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Abstract 
We present a new stochastic process called the punctured autoregressive (AR) process, and use it to 
model both the variable bit rate (VBR) video traffic and the wireless channel dynamics. To model the 
VBR video traffic, we propose to use punctured autoregressive processes modulated by a doubly Markov 
process. The doubly Markov process models the state of each video frame while the autoregressive 
processes describe the number of bits of each frame at each state. The punctured autoregressive process 
considers the timing information between frames of the same state and thus gives better modeling 
performance. The model captures the long-range dependency (LRD) characteristics as well as the short-
range dependency (SRD) characteristics of the video traffic. Queuing behavior of the punctured 
autoregressive process is also closer to the real video traffic than the conventional autoregressive process. 
In addition to video traffic modeling, we also apply the same model to wireless channel dynamics. The 
channel error rate is modeled as a single Markov modulated punctured autoregressive process. The 
synthetic channel error rate generated by the punctured autoregressive process performs closer to the real 
channel error rate than the one generated by the conventional autoregressive process. 

I. Introduction 
To both the video service providers and the network designers, it is important to have a good model for 
the video traffic. A good model for video traffic allows for better admission control, scheduling, network 
resource allocation policies, etc., that guarantee a desired quality of service (QoS) as well as a better 
utilization of the network resources. A good model captures essential characteristics of the real video 
traffic. The synthetic trace generated by such a model can be used to test the network performance under 
a certain, for example, admission control policy. Therefore, the network designers can design a network 
that is more friendly to the video traffic and thus delivers a better video service. 
In addition to the video traffic modeling, it is also crucial to model the wireless channel dynamics. In 
wired networks, the transmission is nearly error free. However, in the wireless network, the channel error 
rate fluctuates depending on the noise, distance, speed of the mobile unit, multi-path interference, etc. A 
good model of the wireless channel dynamics, in particular the channel error rate in this paper, can be 
used to provide a better error control mechanism for the data packets as well as a better wireless network 
design. For example, we can test different Automatic Repeat Request (ARQ) protocols with synthetic 
channel errors generated by the channel modeler to select an ARQ scheme that suits the best. 
Because of the importance of both the variable bit rate (VBR) video traffic modeling and the wireless 
channel dynamic modeling, many models have been proposed. To evaluate different models, there are 
generally three criteria to be taken into account— (1) A good model should capture the statistical 
properties of the real trace. A trace is defined as a sequence of data we intend to model. In the case of 
VBR video traffic modeling, a trace is a sequence of numbers, each represents the number of bits to 
encode each Group of Blocks (GOB)/frame/Group of Pictures (GOP). In the case of wireless channel 
modeling, a trace is a sequence of numbers, each represents the channel bit error rate (BER) at different 
time instant. The statistical properties should include those that are related to the long-range dependency 
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(LRD) of the trace as well as those that are related to the short-range dependency (SRD) of the trace [1]. 
(2) The synthetic video trace should be similar to the real video trace in terms of the queuing behavior. 
Likewise, the synthetic trace of the wireless channel should be similar to the real trace in terms of the QoS 
behavior. (3) The model should be simple and easy to be analyzed. Related discussion on how to evaluate 
the performance of the models can be found in [2]-[4]. 
Video traffic modeling is challenging in several aspects. First, video is usually encoded with VBR to be 
adaptive to the video content. Second, depending on different coding schemes, the video trace has very 
different properties. Popular video coding schemes include H.263 [5] and MPEG-4 [6]. The video frame 
can be Intra (I), Predictive (P), or Bidirectionally predictive (B) encoded. The GOP structure, which is 
defined as frames enclosed by two I frames including the leading I frame, can be fixed or dynamic. A 
fixed GOP structure that is commonly used is IBBPBBPBBPBB. 
Existing work for video traffic modeling includes DAR [7], which fails to capture the LRD property of 
the video traffic. Models such as [8]-[11] are constrained by a fixed GOP structure. Non-statistical 
methods as [12][13] are usually more difficult to analyze. The wavelet-based model [14] and the 
autoregressive process (AR) based model [15] do not capture the dynamic nature of the video traffic 
nicely. In general, it is preferred to use a Markov chain like process to model the dynamic nature of the 
video traffic. Models such as [16] are too complex. We propose to build a model based on the work done 
by [17], which models the video traffic as a doubly Markov process with AR processes inside each 
Markov state. However, the model of [17] does not use the timing information between frames of the 
same Markov state. In this paper, we explicitly use the timing information between frames of the same 
Markov state and refer to the new model as a “doubly Markov process modulated punctured AR process”. 
It is shown that the proposed model outperforms the model of [17] in terms of statistics, both SRD and 
LRD, queuing behavior, and has the same complexity in terms of the number of model parameters. 
Conventional channel analyses model the channel statistics with physical layer parameters such as the 
signal to noise ratio (SNR), speed of the mobile unit, etc. Most of the models concentrate on matching the 
probability distribution function (pdf) of the synthetic trace with the real trace of the channel and do not 
match the LRD property such as the Hurst parameter [3]. In addition, a channel model with a perfect 
statistical property match to the real channel does not guarantee similar behavior to the packets 
transmitted on top of which. It is more important to capture the behavior of the packets sending over the 
channel. Some related models based on Markov process can be found in [18]. More related work in 
modeling the channels can be found in [19][20]. We propose in this paper a “Markov process modulated 
punctured AR process” to model the error rate of the channel. It is shown that the punctured AR process 
performs better than the conventional AR process. 
This paper is organized as follows. Section II introduces the core concept of this paper—“punctured AR 
process” as opposed to the conventional AR process. In Section III, we present the doubly Markov 
process modulated punctured AR process as well as the conventional non-punctured scheme. Both models 
are shown side by side with performance comparisons. In Section IV, we apply the punctured AR process 
to model the wireless channel. The non-punctured scheme is also presented and compared. Section V 
concludes our work. 

II. Punctured Autoregressive Modeling 
A conventional autoregressive (AR) process nx  is defined as follows: 

 nnn exx 2
1 1 ρσρ −+= − , L,2,1=n  (1) 

where n  is the time index of the process, ρ  describes the dependency of the sample at time n  with the 

previous sample at time 1−n , 2σ  is the variance of the process nx , and ne  is a Gaussian random 

variable with mean 0  and variance 1 to characterize the random nature of the process. 



Consider the case where more than one AR processes are interleaved together such as shown in Figure 1 
(a). At time instant 1, AR process nx  takes place; at time instant 2, AR process ny  takes place; and so on. 

Conventional method to train two sets of AR parameters of sequences nx  and ny  is by splitting the single 
process in Figure 1 (a) to two separate processes as shown in Figure 1 (b) and Figure 1 (c). Each one of 
the processes represents the training sequence of nx  or ny  regardless of the time index associated with 
each sample. For example, the sequence in Figure 1 (b) is used as if samples are 

 987654321
~~~~~~~~~ xxxxxxxxx  (2) 

where 11
~ xx = , 32

~ xx = , and so on. 

x1 y2 x3 x4 x5 x6 y7 y8 x9 y10 x11 x12 x13 y14 …
x1 x3 x4 x5 x6 x9 x11 x12 x13 …

y2 y7 y8 y10 y14 …(a)

(b)

(c)  
Figure 1. Two interleaved autoregressive processes nx  and ny : (a) the interleaved process; (b) 

autoregressive process nx ; (c) autoregressive process ny . 

To synthesize samples using this model, two separate AR processes are generated with parameters trained 
by nx~  and ny~ . Synthetic  samples generated by parameters trained by nx~  are taken one after the other to 

form the final synthetic process. Synthetic samples generated by parameters trained by ny~  are formed in a 
similar way. In brief, “no synthetic samples are skipped”. 
It can be seen that the conventional method does not take into account the timing information of the two 
processes in both the training and synthesis stages. To consider the timing information, we propose to 
train and synthesize the AR processes as follows (Figure 2). First split the single process in Figure 2 (a) to 
two separate processes as shown in Figure 2 (b) and Figure 2 (c). Notice that the timing information is 
utilized while leaving the sample of nx  blank if at some particular time instance the original process is 

with the other process ny  (Figure 2 (b)). Similarly, the sample of ny  is blank if at some time instance the 

original process is with the other process nx  (Figure 2 (c)). 

x1 _ x3 x4 x5 x6 _ _ x9 _ x11 x12 x13 _ …

_ y2 _ _ _ _ y7 y8 _ y10 _ _ _ y14 …
x1 y2 x3 x4 x5 x6 y7 y8 x9 y10 x11 x12 x13 y14 …

(a)

(b)

(c)  
Figure 2. Two interleaved autoregressive processes nx  and ny : (a) the interleaved process; (b) punctured 

autoregressive process nx ; (c) punctured autoregressive process ny . 

To train the punctured AR processes, we find the value Xρ~  of the process 987654321
~~~~~~~~~ xxxxxxxxx . We also 

construct the histogram of the sample spacing. For example in Figure 2 (b), the histogram has values [5, 
2, 1] at spacing [1, 2, 3]. Recall that in the simplest case where all the samples are adjacent to each other, 
the histogram has values [8, 0, 0] at spacing [1, 2, 3]. The Xρ  of the process in Figure 2 (b) can be found 
by solving the following equation: 

 ( ) X
XXX ρ

ρρρ ~
125

125 321

=
++

++  (3) 



The value of Yρ  in Figure 2 (c) can be solved in the same way. 

To synthesize samples using this model, two separate AR processes are generated by Xρ  and Yρ . The 
final synthetic process is formed by some means of multiplexing/modulation of the two synthetic 
processes. Samples are not taken one after the other but with consideration of how separate the samples of 
the same type are. In brief, “some synthetic samples are skipped”. Punctured AR processes can be 
modulated by different processes. In this paper, we specifically consider the Markov process.  

III. Variable Bit Rate Video Traffic Modeling 
1. Doubly Markov modulated AR processes: Punctured and Conventional 
Before we proceed to the proposed model for VBR video traffic, let us briefly describe the method 
proposed by [17] with which we will compare (Figure 3). The model comprises of two layers of Markov 
process. Without loss of generality, we consider two frame types, I and P, in this paper. The doubly 
Markov process models I and P frame transitions, as well as different frame activities. The outer Markov 
process describes how I and P frames transit. The frame type can be further categorized into different 
activity levels. Frames of higher activity level consume more number of bits, while frames of lower 
activity level consume less number of bits. The inner Markov process describes how the frames of 
different activity levels transit. This model is not constrained by a fixed GOP structure. There are six 
states in total, namely, I frame in high activity level, I frame in medium activity level, I frame in low 
activity level, P frame in high activity level, P frame in medium activity level, and P frame in low activity 
level. 
Each state is modeled as an AR process with different AR parameters. We can consider this as a slightly 
more complex process than the one described in Figure 1 of Section II. There are two states in Figure 1 
(a) of Section II while there are six states in this model. The AR parameters are trained in the way 
described in Figure 1 of Section II in a conventional non-punctured manner. The synthetic trace is 
generated by procedures described in Section II as well.  
To simply the model, the inner Markov process of I frames is characterized by initial probabilities of three 
activity levels only. Since I frames are usually far apart in a video sequence, they do not need to modeled 
as a Markov process. Such simplification will have similar performance as the full model. We call this 
model Method 1, as shown in Figure 3 (a), for later discussion. 
We propose to model the VBR video traffic as a doubly Markov modulated punctured AR process. This 
new model explicitly considers the timing information between two frames of the same state. Again, this 
is a slightly more complex process than the one described in Figure 2. There are two states in Figure 2 (a) 
of Section II while there are six states in this model. The AR parameters are trained in the way described 
in Figure 2 of Section II in a punctured manner. The synthetic trace is generated by procedures described 
in Section II as well. We call this model Method 2, as shown in Figure 3 (b), for later discussion. 
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Figure 3. Models for VBR video traffic— (a) Method 1: Doubly Markov modulated AR process; (b) Method 
2: Doubly Markov modulated punctured AR process. 

2. Experiment 
We now compare the performance of the non-punctured Method 1 with the proposed punctured Method 
2. To evaluate the performance of the models, we consider four performance metrics: (1) first order 
statistics by means of the quantile -quantile (Q-Q) plot; (2) second order statistics by means of the auto-
correlation function (ACF); (3) LRD property by means of the Hurst parameter from the range/standard 



deviation (R/S) plot; and (4) queuing behavior by means of the packet loss rate and the queuing delay. 
Definitions of the performance metrics can be found in [2]-[4]. 
The experiment setting is as follows. Two different types of TV programs are recorded: “news” as shown 
in Figure 4 (a) and “talk show” as shown in Figure 4 (b). The two TV programs are encoded using video 
compression codec H.263 to generate the real video traces. Both of them are encoded with frame rate of 
15 frames/sec and with duration of 30 minutes each. The video trace of the clip “news” is shown in Figure 
5 (a) and (b) with different scales. The video traces are then fed into both models: Method 1 and Method 
2 to generate synthetic traces. The performances of the two models are evaluated. 

  
(a) (b) 

Figure 4. Test videos: (a) news; (b) talk show 
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Figure 5. Sample traces from the TV program “news”: (a) a 200 second trace; (b) a 20 second trace. 
The performance comparison is summarized in Table  1. MSE refers to mean square error compared to the 
real trace. It can be seen that the proposed Method 2 outperforms Method 1 in all five aspects. The MSE 
improvement is computed by |(MSE of Method 2) – (MSE of Method 1)| / (MSE of Method 1). Detailed 
discussion associated with each performance metric will be presented later. 

Table 1 Summary of performance comparison between modeling methods Method 1 and Method 2 

 MSE of  
Q-Q plot 

MSE of  
ACF 

Hurst 
parameter 

MSE of  
packet loss rate 

MSE of 
queuing delay 

Real   0.2530   

Method 1 1.2048e+7 1.1126e+14 0.1538 
(98e-4 in SE) 

9.7846e-4 4.6553e-4 

Method 2 0.1747e+7 0.4054e+14 0.2725 
(3.8025e-4 in SE) 

9.6003e-4 3.4044e-4 

MSE improvement 85.50% 63.56% 96.12% 1.88% 26.87% 
Figure 6 (a)(b) shows the performance of both models in terms of first and second order statistics. The 
first order statistics in Figure 6 (a) is shown by the Q-Q plot. The Q-Q plot is constructed by a pair of 
cumulative distribution functions (CDF). The closer one CDF is to the other CDF in one pair, the more 
the curve will look like a straight line xy = . In Figure 6 (a), a dotted straight line is plotted as a 
reference. We have two pairs of CDF to compare: the synthetic trace by Method 1 with respect to the real 
video trace and the synthetic trace by Method 2 with respect to the real video trace. The dashed-dotted 
curve in Figure 6 (a) refers to the first pair. The solid curve in Figure 6 (a) refers to the second pair. It is 



shown that the curve of Method 2 is closer to the reference dotted straight line than the curve of Method 
1. 
The second order statistics in Figure 6 (b) is shown by the ACF. The dotted curve in Figure 6 (b) refers to 
the ACF of the real video trace. The dashed-dotted curve in Figure 6 (b) refers to the ACF of the synthetic 
trace by Method 1. The solid curve in Figure 6 (b) refers to the ACF of the synthetic trace by Method 2. It 
is shown that the curve of Method 2 is closer to the reference curve than the curve of Method 1. 
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Figure 6. First and second order statistics of the synthetic traces generated by Method 1 and Method 2 with 
respect to the real video trace of the clip “news”. (a) First order statistics: Q-Q plot; (b) Second order 

statistics: ACF. 
The LRD property in Figure 7 is shown by means of the Hurst parameter, which is the slope of the linear 
regression line of the points in a R/S plot. Figure 7 (a) shows the R/S plot of the real video trace. The 
linear regression line is shown as a dotted line. Figure 7 (b) shows the R/S plot of the synthetic trace by 
Method 1. Figure 7 (c) shows the R/S plot of the synthetic trace by Method 2. It is shown that the 
synthetic trace by Method 2 has closer Hurst parameter value to the real video trace than the synthetic 
trace by Method 1. 
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Figure 7. LRD properties of three traces by Hurst parameter from the R/S plots: (a) real video trace; (b) 
synthetic trace by Method 1; (c) synthetic trace by Method 2 

The queuing behavior of the traces is evaluated by means of the packet loss rate and the queuing delay. 
Packet loss rate and queuing delay are measured at different drain rates and buffer sizes. The network is a 
leaky bucket with drain rate R  and time to drain RM , where M  is the buffer size. The queuing 
performance of the real trace is shown in Figure 8. The queuing performances of the synthetic traces by 
both Method 1 and Method 2 have similar look. However, the synthetic trace by Method 2 has smaller 
MSE in both the packet loss rate and the delay than the synthetic trace by Method 1 (Table 1).  



  
(a) (b) 

Figure 8. Queuing behavior of the real video trace: (a) packet loss rate; (b) queuing delay. 

IV. Wireless Channel Modeling 
In this paper, we model in particular the bit error rates (BER) of the channel at different time instances. 
Unlike other channel modeling work, which models the channel with information such as the SNR of the 
received signal, speed of the mobile unit, channel modulation and coding scheme, etc., we model the 
channel solely from the trace of the bit error rates. To evaluate the models, we not only examine the 
statistics of the synthetic traces but also the queuing behaviors of the traces with ARQ as the error control 
scheme. We present two models with variations in the underlying AR processes: punctured and non-
punctured. 

1. Markov modulated AR processes: Punctured and Non-Punctured 
The BER at any time instance can be categorized as high, medium, or low. The three error rate states: 
high, medium, and low, are considered as three states in a Markov process with certain initial 
probabilities and transition probabilities. At each state, the BER is modeled as an AR process. There are 
three AR processes modulated together by a single Markov process. The Markov modulated non-
punctured and punctured AR processes are illustrated in Figure 9 (a)(b). We call the conventional non-
punctured Markov modulated AR process Method 1 and proposed Markov modulated punctured AR 
process Method 2. The training and synthesis procedures are described in Section II with number of AR 
processes three. 
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Figure 9. Models for the channel— (a) Method 1: Markov modulated AR process; (b) Method 2: Markov 

modulated punctured AR process 

2. Experiment 
A sample trace of BER in time is shown in Figure 10, which is a Rayleigh fading channel [21]. 
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Figure 10. Sample trace of the wireless channel in BER over time. 

The performance comparison is summarized in Table  1. It can be seen that the proposed Method 2 
outperforms Method 1 in the Hurst parameter and the queuing behavior. Method 2 does not perform as 
well as Method 1 in terms of first and second order statistics. Since we are more interested in the wireless 
network performance, we should concentrate more on the queuing behavior. Detailed discussions 
associated with each performance metric will be presented later. 

Table 2 Summary of performance comparison between modeling methods Method 1 and Method 2 

 MSE of  
Q-Q plot 

MSE of  
ACF 

Hurst 
parameter 

MSE of  
packet loss rate 

MSE of 
queuing delay 

Real   0.0727   

Method 1 0.0071 2.7035e-7 0.1349 
(0.0039 in SE) 

9e-4 13e-4 

Method 2 0.0276 15.882e-7 0.1173 
(0.0020 in SE) 

4.1315e-4 3.5550e-4 

MSE improvement -288.73% -487.46% 48.72% 78.26% 72.65% 

Figure 11 shows the first and second order statistics of the synthetic traces generated by Method 1 and 
Method 2. The straight dotted line in Figure 11 (a) is the reference. The dashed-dotted curve in Figure 11 
(a) refers to the first pair of the synthetic trace by Method 1 respect to the real trace. The solid curve in 
Figure 11 (a) refers to the second pair of the synthetic trace by Method 2 respect to the real trace. It is 
shown that the curve of the synthetic trace generated by Method 2 strays further away from the reference 
line than the curve of the synthetic trace generated by Method 1.  
The dotted curve in Figure 11 (b) refers to the ACF of the real trace. The dashed-dotted curve in Figure 
11 (b) refers to the ACF of synthetic trace by Method 1. The solid curve in Figure 11 (b) refers to the 
ACF of synthetic trace by Method 2. In Figure 11 (b), both ACF curves of Method 1 and Method 2 are 
close to the ACF curve of the real trace. 
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Figure 11. First and second order statistics of synthetic traces generated by Method 1 and Method 2 with 
respect to the real trace of the wireless channel. (a) First or der statistics by Q-Q plot; (b) Second order 

statistics by ACF. 



Figure 12 (a) shows the R/S plot of the real trace. The linear regression line is shown as the dotted line. 
Figure 12 (b) shows the R/S plot of trace by Method 1. Figure 12 (c) shows the R/S plot of trace by 
Method 2. It is shown that the synthetic trace by Method 2 has closer Hurst parameter value to the real 
trace than the synthetic trace by Method 1. 
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Figure 12. R/S plots of three traces: (a) real trace; (b) synthetic trace by Method 1; (c) synthetic trace by 
Method 2. 

If ARQ is applied as the error control mechanism, we can derive the data packet service rate of the packet 
[19][20]. The packet error rate PER is defined as: 

 [ ]nBERPER −−= 11  (4) 

where n  is the size of a packet in bits. The data packet service rate is then: 

 [ ]µPERRc −= 1  (5) 

where 1−µ  is the frame interval. Note that the frame here does not refer to the video frame (Figure 13). 
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Figure 13. ARQ frame structure. 

We can further analyze the queuing behavior of the data packet service rate derived from the BER trace. 
The queuing performance of the real trace is shown in Figure 14. The queuing performances of the 
synthetic traces of both Method 1 and Method 2 have similar look. However, the synthetic trace by 
Method 2 has smaller MSE in both the packet loss rate and the delay than the synthetic trace by Method 1 
(Table 2). 

  
(a) (b) 

Figure 14. Queuing behavior of the real trace of the wireless channel: (a) packet loss rate; (b) queuing delay. 



V. Conclusion 
We proposed a new punctured AR processes to model both the video traffic and the wireless channel. The 
punctured AR processes are modulated by Markov processes. The punctured AR processes explicitly 
consider the timing information between samples of each state. Thus, it outperforms the conventional 
approach in VBR video traffic modeling as well as the wireless channel modeling. A good set of 
performance metrics are experimented showing the novelty of the proposed model in different aspects, 
especially in the queuing behavior. 
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