### Multimedia Analysis:

Marriage of Signal Processing and Machine Learning

#### Tsuhan Chen 陈祖翰 Professor, Carnegie Mellon University tsuhan@cmu.edu



### A 10-Year Journey...

- IEEE Multimedia Signal Processing (MMSP) Technical Committee, 1996~
- MMSP Workshops
  - Princeton 1997, Los Angeles 1998, Copenhagen 1999, Cannes 2001, St. Thomas 2002, Siena 2004, Shanghai 2005, Victoria 2006
- International Conf on Multimedia (ICME)
  - New York 2000, Tokyo 2001, Lausanne 2002, Baltimore 2003, Taipei 2004, Amsterdam 2005, Toronto 2006, Beijing 2007
- *IEEE Transactions on Multimedia*, March 1999~
  - Special issues: networked multimedia 2001, multimedia database 2002, multimodal interface 2003, streaming media 2004, MPEG-21 2005
- SPS Distinguished Lecturer 2007



#### Carnegie Mellon

#### Multimedia Analysis: Bits vs. Content



[Baker/Kanade]

It's Bayesian in machine learning, a.k.a., *prior*... Number of all possible 16×12 images =  $2^{16\times12\times8}$ >>  $30\times60\times60\times24\times365\times$ human history×world population >> number of all possible face images

# Thoughts

 "The most compelling shapes are those near to our hearts: people's faces, a gracefully moving body, a natural scene with rustling leaves and flowing water. Evolution has tuned us to these sights..."

#### [Lengyel, 1998]

 Multimedia analysis... more than processing bits... it's all about the *content* ... it's signal processing + machine learning [Chen, 2006]



### **Content-Based Information Retrieval**

Many Interesting Applications...



#### **Carnegie Mellon**

LOGOS [Leung&Chen ICME'02]





## Hand-Drawn Sketches



# 3D Objects [Zhang&Chen ACM MM'01]



#### ModelRetrieval - C:\ChaZhang\demo\newtest1\_0600.mdf

Database View Adjust Experiment Options Help



#### **Carnegie Mellon**

## 3D Protein Structures [Chen&Chen ICIP'02]



## Content-Based Information Retrieval (CBIR)



**Advanced Multimedia Processing Lab** 

## **High-Level Semantics**



# **Possible Solutions**



**Advanced Multimedia Processing Lab** 

# **Semantic Information**

- Hidden annotation
  - Object #*n* has Attribute #*k*  $\rightarrow$  explicit
- Relevance feedback
  - Objects #m and #n are (not) similar  $\rightarrow$  implicit
- Q: How to represent and propagate semantic information?
- Q: How to use explicit/implicit semantic information to improve retrieval?



### Semantic Information as Probabilities

|                    | Attribute<br>1         | Attribute<br>2         | Attribute<br>3         | <br>Attribute<br><i>K</i>  |
|--------------------|------------------------|------------------------|------------------------|----------------------------|
| Object<br>1        | $\rho_{11}$            | $p_{_{12}}$            | $P_{13}$               | <br>$P_{1K}$               |
| Object<br>2        | <i>P</i> <sub>21</sub> | <i>p</i> <sub>22</sub> | <i>P</i> <sub>23</sub> | <br><i>р</i> <sub>2К</sub> |
| •••                | :                      | • • •                  | •                      | •                          |
| Object<br><i>N</i> | $\rho_{_{N1}}$         | $p_{N2}$               | $p_{N3}$               | <br>P <sub>NK</sub>        |

 $p_{nk}$ : Attribute Probabilities



# Annotate one object...

|                    | Attribute<br>1 | Attribute<br>2 | Attribute<br>3 | <br>Attribute<br><i>K</i> |
|--------------------|----------------|----------------|----------------|---------------------------|
| Object<br>1        |                |                |                |                           |
| Object<br>2        | 1              | 0              | 1              | 0                         |
| •••                | :              | •<br>•         | •<br>•         | :                         |
| Object<br><i>N</i> |                |                |                |                           |

When an object is annotated,  $p_{nk}$  is set to 0/1

Q: How to propagate? A: Based on low level features

Advanced Multimedia Processing Lab

#### **Carnegie Mellon**

# **Semantic Propagation**





#### **Carnegie Mellon**

## Semantic Propagation (cont.)





# Semantic Propagation (cont.)

|                    | Attribute<br>1 | Attribute<br>2 | Attribute<br>3 | <br>Attribute<br><i>K</i> |
|--------------------|----------------|----------------|----------------|---------------------------|
| Object<br>1        | $ ho_{11}$     | $p_{_{12}}$    | $p_{13}$       | <br>$p_{1K}$              |
| Object<br>2        | 1              | 0              | 1              | 0                         |
| •••                | :              | •              | •              | :                         |
| Object<br><i>N</i> | $\rho_{_{N1}}$ | $p_{N2}$       | $p_{N3}$       | <br>P <sub>NK</sub>       |

#### Q: Which to annotate next?





- Choose the most uncertain object to annotate
  - Uncertainty determined by the entropy of attribute probabilities
- "Selective sampling"
  - May want to consider density in feature space too

# Recap...

- Maintain attribute probabilities of each object
- Set an attribute probability to 1/0 when annotated
- Propagate probabilities to non-annotated objects
- Choose the most uncertain object in the database to annotate next
  - Use probabilities to estimate uncertainty
- Use probabilities to measure semantic distance...







# Relevance Feedback

- Relevance feedback
  - Ask for user's feedback during the retrieval
    - "Object #i is (not) similar to the query"
    - "Objects #m and #n are (not) similar"
  - Implicit semantic information
- Use feedback to improve retrieval
  - Way 1: Move the query point
  - Way 2: Weigh the features
  - Way 3: "Warp" the feature space



# An Example





# An Example





## Move the Query Point





# Feature Weighting





# Feature Space Warping





### **Feature Space Warping**



$$v_{pi} = \left[ \gamma \sum_{j=1}^{M} u_i \exp\left(-c \left|v_{ij}\right|\right) \right] v_{iq}$$

This is also semantic propagation!!!

Advanced Multimedia Processing Lab

# Experiment Result [Bang&Chen ICIP'02]



Advanced Multimedia Processing Lab

## Semantic Propagation is the Key

- Without semantic propagation, hidden annotation and relevance feedback are not very useful
- With enough relevance feedback, can we can accomplish information retrieval without lowlevel features at all?



# **Pushing Content to Extreme**

#### Content-Free Information Retrieval...



### Content-Free Information Retrieval (CFIR)

- With enough relevance feedback, retrieval is based more and more on feedback, less and less on features
- In the extreme case, retrieval based on feedback only
  - Retrieval based on user history
- e.g., Amazon.com



#### **Carnegie Mellon**

# Example -- How CFIR Works

| User<br>History |   |   |   |   |
|-----------------|---|---|---|---|
|                 | 1 | 0 | 0 | 1 |
|                 | 0 | 1 | 1 | 0 |
|                 | 0 | 1 | 1 | ? |



#### **Carnegie Mellon**

## Example -- How CFIR Works



# CBIR vs. CFIR

- Will user *U* like image *X*?
- Two different approaches:
  - Look at what U likes
    - $\rightarrow$  Characterize images  $\rightarrow$  Content-based IR
  - Look at which users like X
    - $\rightarrow$  Characterize users  $\rightarrow$  Content-free IR





## Experiment Results [Liu&Chen ICASSP'05]



### Content without User Feedback

#### Extracting content from nothing...



#### **Unsupervised Image Categorization**



[Caltech face + background dataset]

#### **Unsupervised Image Categorization**



[UIUC car dataset]

#### "Bag of Words" Representation



DoG interest point detector + SIFT descriptor [Lowe]



Codebook



#### **Graphical Model**



#### Need to handle background...





#### Solution: Add a hidden layer $\rightarrow$ PLSA

#### Probabilistic Latent Semantic Analysis (PLSA)



- Hofmann 01, Monay and Gatica-Perez
   04, Sivic et al. 05, Quelhas et al. 05
- Can model complex scenes

Document **Chpia** Appsticance

P(d, z, w) = P(d)P(z|d)P(w|z)

Inferance: Maximum likelihood
 estimationrizinion EMPa(gorith)

- Segmentation P(z|d,w)

d : image z : topic

w : word

#### Problem with PLSA



#### "Bag of Words" is the problem...

• As long as the parts are present, the exact position does not matter too much



Picasso, 1943

Dali, 1936







Not so for general objects!

#### **Enforcing Clustering**

[Liu&Chen ICIP'06]

• A number of S = 10 fixed spatial distributions





 $s_1 \, t_0 \, s_9$ 

#### **Enforcing Clustering: Semantic-Shift**



#### [Liu&Chen CVPR'06]

- d : image
- z : topic
- w : word appearance
- x : word position

Document Character Approximation Semantics p(d, z, w, x) = P(d) P(z|d) P(w|z) p(x|z, d)

#### **Representing Location Semantics**



- Assume single foreground object
- Location semantics p(x|z,d)
  - Foreground:

$$p(x|z_{\mathsf{FG}}, d_i) \equiv \mathcal{N}(x|\mu_i, \Sigma_i)$$

– Background:

Complement of foreground distribution



$$\begin{array}{c} \text{Learning in Semantic-Shift} \\ \hline P(z_k | d_i, w_j, x_p^{d_i}) \propto p(x_p^{d_i} | z_k, d_i) P(z_k | d_i) P(w_j | z_k) \\ posterio \\ \hline \mathcal{N}(x | \mu_i, \Sigma_i) \\ \hline$$

#### Learning in Semantic-Shift

p(x|z,d)Location semantics



This is why "semantic-shift"

P(z|d, w, x)

posterior



P(w|z)

Topic appearance



Learning all 3 terms simultaneously... Completely unsupervised...

#### Results

#### [Liu&Chen CVPR'06]





0.9 → 0.98

#### **Future Work**

- Intra doject modeling
- Video: spatial temporal modeling
- Training the codewords in the loop
- Multiple ojects

# Conclusions

- Machine learning can bridge the gap between low-level features (bits) and high-level semantics (content)
- Hidden annotation and relevance feedback can help; semantic propagation is the key
  - Active learning
- "Content-free" information retrieval is possible
  - Bayesian framework
- Content extraction without user feedback is possible
  - Unsupervised learning; graphical models



# Afterthoughts...

- Feng-Shui (风水)
  - Ancient Chinese room arrangement technique
- Way 1 (low-level):
  - Write down all the rules
  - Too many and do not generalize
- Way 2 (high-level):
  - Imagine how a dragon would move through the room to arrange it in a livable manner
  - Intuitive and creative
  - Done by some Feng-Shui masters







### Advanced Multimedia Processing Lab

Please visit us at: http://amp.ece.cmu.edu

