (AMPCA) 

We consider a single component case of AMPCA in the following, named APCA. Interested 

readers can read [8][9] for AMPCA (prior name “updating mixture of principal components” 

(UMPC)), a more general case of APCA with the number of mixture components greater than 

one.  

Given a set of data, we try to model the data with minimum representation error. The data 

given can be non-stationary, i.e., the stochastic properties of the data are time-varying as shown 

in Figure 85 (a). For example, at time instant n , the data are distributed as shown by Figure 85 

(a). At time instant n′ , the data are distributed as shown by Figure 85 (b). We see that the mean 

of the data is shifting and the most representative axes of the data are also rotating. 
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(a) (b) 

Figure 85. Non-stationary data at (a) time n  (b) time n′  

 

At any time instant, we attempt to represent the data as a weighted sum of the mean and 

principal axes. As time proceeds, the model changes its mean and principal axes as shown in 

Figure 86 from Figure 86 (a) to Figure 86 (b), so that it always models the current data 

effectively. To accomplish this, the representation/reconstruction error of the model evaluated at 

time instant n  should have less contribution from the data that are further away in time from the 

current time instant n . 
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Figure 86. APCA for non-stationary data at (a) time n  (b) time n′  

 

The optimization objective function at time instant n , that tries to minimize the sum of weighted 

reconstruction errors of all data, can be written as: 
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The notations are organized as follows: 

n  : Current time index 

D  : Dimension of the data vector 

P  : Number of eigenvectors  

in−x  : Data vector at time in − , where i  represents how far away the data are from 

the current time instant 

( )nm  : Mean at time n  

( )n
ku  : k th eigenvector at time n  

( )nU  : Matrix with P  columns of ( )n
ku , Pk ~1=  

in−x̂  : Reconstruction of in−x  

α  : Decay factor, 10 <<α  
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The reconstruction errors contributed by previous data are weighted by powers of the 

decay factor α . The powers are determined by how far away this sample of data is from the 

current time instant. At any time instant n , we try to re-estimate or update the parameter (mean 

or eigenvector) given the parameter estimated at the previous time instant 1−n  and the new data 

nx , by minimizing (A.1). The solution of mean ( )nm  that minimizes (A.1) at time n  is: 

 ( ) ( ) ( ) n
nn xmm αα −+= − 11  (A.2) 

We can see that ( )nm  is obtained from the previous estimated ( )1−nm  and the current input nx . 

The decay factor α  tells how fast the new estimation ( )nm  adapts to the new data nx . The 

smaller the decay factor, the faster the estimated ( )nm  adapts to the new data. Similarly, the 

covariance matrix ( )nC  that minimizes (A.1) at time n  is: 

 ( ) ( ) ( ) ( )( ) ( )( )[ ]Tn
n

n
n

nn mxmxCC −−−+= − αα 11  (A.3) 

Again, ( )nC  is obtained by the previous estimated ( )1−nC  and the current input nx . The decay 

factor α  controls how fast the eigenvectors adapt to the new data nx .  

Experiment result of using APCA for error concealment is shown in Figure 87 and Figure 

88. Figure 87 shows the updated APCA model at different time instances. Figure 88 shows the 

concealment result compared with the spatial interpolation method. 
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 Time 20 Time 22 Time 60 

Mean 

   

1st Eigenvector 

   

2nd Eigenvector 

   

3rd Eigenvector 

   

4th Eigenvector 

   

5th Eigenvector 

   

6th Eigenvector 

   

Figure 87. Updated means and eigenvectors at time instants 20, 22, and 60 

 

   

(a) (b) (c) 

Figure 88. Sample reconstructed frames of Intra-coded “Interview” with: (a) no concealment; (b) 
concealment with spatial interpolation; or (c) concealment with APCA 
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A.2. Adaptive Probabilistic Principal Component Analysis (APPCA) 

In the APCA/AMPCA approach, the APCA/AMPCA model is merely a subspace. There is no 

probability information associated with the model. We propose a new probabilistic-based and 

non- stationary model “adaptive probabilistic principal component analysis” (APPCA). 

 

  

(a) (b) 

Figure 89. (a) Probabilistic PCA (PPCA) (b) PCA 

 

Given a set of training data in real time, we try to describe them with a statistical model. 

The data can be non-stationary, that is, the statistical properties of the data are time-varying. With 

such non-stationary data, we want the statistical model to be trained based on the recent data 

more than the older data, so as to describe the recent data better. Such a statistical model adjusts 

its model parameters to adapt to the incoming data. 

Let us represent the set of training data as ( )LL innn −−= yyyY 1 , where each 

of the training data in−y  is a d -dimensional vector. The indices n , 1−n , …, in − , etc., 

indicate the time, where n  is the current time instant, 1−n  is the previous time instant, and so 

on.  

Before we proceed further, let us introduce 1) the weighted sample mean ( )nm ; and 2) 

the eigenanalysis of the weighted sample covariance matrix ( )nS , of the training data Y , at time 

instant n . These two results will be used later. The weighted sample mean ( )nm  is defined as: 

 ( ) ∑
∞

=
−+++

≡
0

21

1

i
in

in ym α
αα L

 (A.4) 

It can be expressed in a recursive form as: 

 ( ) ( ) ( ) n
nn ymm αα −+= − 11  (A.5) 

The weighted sample covariance matrix ( )nS  is defined as: 



 98

 ( ) ( )( ) ( )( ) ( ) TTin
in

i

in
in

in YYmymyS ′′−=−−
+++

≡ −
−

∞

=

−
−∑ αα

αα
1

1

1

0
2 L

 (A.6) 

where Y′  is defined as: 
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Similarly, ( )nS  can be written in a recursive form as: 

 ( ) ( ) ( ) ( )( ) ( )( )Tn
n

n
n

nn mymySS −−−+= − αα 11  (A.8) 

The rank of ( )nS  is ( )( ) rn =Srank , where dr ≤ . The eigenanalysis result of ( )nS  is: 
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Now we are ready to introduce the statistical model and the adaptive estimators to obtain the 

model parameters. The Gaussian latent variable model is: 

 ( ) ( ) exWµy ++= nn  (A.10) 

 ( ) xI0x pN ,~  (A.11) 

 ( )( ) ( )( ) ee I0R0e d
nn NN ε,,~ =  (A.12) 

where y  is the observed date, ( )nµ  is the mean of the data, x  is the hidden variable, and e  is the 

noise. To illustrate, the model is shown in Figure 90.  

 

(a) (b) 

Figure 90. PPCA at (a) time n  (b) time n′  
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To solve for the model parameter, we propose an adaptive maximum likelihood (ML) 

estimator. 

 ( ) ( )θθyθ
θθ

Lp
i

in
i maxarglnmaxargˆ

0

=






= ∑
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where we define ( ) ( )∑
∞

=
−≡

0

ln
i

in
i pL θyθ α . 

To perform the adaptive ML estimation, let us first write out ( )θyp , where 

{ }ε,,Wµθ = . ( )θyp  can be derived from the pdf of x  and e , which are listed in (A.11) and 

(A.12). 

 ( ) ( ) yRWW0Wy += TNp ,,ε  (A.14) 

The sum of the weighted log-likelihoods function ( )θL  can then be expressed as: 
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To find µ̂ , let us take the derivative of ( )θL  with respect to µ  and set the derivative to zero. µ̂  

is therefore, 

 ( ) ( )n

i
in

i myµ =−= ∑
∞

=
−

0

1ˆ αα  (A.16) 

With (A.16), we can express (A.15) as: 

 ( ) ( ) ( ) ( ) ( )[ ]{ }nTT trdL SRWWRWWθ 1
ln2ln

12

1 −++++
−

−= π
α

 (A.17) 

To find Ŵ , let us take the derivative of ( )θL  with respect to W  and set the derivative to zero. 

Ŵ  is: 

 ( ) ( )( ) 2
1ˆ

ppp IΛEW ε−=  (A.18) 

where ( )pE  represents the eigenvectors of ( )nS  up to the p th and ( )pΛ  represents the 

eigenvalues of ( )nS  up to the p th, where rp ≤ . To find ε̂ , let us take the derivative of ( )θL  

with respect to ε  and set the derivative to zero. ε̂  is: 
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Experiment result of using APPCA for error concealment is shown in Figure 91. Error 

concealment result using APPCA compared with result using APCA is shown. 

 

   

(a) (b) (c) 

Figure 91. Sample reconstructed frames of Intra-coded “Interview” with: (a) no concealment; (b) 
concealment with APCA; or (c) concealment with APPCA 
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Appendix B. Finite-State Markov Model 

for Bit Error Simulation 

For modeling the error characteristics of a wireless channel, a simple Gilbert-Elliot model 

[18][21] can be used. It considers a two-state Markov chain with “Good” and “Bad” states as 

shown in Figure 92. The “Good” state represents an error-free state with bit error rate (BER) 

0=Ge , while the “Bad” state represents an erroneous state with BER Be . Within one state the 

bit errors occur independently from each other. 

 

Good Bad

1-p 1-q
p

q

Good Bad

1-p 1-q
p

q  

Figure 92. Two-state Markov chain for bit error simulation 

 

B.1. K -State Markov Chain Model 

A more sophisticated K -State Markov chain model [15][57] can be used for bit error 

simulations given: 

• Raleigh fading, producing a time-varying receiver signal-to-noise ratio (SNR) 

• BPSK coding 

• Time variations of the received signal level are assumed to come from mobility (Doppler 

effect) 

A homogeneous discrete-time Markov chain is then constructed where transitions occur only at 

every bit interval. Each state corresponds to a specific channel quality and has its own BER (with 

independent bit errors). The range of SNR is grouped into K  intervals. 

The Markov chain parameters are calculated as follows: 
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• Choose K  as the number of states. State vector is ( )T
Ksss 110 ,,, −= Ls  

o The state transition matrix is { }jit ,=T , { }1,,1,0, −∈ Kji L  

o The steady state probability is ( )T
Kppp 110 ,,, −= Lp  

o The vector of the error rates of all states is ( )T
Keee 110 ,,, −= Le  

• Choose bit rate tR  

• The SNR are divided into K  intervals ∞=<<<= KAAA L100  and ρ  sits in the 

mean of the interval [ )1, +kk AA . The probability distribution function (pdf) of the SNR is 

( ) 






−=
ρρ
a

ap exp
1

 

• The Doppler frequency is 
λ
v

fm = , where v  is the speed of the mobile unit and λ  is the 

wavelength 

• For { }1,,1,0 −∈ Kk L , 
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We also define ( )
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• The transition probability is: 
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• The error rate is: 
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• The sojourn time is: 

 
kk

k t
T

,1

1

−
=  (B.4) 

• The mean BER is: epT
be =  

B.2. Simulation 

In the simulations performed in the study, we use 2=K , MRt 2= , GRc 4.2=  (
cR

c=λ ). 

Three different speeds 2 km/h, 6 km/h, 10 km/h and three different SNR 10 dB, 15 dB, and 20 dB 

are simulated. Thus, there are nine channel conditions simulated in total. 

The variations in spend v  provide bit errors with different burstiness because the larger 

the v  is, the shorter the sojourn time is and thus the less bursty the bit errors are. The three 

different BER traces shown in Figure 93 are all with the same mean BER while the one with 10 

km/h is more bursty than the others. 

 

 

Figure 93. BER traces of wireless channel with units moving at different speeds 
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The variations in SNR ρ  provide bit errors with different mean BER. The three different 

BER traces shown in Figure 94 are all with the same burstiness while the one with 10 dB is 

higher in BER than the others. 

 

 

Figure 94. BER traces of wireless channel with different SNR 
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