
Header for SPIE use

Network-Adaptive Video Coding and Transmission

Kay Sripanidkulchai and Tsuhan Chen
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

<kunwadee@andrew.cmu.edu> <tsuhan@ece.cmu.edu>

ABSTRACT

In visual communication, the conditions of the network, such as the delay, delay jitter, and the packet loss rate, have strong
impact to the video quality. It would be useful if there is a feedback channel from the client to the server to indicate the
network conditions periodically, and a smart mechanism for coding and transmitting video that can adapt to these conditions.
For example, when the network is congested, instead of sending all the packets that have a high probability of being lost in
the network, we can selectively drop some packets at the server (such as dropping packets for bidirectional-predicted frames).
While intuitive, it is difficult to illustrate the effectiveness of adaptation using a single video server-client pair. A practical
simulation would require multiple video servers and clients, and only then the benefit of adaptation will show up as
advantageous utilization of network resources to provide good video quality. In this paper, we will introduce our methods of
adaptation and present experimental and simulation results.

Keywords: video on demand, network transmission, adaptive congestion control, MPEG encoding

1. INTRODUCTION

The technology for delivering ubiquitous high bandwidth multimedia services, such as voice with video, will soon become a
reali ty. Many service applications are being developed to take advantage of the increasing bandwidth. One such application
is Video on Demand (VoD). A major challenge in providing VoD in today's Internet is transmitting real time video streams
across a heterogeneous best effort network while trying to achieve acceptable perceptual quali ty. Because the video stream is
typically coded at a variable bit rate, the bandwidth requirement is variable. The interarrival time for consecutive frames
must lie within specified delay bounds in order for the frames to be useful. Minimal transmission delays are tolerable, but
long delays and delay jitters could cause jerky and discontinuous motion. Due to the uncertain nature of network load and
routes, packets could have delays, or arrive out of order. When the network is congested, packets could even be dropped.
Unpredictable packet losses due to congestion inside the network could seriously degrade video quali ty. Schemes to recover
from packet losses via error correction and retransmission exist, but they often add on excessive overhead (e.g. Forward Error
Correction) or more undesirable delays. In this paper, instead of using mechanisms to ensure reliable transmission of video
packets and improve error resili ence, we will focus on end to end adaptation to network congestion, which can be used in
conjunction with error recovery.

The VoD server should respond to network congestion by adapting the rate at which it injects packets into the network. As
the network becomes more congested, the server should reduce its transmission rate. If all applications ignored network
conditions, or increased transmission rate upon congestion, the network would come to a halt, causing congestion collapse.
Typically, video is transmitted using the User Datagram Protocol (UDP), which treats each video packet independent of each
other, provides no service guarantees and no feedback to the sender.

In order to improve the received video quali ty, there are two possible approaches. The first one, an end to end approach, is to
design and implement network aware VoD servers and clients. The server utilizes feedback information from the client about
the network connection and the client's reception to adjust its transmission rate. There is a question of whether the feedback
of previous performance and network conditions will be a suff icient predictor of the future and will be relevant enough to be
used by the server. We also need to determine what kind of feedback would be useful.

The second approach is to have intermediate nodes in the network (i.e. active routers) that understand the semantics of the
VoD application that will assist in adjusting transmission to provide acceptable quali ty of service. For example, for a VoD
system using MPEG encoding, when the network is congested, the active router will t ry to avoid dropping I and P frames and
will drop only B frames. This capabili ty is not available in today's Internet.

In this paper, we will discuss the first approach. In Section 2, we will give an overview of a network aware adaptation
protocol. In Section 3, we will present the implementation of the VoD system. Experimental and simulation results are
presented in Section 4. We conclude our findings and discuss future work in Section 5.

2. NETWORK AWARE TRANSMISSION ALGORITHM

To cope with network congestion, it would be useful if the VoD server and client maintain a feedback channel. To inform
the server of network status, the client can send its application level packet reception information back to the server. This
information can include such information as loss rates, delay, delay jitter and perceived video quality. In this paper, we focus
on VoD systems that serve MPEG-encoded video, but the results can be easily extended to other video coding standards.

2.1 NETWORK AWARE SERVER

In order to adapt to changing network conditions, the VoD server should be capable of changing its transmission rate. For
server scalability, the amount of processing at the server should be minimal. Because a client knows its reception quality and
the network congestion status of the route from the server, the client is in the best position to control the quality of video to
be transmitted to it. This is accomplished by having the client send feedback in the form of control packets. These control
packets determine which MPEG frames the server should transmit. The client specifies which mode the server should be in.
For an MPEG video, we propose 4 modes as follows:

1. SEND_ALL_PACKETS
2. SEND_ALL_I_AND_P_AND_ONLY_X_PERCENT_OF_B_FRAMES
3. SEND_ONLY_I_AND_P_FRAMES
4. SEND_ONLY_I_FRAMES

These four modes provide sufficient flexibility and extensibility to control the degradation of the video stream. Although this
scheme does not take into account the server load, it can be modified such that it does. That is, if all the clients requested the
server to SEND_ALL_PACKETS and the server is overloaded, the server can deny some of the SEND_ALL_PACKETS
request. The exact policy decision does not need to rely on the feedback scheme and can be specified independently.

2.2 NETWORK AWARE CLIENT

The feedback mechanism should be lightweight and not require excessive processing at both the client and the server. As
mentioned above, we choose to let the client make all the decisions and inform the server what to transmit. This allows for
server scalability. These are two sub-components to the feedback mechanism:

• Network Congestion Estimation Algorithm: The client determines the status of the network by keeping track of the
number of lost packets within a certain interval. Based on the estimated network congestion, the client decides the
server’s transmission mode.

• Feedback Control Protocol: At the end of each time interval, the client sends out a control packet to the server
stating which mode packets should be transmitted.

3. IMPLEMENTATION

In order to evaluate the proposed network aware transmission algorithm proposed in Section 2, we implemented a VoD
system using RTP2/UDP as the transmission protocol. RTP is appropriate for carrying real time information. In addition, it
does not provide any guarantees and leaves such issues to the application level to choose suitable mechanisms. The client is
capable of real time decoding of MPEG video. The issues of error resili ency and adapting to packet losses will be
investigated on the client side. The VoD system, consisting of a server and client, is depicted in Figure 1. We will proceed
to discuss the implementation of each depicted component.

Figure 1: Video on Demand system

3.1 SERVER

Because we are only interested in the feedback mechanism, a simple server was implemented. The server is composed of
two threads simultaneously executing:

3.1.1 SENDING THREAD

The sending thread performs three key functions:
• Read in the MPEG bitstream from disk.
• Parse the bitstream, packetize, and add RTP MPEG-specific headers according to the specifications in RFC

22501

• Send the bitstream in real time.

The encoded MPEG bitstream is assumed to be pre-coded and stored on disk. The sending thread reads the bitstream into
memory, in chunks. It then, parses the bitstream and packetizes it. Although we use the same headers as the specification in
RFC 2250, the meaning of the headers are different. We also packetize the bitstream such that no two frames are transmitted
over the network in the same packet. This is to add extra error resili ence so that one packet loss results in at most one frame
lost. To avoid further packet fragmentation at the IP level, we choose the maximum packet size (including RTP/UDP
headers) to be at most the size of an Ethernet packet, which is 1500 kB. Therefore, a frame can be split over several packets.
[Kay, 1500 KB is much larger than the size of one frame, so why can one frame span over multiple packets?]

In RFC 2250, these four fields are used to specify the prediction mode of each frame. In our implementation, we used the
fields to specify the fragment number or the position of this packet with respect to other packets that belong to the same
frame. This modified version is useful for determining packet losses: where the last packet from the previous frame ended
and where the first frame of the next packet started. Thus, if we have lost a packet that belongs to a frame, we know that we
can throw away successive incoming packets belonging to the same frame and discard packets that have previously arrived
from the client’s buffer. The buffer implementation at the client will be discussed later.

Once we have parsed a frame and packetized it, we send it out to the client. The transmission is spaced out and smoothed as
much as possible to avoid bursts. Bursty transmission is generally not a desired behavior because it may cause transient
congestion states in the network.

The sending thread algorithm in pseudocode is shown in Figure 2.

While (not_done) {
Read_a_frame_of_bits;
While (bits_left) {

 get_packet_worth_of_data;
add_MPEG_specific_headers;
add_RTP_headers;
/* to smooth out transmission */
wait_till_time_to_send;
send_packet;

 }
}

Figure 2: Sending thread algorithm in pseudocode

3.1.2. RECEIVING THREAD

The receiving thread reads incoming control packets sent from the client. These control packets are feedback packets that
inform the server of the client’s reception state since the last received control packet. Once a control packet is received, the
server changes its sending ‘mode’ accordingly. To allow for server scalabili ty (one server accommodating multiple clients
simultaneously), we move the burden of choosing which mode to change to from the server to the client. Pseudocode for the
receiving thread is depicted in Figure 3. The feedback information changes the sending thread’s operation as depicted in the
pseudocode in Figure 4.

While (1) {
receive_control_packet();
change_mode;

}

Figure 3: Receiving thread algorithm in pseudocode

while (not_done) {
read_a_frame_of_bits;
if (frame_type_can_be_sent_in_this_mode) {

while (bits_left) {
get_packet_worth_of_data;
add_MPEG_specific_headers;
add_RTP_headers;
/* to smooth out transmission */
wait_till_time_to_send;
send_packet;

}
}

}

Figure 4: Sending thread algorithm in pseudocode with modifications to allow for feedback control.

3.2 CLIENT

For a network aware client, we modified Berkeley’s mpeg_play to support RTP, and our network aware transmission
algorithm. The client is composed of 4 components.

1. Display/Renderer: modified from UC Berkeley’s mpeg_play unix utili ty.
2. Decoder: modified from UC Berkeley’s mpeg_play unix utili ty to support real time decoding. The interface between the

decoder and the client’s ‘smart’ buffer is similar to that of a filesystem. That is the decoder can issue a read command
that will t ake out n bytes from the ‘smart’ buffer. We choose this approach because the Berkeley mpeg_play
implementation assumes filesystem-like operations. We also modified the decoder so that it does not need to read the
whole MPEG bitstream into memory before starting to decode. This allows for piece-meal real time decoding (frame by
frame).

3. ‘Smart’ Buffer: Initial buffering of the stream (before any decoding) is needed so that delays can be absorbed. This
amount of buffering should be enough so that it can absorb jitters without taking up too much memory resources.
Packets arriving out of order will be ordered at the buffer and, then, passed on to the decoder. Also, the buffer
management scheme should be efficient in that if a packet is loss, subsequent packets that rely on the lost one should not
be stored. For example, if a P frame is lost, newly arrived B frames that rely on that P frame should be dropped. It is
also possible to have the buffer do some form of interpolation for the lost frame for better video quali ty. Although the
last two features are in conflict with each other, both have positive impact. Finding a balance between the two is
important for an error resili ent client. This buffer is located at the interface between the socket buffer and the decoder. It
receives incoming MPEG bitstream packets from the network and temporarily stores them and delivers them to the
decoder upon request. The ‘smart’ buffer is implemented with the following efficient buffer management algorithm.
• If a packet belonging to a frame is lost, it will throw away all packets belonging to the same frame.
• If a packet belonging to an I-frame is lost, all packets are discarded until the buffer sees a new I-frame.
• If a packet belonging to an I-frame is lost, all packets are discarded until the buffer sees a new I-frame. [Kay, the

last two are the same?]

Thus, the buffer is not wasting any of its capacity storing bits that cannot be decoded. The size of the buffer should be
set such that it is large enough to smooth out jitters that can occur during transmission, but not too large to cause delayed
start-up of decoding and displaying. An optimal size is a littl e larger than the bandwidth-delay product in the system,
where bandwidth is the bandwidth of the link and delay is the time it takes for a packet to leave the server and arrive at
the client.

4. Feedback Mechanism: The frequency at which these control packets are sent also determines the success of adaptation.
We cannot send these packets too frequently or else we would be using up a significant amount of bandwidth. However,
if we do not send these packets frequent enough, we are risking the possibili ty of out-of-date feedback. That is, if these
control packets are send every 5 minutes, then the server is adapting based on old and, most likely, irrelevant network
status. We find that control packets should be sent at least twice every second in order to achieve reasonable adaptation.
We will discuss in detail the implementation of one of the two sub-components of the feedback mechanism: network
congestion estimation algorithm.

3.2.1 NETWORK CONGESTION ESTIMATION ALGORITHM

The client estimates the state of congestion in the network based on packet losses. It keeps a penalty box, which is cleared
after n packets have been received since the last control packet was sent. Based on the assumption that all packets take the
exact same route from the server to the client, there is no packet reordering. Thus, if we see a jump in sequence numbers, we
can assume that the packets with missing sequence numbers were lost. For each packet lost, we increment the penalty value
by 1. For each frame lost, we increment the penalty value in a weighted manner. That is for each I-frame lost, we increment
penalty by 4. For each P-frame lost, we increment the penalty by 3. And, for each B-frame lost, we increment the penalty by
1. Weights should be determined by the typical size of each frame type. Once we have received enough packets to send out
a feedback packet, we decide which mode we would like the server to be in according to the penalty value. Table 1 shows
the values that were used in this implementation. The feedback packet is then formatted according to the control protocol
(which will be discussed later) and sent to the server. If the decision is to have the server send fewer packets, the feedback
interval is also reduced to half. The penalty box in now cleared and we start the process all over again. These are many
possible optimizations and modifications to the algorithm, for example,

• Have a more precise way of defining the feedback interval so that it actually relies on time instead of the number of
packets received. For the latter, if a large number of packets were lost around the same time, the feedback interval
(based on number of received packets) would be stretched out and any feedback to the server would become
obsolete.

• The mapping between penalty points and server sending mode should be systematically defined based on
experimental data.

• Penalty points are solely based on the transient state of the network (the number of packets lost during the feedback
interval). It may be an advantage to factor in previous intervals using a form of exponential averaging, or to give
different weights to the penalty points depending on the time relevance. For example, a packet lost during the first
millisecond of the feedback interval should carry less weight than a packet lost during the last millisecond of the
feedback interval.

Sending Mode Penalty Points p (as a percentage of the number of packets in
a feedback interval)

SEND_ALL_PACKETS p ≤ 10%
SEND_ALL_I_AND_P_AND_ONLY_X_PERCENT_OF_
B_FRAMES

10% < p ≤ 50%

SEND_ONLY_I_AND_P_FRAMES 50% < p ≤ 70%
SEND_ONLY_I_FRAMES p > 70%

Table 1: Penalty points at client determine sending mode at the server.

4. EVALUATION

We will now describe our experimental setup and results. We evaluated a network aware system with a non-network aware
system. The non-adaptive system was composed of a similar client and server, but the client was not running a feedback
algorithm and did not send any feedback information to the server. Two methods of evaluation were carried out: experiments
over an actual network, and simulation experiments.

The key factor in determining perceptual quality is the distribution of frames that were decodable on the client side. The
number of I-frames that were decodable (i.e. useful) was given the most weight. Subsequently, the number of P-frames and
B-frames that were decodable were given less weight. Also in terms of network performance, the ratio of decodable data
over all data sent over the network for both systems were compared.

Figure 5: Experimental testbed configuration

4.1 EXPERIMENTAL RESULTS

The experimental testbed is shown in Figure 2. We transmitted our test bitstreams between two subdomains within the
Carnegie Mellon University’s network. The route between the testbed machines was not a dedicated path. It is shared with
other users. Therefore, background traffic is actual network traffic generated by users. Packet losses and frame losses were
analyzed.

There was no significant difference in the perceived quality of the transmitted video in both systems. Although, intuitively,
the adaptive system should have higher video quality, in some cases it did worst than the non-adaptive system. This could be
because the adaptive system performs well only under severe congestion. Since the testbed is from the andrew domain to the
cs domain within the local area network of cmu, we did not see the severe congestion and network usage behavior that is
present in wide area networks, such as the Internet. Also, we only evaluated one end-to-end adaptive system. In order to see
the overall improvement of the adaptation, we need to take into account other traffic that is sharing the same network links.

There were, however, significant improvements in network resource utilization. As we can see from Table 2, for the P and B
frames, we see that a higher percentage of usable packets and/or frames from the adaptive system. This means that although
we are getting similar visual quality, we would be reducing the actual bandwidth used to transmit the video.

The reason the adaptive system had higher loss with the I-frames is that it just happened that in this experiment, 3 more
packets belonging to 3 different I-frames were dropped.

Network Aware System Non-network Aware System
Decodable % of transmitted I frames 87.80% 92.70%
Decodable % of transmitted P frames 70.89% 67.90%
Decodable % of transmitted B frames 76.02% 66.33%
Decodable % of transmitted I packets 80.85% 97.07%
Decodable % of transmitted P packets 71.99% 60.29%
Decodable % of transmitted B packets 80.50% 57.70%

Table 2: Results from real network experiments

4.2 SIMULATION RESULTS

Two loss patterns due to congestion were simulated. The two patterns are uniformly distributed losses of 10% of packets,
and step function (the lost rate is 0%, and then jumps suddenly to10%).

4.2.1 UNIFORMLY DISTRIBUTED LOSS OF 10%

The visual quality of the video in the adaptive system, surprisingly, is lower than the non-adaptive system. This is because
our network model of uniformly distributed loss is not realistic. For example, if the server adapts and sends out only I and P
packets, those packets have an equal likelihood of being dropped. However, if the server is sending B packets, then all three
packet types I, P, and B have equal likelihood of being dropped. So in the non-adaptive case, if a B packet is dropped the
quality degradation is not severe. In the adaptive case, if an I or P packet is dropped (because the server adapts and sends no
B packets), then the visual quality could dramatically decrease. In a real network, it is expected that if the server reduces its
transmission rate, the network should not be as congested and the packet loss rates should go down. In our simulated run, our
adaptive system had such poor performance that it could not decode any of the last 200 frames (from 1210 frames).

4.2.2 STEP FUNCTION LOSS OF 10%

In this case, we can see that the adaptive system outperforms the non-adaptive system. We transmit fewer packets in the
adaptive system and see fewer losses. The visual quality, however, was worse for the adaptive case because there were fewer
B-frames to decode. With fewer B-frames, we get jerky discontinuous motion.

Network Aware System Non-network Aware System
Decodable % of transmitted I frames 65.90% 60.10%
Decodable % of transmitted P frames 50.00% 46.90%
Decodable % of transmitted B frames 71.26% 47.10%
Decodable % of transmitted I packets 62.23% 55.10%
Decodable % of transmitted P packets 43.42% 39.10%
Decodable % of transmitted B packets 64.89% 39.51%

Table 3: Results from simulate network congestion (step function)

5. CONCLUSION AND FUTURE WORK

We have shown how a network aware adaptation algorithm improves the percentage of decodable packets received at a
client. We successfully avoid sending packets that would have otherwise been dropped in the network due to congestion.
The server and client pair running our network aware algorithm is capable of reacting to changing network conditions. Using
lower transmission bandwidth, we can effectively achieve better perceptual quality. To continue with further evaluation of
our network aware adaptation approach, we need to look at the interaction between our adaptive flow and other network
flows sharing the same routers.

REFERENCES

1. D. Hoffman, G. Fernando, V. Goyal, M. Civanlar, "RTP Payload Format for MPEG1/MPEG2 Video", STD 1, RFC
2250, January 1998.

2. H. H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", STD
1, RFC 1889, January 1996

