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Summary

Video transport over error-prone channels may result
in loss or erroneous decoding of the video data.
Error concealment is an effective mechanism to
reconstruct the video data. In this paper, we review
error-concealment methods and introduce a new
framework, which we refer to as second-generation
error concealment. All the error-concealment
methods reconstruct the lost video data by making
use of certain a priori knowledge about the video
content. First-generation error concealment builds
such a priori in a heuristic manner. The proposed
second-generation error concealment builds the a
priori by modeling the statistics of the video
content explicitly, typically in the region of interest
(ROI). Context-based models are trained with the
correctly received video data and then used to
replenish the lost video data. Trained models capture
the statistics of the video content and thus
reconstruct the lost video data better than
reconstruction by heuristics. A new dynamic model
‘updating principal components’ (UPC) is proposed
as a model for second-generation error concealment.
UPC can be applied to pixel values to conceal loss
of pixel data. In addition, UPC can be applied to
motion vectors, which results in ‘updating
eigenflows’ (U-Eigenflow), to conceal loss of
motion vectors. With UPC applied to both pixel
values and motion vectors, hybrid temporal/spatial
error concealment can be achieved. The proposed
second-generation error-concealment method
provides superior performances to first-generation
error-concealment methods. Copyright  2002 John
Wiley & Sons, Ltd.
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1. Introduction

When transmitting video data over error-prone chan-
nels, the video data may suffer from losses or
errors. Error concealment is an effective way to
recover the lost information at the decoder. Compared
to other error-control mechanisms such as forward
error correction (FEC) [1] and automatic retransmis-
sion request (ARQ) [2], error concealment has the
advantages of not consuming extra bandwidth as
FEC and not introducing retransmission delay as
ARQ. On the other hand, error concealment can
be used to supplement FEC and ARQ when both
FEC and ARQ fail to overcome the transmission
errors [3].

Error concealment is performed after error detec-
tion. That is, error concealment needs to be pre-
ceded with some error-detection mechanism to know
where the errors in the decoded video are located.
For example, error detection provides information
as which part of the received video bitstream is
corrupted. Various methods, such as checking the
video bitstream syntax, monitoring the packet num-
bers of the received video data, and so on, can
be applied [4,5]. In this paper, we assume that the
errors are located and that such information is avail-
able to us. We focus on the reconstruction for the
lost video.

In general, spatial, spectral, or temporal redundan-
cies of the received video data are utilized to perform
error concealment [6]. Hybrid or dynamic switching
of spatial/temporal error-concealment methods is also
possible [7–9]. In this paper, we will review these
error-concealment methods.

All error-concealment methods reconstruct the lost
video content by making use of some a priori
knowledge about the video content. Most existing

error-concealment methods, which we refer to as first-
generation error concealment, build such a priori in
a heuristic manner by assuming smoothness or con-
tinuity of the pixel values, and so on. The proposed
second-generation error concealment methods train
context-based models as the a priori. Methods of such
a framework have advantages over first-generation
error concealment, as the context-based model is cre-
ated specifically for the video content and hence can
capture the statistical variations of the content more
effectively.

It is important for a second-generation error-con-
cealment approach to choose a model that can repre-
sent the video content effectively. Principal compo-
nent analysis (PCA) has long been used to model
visual content of images. The most well-known
example is using eigenfaces to represent human
faces [10]. In this paper, we introduce a new dynamic
model ‘updating principal components’ (UPC) [11]
for second-generation error concealment. UPC is very
suitable for error-concealment applications in that it
updates with nonstationary video data. UPC can be
applied to pixel values in regions of interest (ROI)
in video frames. In addition, UPC can be applied
to motion vectors (MVs), which results in ‘updating
eigenflows’ (U-Eigenflow ). With both UPC for pixel
values and UPC for MVs, hybrid temporal/spatial
error concealment can be achieved.

This paper is organized as follows. In Section
2, we review first-generation error concealment by
providing a survey of conventional error-concealment
methods. We introduce the new framework of second-
generation error concealment in Section 3. A detailed
description of using UPC for error concealment is
provided in Section 4. Both UPC for pixel values
and for MVs will be discussed. We conclude in
Section 5.
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2. First-generation Error Concealment

Error concealment relies on some a priori to recon-
struct the lost video content. First-generation error-
concealment methods build the a priori for recon-
structing the lost video content in a heuristic manner.
A simple example is to assume the pixel values
to be smooth across the boundary of the lost and
retained regions. Methods of this framework assume
smoothness or continuity of the video data in different
domains such as spatial, spectral, temporal, or some
transforms of these domains. To recover lost data with
the smoothness assumption, interpolation or optimiza-
tion based on certain objective functions are often
used. Since first-generation error-concealment meth-
ods perform error concealment with such heuristic
knowledge, we also call them heuristic-based error
concealment.

According to the domains in which smoothness
assumptions are applied, first-generation error-
concealment methods fall into two categories:
spatial/spectral and temporal, as follows.

2.1. Spatial/spectral Error Concealment

Spatial error concealment assumes that images are
smooth in nature. Lost image content can be recon-
structed by interpolation of the neighboring pix-
els. Work by Wang et al. [12] and Hemami and
Meng [13] are earlier examples of using spatial inter-
polation to accomplish the task of error concealment.
However, spatial interpolation approaches often suf-
fer from blurring in the edges of the image. Sev-
eral approaches have been proposed to solve this
problem. Suh and Ho [14] proposed to find edges
first and interpolate along the edge directions. Zhu
et al. [15] proposed to use a second-order derivative-
based method to reduce the blur across the edge
while enforcing the smoothness along the edge. Zeng
and Liu [16] proposed to perform directional inter-
polation based on the neighbor’s geometric structure.
Robie and Mersereau [17] proposed to use the Hough
transform to determine the best orientation for either
directional filtering or interpolation. Interpolation can
be applied not only to the spatial domain but also
to the spectral domain such as the discrete cosine
transform (DCT) domain, as proposed by Chung
et al. [18]. Some other methods are based on pro-
jection onto convex sets (POCS), which iteratively
uses the smoothness assumption and pixel value or
DCT coefficient range information for error conceal-
ment [19,20].

An extension to the assumption that natural images
are smooth and the values are continuous spatially or
spectrally is to assume that images can be modeled
by Markov random fields (MRF) [21]. MRF-based
error-concealment methods were first proposed by
Salama et al. [22–24]. Later Shirani et al. [25] pro-
posed to adaptively adjust the MRF model parameters
without increasing the model order and showed that
the adaptive MRF outperformed conventional MRF
methods. Multiscale MRF (MMRF) by Zhang and
Ma [26] is another extension of MRF. MMRF mod-
els image blocks instead of image pixels. Work by
Zhang et al. [27] models the DCT coefficients as a
first-order Markov process and uses Laplacian dis-
tribution to model the density function of the DCT
coefficients.

2.2. Temporal Error Concealment

Temporal error-concealment methods use the tempo-
ral neighbor, that is, the previous frame or the next
frame, to conceal the loss of the current frame. Tem-
poral error-concealment methods assume the video
content to be smooth or continuous in time. A basic
approach is to replace the lost block of the cur-
rent frame with the content of the previous frame
at the same block location. An advanced approach
is to replace the lost block with the content of the
previous frame at the motion-compensated location.
This advanced temporal error-concealment scheme
needs motion vector information to find the cor-
responding block location in the previous frame.
However, in the process of transmission, MVs can
be lost as well. Without MVs, temporal error con-
cealment with motion compensation cannot provide
satisfactory reconstruction results. Therefore, tech-
niques to estimate the lost MVs are explored. Bound-
ary matching algorithm (BMA) proposed by Lam
et al. [28] is a popular method to estimate lost MVs.
Extensions to BMA can be found in References [29
to 32]. Decoder motion vector estimation (DMVE)
proposed by Zhang et al. [33,34] treats the loss of
MVs as a motion estimation problem, in the decoder
instead of in the encoder. Motion field interpola-
tion (MFI) and its extensions proposed by Al-Mualla
et al. [35,36] estimate the MVs from neighbors with
a single or multiple reference frames. Furthermore,
Lee et al. [37] extended translational block motion to
affine transform for motion-compensated error con-
cealment.
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3. Second-generation Error Concealment

Second-generation error concealment goes beyond
heuristics. A more sophisticated way to obtain the
a priori for error concealment is through training.
Second-generation error concealment builds the a
priori by training a context-based model for an object
or ROI and uses this trained model to recover the lost
data. With object-based video coding standards such
as MPEG-4 [38], the video bitstream already contains
object, or ROI, information, which makes second-
generation error concealment possible. In cases in
which the ROI information is not available in the
video bitstream, object trackers [39] can be used to
extract the ROI information. Figure 1 shows three
video frames with face regions tracked and specified
as the ROI. Since the context-based model is created
specifically for the object, it captures the statistical
variations of the object effectively and yields good
concealment results. Since second-generation error
concealment methods train and apply context-based
models for error concealment, we also call them
model-based error concealment.

As mentioned, PCA has been widely used to model
image statistics. Face images, the most common
examples of ROI, especially in video telephony or
videoconferencing, can be modeled well with PCA.
Figure 2 shows an example of using PCA with a
mean and two eigenvectors to represent face images.
The mean captures the average face appearance and
the eigenvectors characterize variations such as pose
or expression variations.

With PCA as the model to describe the object
statistics, we can train the PCA model, that is, the
mean and the eigenvectors, with pixel values in the
ROI from correctly received frames. Then, we project
any corrupted ROI to the PCA model to recover the
lost data in the corrupted ROI. Using face images

(a) (b) (c)

Fig. 2. PCA for face images: (a) mean; (b) first
eigenvector; and (c) second eigenvector.

1

2 3

Project

Reconstruct

Fig. 3. Error concealment with PCA.

as an example of ROI, we illustrate such an error-
concealment scheme in Figure 3. The PCA model
shown in ©2 is trained in advance. The corrupted
ROI shown in ©1 is projected to the PCA model to
get the recovered ROI as shown in ©3 .

POCS can be used in the second-generation error-
concealment scheme based on PCA modeling of the
ROI. Error concealment based on POCS formulates
each constraint about the unknowns as a convex
set. The optimal solution is obtained by iteratively
projecting the previous solution onto each convex
set. The projections refer to (i) projecting the data
with some losses to the PCA model that is built on
error-free data, and (ii) replacing the projection result
with the correctly received data in the corresponding
region. Illustration of POCS-based error concealment

InterviewAkiyo

(a) (b) (c)

Fig. 1. Frames from sequences (a) ‘Akiyo’ and (b), (c) ‘Interview’, with objects/ROI specified.
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Fig. 4. POCS-based error concealment with PCA.

with PCA is shown in Figure 4. The PCA model
shown in ©2 is pretrained with correctly received
ROI. Any corrupted ROI in ©1 is projected to the
PCA model to obtain the recovered ROI shown in
©3 . After the reconstructed ROI in ©3 is obtained,
the region in ©3 in which the data was correctly
received is replaced with the correctly received data.
This result is projected again to the PCA model and
so on until the reconstruction result is satisfactory.

In addition to PCA that can represent the ROI
statistics of the training data, ‘mixture of principal
components’ (MPC) [40] can model the multimodal
characteristic of the data. ‘Updating mixture of prin-
cipal components’ (UMPC) [11] can further adapt the
model itself with the nonstationary characteristics of
the ROI content. Focusing on the dynamic adapting
nature of the UMPC model, we will elaborate on a
simplified case of the UMPC model with a single-
mixture component, which we refer to as ‘updating
principal components’ (UPC). We will illustrate in the
next session about how to use UPC as the model for
second-generation error concealment to recover the
lost video data.

In addition to PCA, MRF model can be used for
model-based error concealment. Shirani et al. [41]
proposed to use an appropriate form of the MRF to
model the shape information of a MPEG-4 video.
The MRF parameters are obtained from the edge
directions of the neighbors. A maximum a posteriori
(MAP) estimation gives the most likely reconstruc-
tion result using such an MRF model. Furthermore,
model-based error concealment can use models that
were originally proposed for model-based video cod-
ing. These include 3-D model-based approaches in
which a 3-D model of the object appearance is built
before coding, and 2-D model-based approaches that
use deformable segmentation of the image and the
affine motion model. A good overview of model-
based video coding can be obtained by Aizawa and
Huang [42] and Pearson [43].

Temporal model-based error concealment is also
possible. Models can be built for MVs. The recon-
structed MVs are then used for motion compensation.
For example, eigenflows proposed in Reference [44]
can be used to model MVs and reconstruct any
lost MV. We will detail in the next session how to
update eigenflows, which we refer to as ‘updating
eigenflows’ (U-Eigenflow), for temporal error con-
cealment.

4. Error Concealment with Updating
Principal Components (UPC)

It is important for a second-generation error-conceal-
ment method to choose a model that can represent the
video content effectively. We propose to use UPC as
the model for error concealment because UPC adapts
itself to the nonstationary video data. Section 4.1 will
describe the UPC model.

Video sequences can be either Intra or Inter coded
with coding standards such as MPEG-4 [38] and
H.263 [45]. The coded bitstream consists of header
information, MVs, DCT coefficients, and so on.
Therefore, loss of video data could be loss of any
of the above information or a combination of them.
In this paper, we perform error concealment for the
loss of MVs and/or DCT coefficients.

In the Intra coding scenario, DCT coefficients
could be lost in the transmission process. We can use
UPC to reconstruct the pixel values in the ROI of a
corrupted video frame. That is, spatial error conceal-
ment with UPC for pixel values in the ROI is per-
formed (UPC for ROI). We will describe more about
UPC for ROI for Intra coded videos in Section 4.2.

In the Inter coding scenario, both MVs and DCT
coefficients could be lost in the transmission process.
We can use UPC to reconstruct MVs of a frame. We
call UPC applied to MVs, U-Eigenflow. The recon-
structed MVs are then used for motion compensation.
That is, U-Eigenflow for MVs is performed for a tem-
poral error-concealment scheme to recover the lost
MVs. This temporal error-concealment scheme can be
used together with spatial error concealment to form
a hybrid temporal/spatial error-concealment scheme.
After motion compensation, UPC is further applied to
pixel values in the ROI if the DCT coefficients inside
this ROI are lost. The hybrid temporal/spatial error-
concealment scheme with U-Eigenflow for MVs and
UPC for ROI for Inter coded videos will be detailed
in Section 4.3.

Copyright  2002 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2002; 2:607–624
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4.1. Updating Principal Components (UPC)

Given a set of data, we try to model the data with
minimum representation error. The data given can be
nonstationary, that is, the stochastic properties of the
data are time-varying as shown in Figure 5(a). For
example, at time instant n, the data are distributed
as shown by Figure 5(a). At time instant n0, the data
are distributed as shown by Figure 5(b). We see that
the mean of the data is shifting and that the most
representative axes of the data are also rotating.

At any time instant, we attempt to represent the
data as a weighted sum of the mean and the prin-
cipal axes. As time proceeds, the model changes its
mean and principal axes as shown in Figure 6, from
Figure 6(a) and (b), so that it always models the
current data effectively. To accomplish this, the repre-
sentation/reconstruction error of the model evaluated
at time instant n should have less contribution from
the data that are further away in time from the current
time instant n.

The optimization objective function at time instant
n, which tries to minimize the sum of weighted

(a) (b)
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Fig. 5. Nonstationary data at (a) time n and (b) time n0.
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Fig. 6. UPC for nonstationary data at (a) time n and (b)
time n0.

reconstruction errors of all data, can be written as

min
m�n�,U�n�
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∥∥∥∥∥∥∥∥∥∥∥∥∥
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∥∥∥∥∥∥∥∥∥∥∥∥∥

2

�1�

The notations are organized as follows:

n : Current time index
D : Dimension of the data vector
P : Number of eigenvectors
xn�i : Data vector at time n� i, where i represents

how far away the data are from the current
time instant

m�n� : Mean at time n
u�n�

k : kth eigenvector at time n
U�n� : Matrix with P columns of u�n�

k , k D 1 ¾ P
x̂n�i : Reconstruction of xn�i

˛ : Decay factor, 0 < ˛ < 1

The reconstruction errors contributed by previous
data are weighted by powers of the decay factor ˛.
The powers are determined by how far away this
sample of data is from the current time instant. At
any time instant n, we try to reestimate or update the
parameter (mean or eigenvector) given the parameter
estimated at the previous time instant n� 1 and
the new data xn, by minimizing Equation (1). The
solution of mean m�n� that minimizes Equation (1) at
time n is

m�n� D ˛m�n�1� C �1� ˛� xn �2�

We can see that m�n� is obtained from the previous
estimated m�n�1� and the current input xn. The decay
factor ˛ tells how fast the new estimation m�n� adapts
to the new data xn. The smaller the decay factor,
the faster the estimated m�n� adapts to the new data.
Similarly, the covariance matrix C�n� that minimizes
Equation (1) at time n is

C�n� D ˛C�n�1� C �1� ˛�[�xn �m�n���xn �m�n��T]
�3�

Again, C�n� is obtained by the previous estimated
C�n�1� and the current input xn. The decay factor ˛
controls how fast the eigenvectors adapt to the new
data xn. Interested readers can read the appendix in
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Section A1 for ‘updating mixture of principal com-
ponents’ (UMPC), a more general case of UPC with
the number of mixture components greater than one.

4.2. Spatial Error Concealment with UPC

4.2.1. UPC for ROI

As mentioned in Section 3, if ROI information is
available, second-generation error concealment can
be applied to pixel values in the ROI with the trained
model. In this section, we consider spatial error con-
cealment for Intra coded videos using UPC for ROI.

When the video decoder receives a video frame
with an error-free ROI, it can use the data in the ROI
to update the existing UPC model with the processes
described in Section 4.1. In this paper, all available
error-free ROI are used to update the UPC model.
Less frequent update to reduce the computational
complexity is possible at the expense of less adaptiv-
ity. In the experiment, the time consumed on an Intel
Pentium III 650 PC to update the UPC model, with
six eigenvectors, is about 100 ms per ROI. Practical
system design can consider updating the UPC model
with the incoming error-free ROI when the error to
represent this ROI with the current UPC model is
larger than a threshold.

When the video decoder receives a frame of video
with corrupted macroblocks (MBs) in the ROI, it uses
UPC to reconstruct the pixel values in this corrupted
ROI. We adopt the POCS- based error-concealment
scheme as illustrated in Figure 4. Iterations of projec-
tions and replacements are repeated until the result is
satisfactory. As to reconstructing the corrupted ROI
with the UPC model based on POCS, the time con-
sumed on an Intel Pentium III 650 PC is almost
negligible with 5 ms per ROI.

Error concealment for Intra coded videos is sum-
marized in Table I.

4.2.2. Experiment

Two test video sequences ‘Akiyo’ and ‘Interview’ are
used. Both video sequences are in quarter common

Good Bad

1−p 1−q
p

q

Fig. 7. Two-state Markov chain for error simulation.

Time 20 Time 22 Time 60

Mean

First
eigenvector

Second
eigenvector

Third
eigenvector

Fourth
eigenvector

Fifth
eigenvector

Sixth
eigenvector

Fig. 8. Updated means and eigenvectors at time instants
20, 22, and 60.

intermediate format (QCIF). The video codec used
in this paper is H.263 [45]. One sample frame of
‘Akiyo’ with ROI specified is shown in Figure 1(a),
and two frames of ‘Interview’ with ROI specified
are shown in Figure 1(b) and (c). Note that ‘Inter-
view’ consists of two different objects of character at

Table I. Error concealment for Intra coded videos: spatial error concealment with UPC for ROI.

Data lost Error concealment: training and reconstruction

Training for pixel values Reconstruction

DCT coefficients only Train UPC for ROI with ROI pixel
values from frames with correctly
received DCT coefficients

Apply UPC to corrupted ROI pixel
values if some DCT coefficients
in this ROI are lost

Copyright  2002 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2002; 2:607–624
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(a) (b) (c)

Fig. 9. Sample reconstructed frames of Intra coded ‘Akiyo’ with (a) no concealment; (b) concealment with spatial
interpolation; or (c) concealment with UPC for ROI.

different time instances. We use a two-state Markov
chain [46] to simulate the bursty error to corrupt
the DCT coefficients in MBs as shown in Figure 7.
‘Good’ and ‘Bad’ correspond to error-free and erro-
neous states, respectively. The overall error rate ε
is related to the transition probabilities p and q by
ε D p/�pC q�. We use ε D 0.1 and p D 0.01 in the
experiment. The UPC model used is with six eigen-
vectors, P D 6. In the error-concealment stage when
erroneous MBs are received, five iterations of POCS
are performed.

Figure 8 shows the means and eigenvectors of
UPC at three different time instants 20, 22, and
60 for the sequence ‘Interview’. Notice that there
is a character change at time instant 21. The first
character is in video frames from time 1 to 20 and
the second character is in video frames from time 21
to 80. We can see that UPC describes more about the
first character at time 20, as opposed to describing
more about the second character at time 60. The
UPC model shows a transition at time instant 22
as expected.

Figure 9 shows sample reconstructed frames of
Intra coded ‘Akiyo’ with no concealment, spatial
interpolation based on POCS, or second-generation
concealment with UPC for ROI based on POCS.
Spatial interpolation method interpolates the spatial
neighbors of the lost MBs to recover the pixel val-
ues. The white-bounded boxes in Figure 9 are to show
the ROI regions. All evaluations in peak signal-to-
noise ratio (PSNR) are calculated inside the ROI
region. Figure 10 shows the frame-by-frame PSNR
of the three methods. Figure 11 shows sample recon-
structed frames of Intra coded ‘Interview’ with the
same three methods. Figure 12 shows the frame-
by-frame PSNR of the three methods. The over-
all PSNR comparisons are shown in Figure 13 for
both sequences.
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0 60 120 180 240 300
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Fig. 10. Frame-by-frame PSNR of Intra coded ‘Akiyo’
with no concealment (none), concealment with spatial

interpolation, or concealment with UPC for ROI.

We can observe that the ones without error conceal-
ment, Figures 9(a) and 11(a), have bad visual quality.
The ones with spatial interpolation, Figures 9(b) and
11(b), provide some replenishment while missing the
detailed texture information in the lost regions of the
reconstructed ROI. Figures 9(c) and 11(c), which use
UPC for ROI, provide the best reconstruction results
among the three methods.

4.3. Hybrid Temporal/spatial Error Concealment
with UPC

4.3.1. U-Eigenflow for MVs and UPC for ROI

In the Inter coded video bitstream, MVs as well as
DCT coefficients can be lost. We apply U-Eigenflow
for MVs to reconstruct the lost MVs for tempo-
ral error concealment. In addition, we further apply
UPC for ROI for ROI that contain corrupted DCT
coefficients. Therefore, we propose a new hybrid
temporal/spatial error-concealment scheme with U-
Eigenflow for MVs and UPC for ROI for Inter
coded videos.
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(a) (b) (c)

Fig. 11. Sample reconstructed frames of Intra coded ‘Interview’ with (a) no concealment; (b) concealment with spatial
interpolation; or (c) concealment with UPC for ROI.
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Fig. 12. Frame-by-frame PSNR of Intra coded ‘Interview’
with no concealment (none), concealment with spatial

interpolation, or concealment with UPC for ROI.

When the video decoder receives an Intra coded
video frame with error-free ROI, it uses the data in
the ROI to update the existing UPC model. It is called
UPC for ROI . When the video decoder receives an
Inter coded video frame with all the MVs correct
inside, it uses the MVs to update the existing U-
Eigenflow. It is called U-Eigenflow for MVs .

When the video decoder receives a video frame
with lost MVs, it uses U-Eigenflow to reconstruct the
lost MVs. Motion compensation is followed using

the reconstructed MVs. If no MV is lost, motion
compensation uses the correctly received MVs. If
there are lost DCT coefficients inside the ROI, UPC
is further applied to the corrupted ROI. Both U-
Eigenflow for MVs and UPC for ROI constitute the
hybrid temporal/spatial error concealment for Inter
coded videos.

Error concealment for Inter coded videos is sum-
marized in Table II.

4.3.2. Experiment

The same two test video sequences ‘Akiyo’ and
‘Interview’ are used as in the Intra coded case. We
use the same two-state Markov chain to simulate
the bursty error to corrupt the DCT coefficients in
MBs. The parameters are ε D 0.1 and p D 0.01. As
to simulate the bursty error to corrupt the MVs, we
use ε D 0.05 and p D 0.005 assuming that MVs are
usually better protected than DCT coefficients.

U-Eigenflow for MVs and UPC for ROI both use
six eigenvectors, P D 6. Figure 14 shows the means
and the eigenvectors of U-Eigenflow at three different
time instants 20, 22, and 60 for the sequence ‘Inter-
view’. Notice again that there is a character change

Akiyo
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Fig. 13. Overall PSNR of Intra coded (a) ‘Akiyo’ and (b) ‘Interview’ with no concealment (none), concealment with spatial
interpolation, or concealment with UPC for ROI.
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Table II. Error concealment for Intercoded videos: hybrid temporal/spatial error concealment with U-Eigenflow for MVs/UPC for ROI.

Data lost Error concealment: training and reconstruction

Training Reconstruction

MVs in addition to DCT coefficients 1. Training for MVs—Train U-Eigenflow
for MVs with correctly received MVs

1. Retain the lost MVs by U-Eigenflow if
some MVs in a frame are lost

2. Training for pixel values—Train UPC
for ROI with ROI pixel values from
Intra frames with correctly received
DCT coefficients

2. Perform motion compensation for this
frame with the retained MVs from Step
1, or correctly received MVs

3. Apply UPC to ROI pixel values in the
motion-compensated frame if some
DCT coefficients in this ROI are lost

   

   

   

   

   

   

   

Time 20 Time 22 Time 60

Mean

First
eigenvector

Second
eigenvector

Third
eigenvector

Fourth
eigenvector

Fifth
eigenvector

Sixth
eigenvector

Fig. 14. Updated mean and eigenvectors of U-Eigenflow at time instants 20, 22, and 60.
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Fig. 15. MAD of reconstructed MVs of Inter coded (a) ‘Akiyo’ and (b) ‘Interview’ with spatial-nbr, temporal-nbr, or
U-Eigenflow for MVs.

at time instant 21. We can see that U-Eigenflow
describes more about the first character at time 20, as
opposed to describing more about the second char-
acter at time 60. The first character moves his head
and body a lot, while the second character moves
mainly with his head. The U-Eigenflow model shows
a transition at time instant 22.

The two MV reconstruction methods for compari-
son are ‘spatial-nbr’ and ‘temporal-nbr’. ‘Spatial-nbr’
reconstructs the lost MVs for the center MB by tak-
ing the median of the eight MVs of the neighboring
MBs. ‘Temporal-nbr’ copies the MV of the same cen-
ter MB from the previous frame. After MVs have
been reconstructed using these three methods, motion

Fig. 16. Sample reconstructed frame of Inter coded
‘Akiyo’ with U-Eigenflow for MVs and UPC for ROI.

compensation is performed. Finally, UPC for ROI is
applied to ROI pixel values if DCT coefficients in the
ROI are lost.

Figure 15(a) and (b) show the mean absolute
difference (MAD) of the MVs reconstructed by
these three methods for ‘Akiyo’ and ‘Interview’,
respectively. ‘Akiyo’ has little motion throughout the
sequence and all three methods can perform equally
well. Figure 15(b) shows that U-Eigenflow for MVs
performs the best among the three in ‘Interview’, in
which MVs are larger.

Let us look at some sample MVs and sample
reconstructed frames with the hybrid temporal/spatial
error concealment. As mentioned in the last para-
graph, ‘Akiyo’ has little motion and all three meth-
ods are equally good. Figure 16 shows the sample
reconstructed frame of Inter coded ‘Akiyo’ with U-
Eigenflow for MVs and UPC for ROI. Let us look
at the results of ‘Interview’. Figure 17 shows that
‘temporal-nbr’ and U-Eigenflow for MVs reconstruct
the MVs better than ‘spatial-nbr’. Figure 18 reflects
the performance differences of these three meth-
ods visually. Figure 19 shows that ‘spatial-nbr’ and
U-Eigenflow for MVs reconstruct the MVs better
than ‘temporal-nbr’. Figure 20 reflects the perfor-
mance differences of these three methods visually.
We can see that the face in Figure 20(b) has off-
set MBs.

 

     

(a) (b) (c) (d) (e)

Fig. 17. Sample MVs at time 19 of Inter coded ‘Interview’: (a) regions indicating corrupted MVs (black blocks); (b) real
MVs; (c) MVs reconstructed by spatial-nbr; (d) MVs reconstructed by temporal-nbr; and (e) MVs reconstructed by

U-Eigenflow for MVs.
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(a) (b) (c)

Fig. 18. Sample reconstructed frame at time 19 of Inter coded ‘Interview’ with MVs reconstructed by (a) spatial-nbr; (b)
temporal-nbr; and (c) U-Eigenflow for MVs, followed by UPC for ROI for all three MV reconstruction methods.

 

     

(a) (b) (c) (d) (e)

Fig. 19. Sample MVs at time 35 of Inter coded ‘Interview’: (a) regions indicating corrupted MVs (black blocks); (b) real
MVs; (c) MVs reconstructed by spatial-nbr; (d) MVs reconstructed by temporal-nbr; and (e) MVs reconstructed by

U-Eigenflow for MVs.

(a) (b) (c)

Fig. 20. Sample reconstructed frame at time 35 of Inter coded ‘Interview’ with MVs reconstructed by (a) spatial-nbr; (b)
temporal-nbr; and (c) U-Eigenflow for MVs, followed by UPC for ROI for all three MV reconstruction methods.
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Fig. 21. Frame-by-frame PSNR of Inter coded ‘Akiyo’
with MVs reconstructed by spatial-nbr, temporal-nbr, or
U-Eigenflow for MVs, followed by UPC for ROI for all

three MV reconstruction methods.
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Fig. 22. Frame-by-frame PSNR of Inter coded ‘Interview’
with MVs reconstructed by spatial-nbr, temporal-nbr, or
U-Eigenflow for MVs, followed by UPC for ROI for all

three MV reconstruction methods.
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Fig. 23. Overall PSNR of Inter coded (a) ‘Akiyo’ and (b) ‘Interview’ with MVs reconstructed by spatial-nbr, temporal-nbr,
or U-Eigenflow for MVs, followed by UPC for ROI for all three MV reconstruction methods.

Figures 21 and 22 show frame-by-frame PSNR
performance of these three methods. The overall
PSNR comparisons are shown in Figure 23 for
both sequences. The hybrid error concealment with
U-Eigenflow for MVs and UPC for ROI provides
promising results.

5. Conclusion

In this paper, we proposed a new second-
generation error-concealment framework. Second-
generation error-concealment methods train and
reconstruct the lost video content by context-based
models and thus provide better error-concealment
results than heuristic-based error-concealment meth-
ods. ‘Updating principal components’ (UPC) was
proposed to construct such models. UPC can be
applied to reconstruct the lost motion vectors (MVs)
as well as to replenish the corrupted pixel val-
ues in the region of interest (ROI). The pro-
posed hybrid temporal/spatial error concealment with
U-Eigenflow for MVs and UPC for ROI provides
superior performance to conventional first-generation
error-concealment methods.
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A1. Appendix

We can extend ‘updating principal components’
(UPC) to more than one mixture components by
modifying the objective function in Equation (1) as

min
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j
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The notations are organized as follows:

n : Current time index
D : Dimension of the data vector
M : Number of mixture components
P : Number of eigenvectors in each mixture

component
xi : Data vector at time i
m�n�

j : Mean of the jth mixture component esti-
mated at time n

u�n�
jk : kth eigenvector of the jth mixture compo-

nent estimated at time n
U�n�

j : Matrix with P columns of u�n�
jk , k D 1 ¾ P

x̂ij : Reconstruction of xi with mixture compo-
nent j

X̂i : Matrix with M columns of x̂ij, j D 1 ¾ M
wij : Weight of x̂ij to reconstruct xi

wi : Vector with M entries of wij

˛ : Decay factor, 0 < ˛ < 1
q, r : Index for the mixture component

The mean m�n�
q of mixture component q at time n is
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The covariance matrix C�n�
r of mixture component r

at time n is
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Finally, the solution for weights is
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where 1 D [1 Ð Ð Ð 1]T is an Mð 1 vector. The deriva-
tions of Equations (A2) to (A4) are described in the
following sections.

A1.1. Solution for Updating Mixture of Principal
Components

A1.1.1. Solution for the means

The optimization criterion in Equation (A1) can be
rewritten as

min
m�n�

q
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where X̂n�i is defined as
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We can see that Bj is the projection matrix that
projects data onto a subspace spanned by the eigen-
vectors U�n�

j . Aj is the projection matrix that projects
data onto a subspace that is orthogonal to the sub-
space spanned by the eigenvectors U�n�

j . Replacing
X̂n�i in Equation (A5) with Aj and Bj in Equation
(A6), we get
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Note that wT

n�iej D eT
j wn�i D wn�i,j. Let us expand

Equation (A7) and drop the terms that are indepen-
dent of m�n�

j to get
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To find the m�n�
q that minimizes the optimization cri-

terion, we take the derivatives of Equation (A8) with
respect to m�n�

q and set the result to zero.

1∑
iD0

˛i




�wn�i,qAT
q xn�i

C
M∑

jD1,j 6Dq

wn�i,qwn�i,j

Ð AT
q Ajm�n�

j C w2
n�i,qAT

q Aqm�n�
q

C
M∑

kD1

wn�i,qwn�i,kAT
q Bkxn�i



D 0

�A9�

We simplify Equation (A9) and obtain the solution
as follows:

m�n�
q D

1
1∑

iD0

˛iw2
n�i,q


 1∑

iD0

˛iwn�i,q

Ð

xn�i �

M∑
jD1,j 6Dq

wn�i,jx̂n�i,j






�A10�

Equation (A13) can also be written in a recur-
sive form:

m�n�
q D


1� w2

nq
1∑

iD0

˛iw2
n�i,q


m�n�1�

q

C




wnq
1∑

iD0

˛iw2
n�i,q




xn �

M∑
jD1,j 6Dq

wnjx̂nj




�A11�

A1.1.2. Solution for the eigenvectors

The optimization criterion in Equation (A1) can be
rewritten as

min
u�n�

rs

1
1∑

iD0

˛i

1∑
iD0

˛i

∥∥∥∥∥∥xn�i �
M∑

jD1

wn�i,j

Ð
[

m�n�
j C

P∑
kD1

[�xn�i �m�n�
j �Tu�n�

jk ]u�n�
jk

]∥∥∥∥∥∥∥∥∥∥

2

�A12�

Let us expand Equation (A12) and drop the terms that
are independent of u�n�

jk to get

min
u�n�

rs

1
1∑

iD0

˛i

1∑
iD0

˛i

Ð




�2xT
n�i

M∑
jD1

wn�i,j

Ð
M∑

kD1

�xn�i �m�n�
j �Tu�n�

jk u�n�
jk

C 2
M∑

jD1

M∑
aD1

wn�i,jwn�i,am�n�T

j

Ð
P∑

bD1

�xn�i �m�n�
a �Tu�n�

ab u�n�
ab

C
M∑

jD1

M∑
aD1

wn�i,jwn�i,a

Ð
P∑

kD1

P∑
bD1

[�xn�i �m�n�
j �Tu�n�

jk ]

Ð [�xn�i �m�n�
a �Tu�n�

ab ]�u�n�T

jk u�n�
ab �




�A13�

Now let us simply Equation (A13) with the knowl-
edge that eigenvectors of the same mixture compo-
nent are orthogonal to each other.

min
u�n�

rs

1
1∑

iD0

˛i

1∑
iD0

˛i
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Ð




�2
M∑

jD1

wn�i,j

M∑
kD1

[�xn�i �m�n�
j �Tu�n�

jk ]

Ð �xT
n�iu

�n�
jk �C 2

M∑
jD1

M∑
aD1

wn�i,jwn�i,a

Ð
P∑

bD1

[�xn�i �m�n�
a �Tu�n�

ab ]�m�n�T

j u�n�
ab �

C
M∑

jD1

M∑
aD1,a 6Dj

wn�i,jwn�i,a

Ð
P∑

kD1

P∑
bD1

[�xn�i �m�n�
j �Tu�n�

jk ]

Ð [�xn�i �m�n�
a �Tu�n�

ab ]�u�n�T

jk u�n�
ab �

C
M∑

jD1

w2
n�i,j

P∑
kD1

[�xn�i �m�n�
j �Tu�n�

jk ]2




�A14�

With the additional constraint that eigenvectors
need to be normal,

u�n�T

jk u�n�
jk D 1 �A15�

we can apply Lagrange optimization algorithm to find
out the eigenvectors u�n�

rs that minimizes the optimiza-
tion criterion. Let us abbreviate the terms inside Equa-
tion (A14) as �Ł�, the Lagrangian function is therefore,

�Ł�C ��u�n�T

jk u�n�
jk � 1� �A16�

Taking the derivatives of the Lagrangian function
with respect to u�n�

rs , we get,

1
1∑

iD0

˛i

1∑
iD0

˛i

Ð




�2wn�i,r[�xn�i �m�n�
r �xT

n�i C xn�i�xn�i

�m�n�
r �T]u�n�

rs C 2
M∑

jD1

wn�i,jwn�i,r[�xn�i

�m�n�
r �m�n�T

j Cm�n�
j �xn�i �m�n�

r �T]u�n�
rs

C2
M∑

jD1,j 6Dr

wn�i,jwn�i,r

P∑
kD1

[�xn�i �m�n�
j �Tu�n�

jk ]

Ð[�xn�i �m�n�
r �u�n�T

jk C u�n�
jk �xn�i �m�n�

r �T]u�n�
rs

C2w2
n�i,r�xn�i �m�n�

r ��xn�i �m�n�
r �Tu�n�

rs




D �2�u�n�
rs �A17�

We can see that u�n�
rs is the eigenvector of the follow-

ing matrix C�n�
r :

C�n�
r D

1
1∑

iD0

˛i

1∑
iD0

˛iwn�i,r

Ð




[�xn�i �m�n�
r �xT

n�i C xn�i�xn�i �m�n�
r �T]

�
M∑

jD1

wn�i,j[�xn�i �m�n�
r �m�n�T

j

Cm�n�
j �xn�i �m�n�

r �T]�
M∑

jD1,j 6Dr

wn�i,j

Ð
P∑

kD1

[�xn�i �m�n�
j �Tu�n�

jk ]

Ð [�xn�i �m�n�
r �u�n�T

jk C u�n�
jk �xn�i �m�n�

r �T]

� wn�i,r�xn�i �m�n�
r ��xn�i �m�n�

r �T




�A18�

The first P eigenvectors of C�n�
r are the solution for

u�n�
rs , s D 1 ¾ P. Equation (A18) can also be written

in a recursive form:

C�n�
r D ˛C�n�1�

r C �1� ˛�wnr

Ð




[�xn �m�n�
r �xT

n C xn�xn �m�n�
r �T]

�
M∑

jD1

wnj[�xn �m�n�
r �m�n�T

j

Cm�n�
j �xn �m�n�

r �T]�
M∑

jD1,j 6Dr

Ð wnj

P∑
kD1

[�xn �m�n�
j �Tu�n�

jk ]

Ð [�xn �m�n�
r �u�n�T

jk C u�n�
jk �xn �m�n�

r �T]

� wnr�xn �m�n�
r ��xn �m�n�

r �T




�A19�

We can rearrange Equation (A19) and get

C�n�
r D ˛C�n�1�

r C �1� ˛�
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Ð





wnr�xn �m�n�

r �C
M∑

jD1,j 6Dr

wnj�xn � x̂nj�




Ð [wnr�xn �m�n�
r �]T C [wnr�xn �m�n�

r �]

Ð

wnr�xn �m�n�

r �C
M∑

jD1,j 6Dr

Ð wnj�xn � x̂nj�


T

� w2
nr�xn �m�n�

r �

Ð �xn �m�n�
r �T




�A20�

A1.1.3. Solution for the weights

The weights are solved individually for each of the
vectors xn�i. We may drop the summation over all
vectors. The optimization criterion in Equation (A1)
can be rewritten as

min
wn�i

∥∥∥∥∥∥xn�i �
M∑

jD1

wn�i,jx̂n�i,j

∥∥∥∥∥∥
2

D min
wn�i

jjxn�i � X̂n�iwn�ijj2 �A21�

There is also the constraint that the weights wn�i

for xn�i should be summed up to one. Again,
using the Lagrange optimization algorithm, we obtain
Lagrangian function,

�xn�i � X̂n�iwn�i�
T�xn�i � X̂n�iwn�i�

C ��wT
n�i1� 1� �A22�

where 1 D [1 Ð Ð Ð 1]T is an Mð 1 vector. Taking the
derivatives of Equation (A22) with respect to wn�i

and � and setting the result to zero, we get,[
2X̂T

n�iX̂n�i 1
1T 0

] [
wn�i

�

]
D

[
2X̂T

n�ixn�i

1

]
�A23�

The solution for weights is therefore[
wn�i

�

]
D

[
2X̂T

n�iX̂n�i 1
1T 0

]�1 [
2X̂T

n�ixn�i

1

]
�A24�
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