IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY

High Performance Stereo Vision Designed for

Massively Data

Wei Yu, and Tsuhan Cheriellow, |EEE,

Abstract—Real-time stereo vision is attractive in many ap-
plications like robot navigation and 3D scene reconstructn.
Data parallel platforms, e.g. GPU, is often used for real tine
stereo, because many stereo algorithms involve a large paoh
of data parallel computations. In this paper, we propose a &reo
system on GPU which pushes the Pareto-efficiency frontlineni

Parallel Platforms

and Franz Franchetti, and James C. Hoe

(Tsukuba, Venus, Teddy, and Cones). Speed is measured by
the system throughput, i.e. millions of disparity per saton
(MDS).

In terms of accuracy, state-of-the-art stereo algorithars c
be categorized into 3 classes: very good quality (error rate

the accuracy and speed trade-off space. Our design is basedbelow 7.0), good quality (error rate in between 7.0 and 11.0)

on hardware-aware algorithm design approach. The system
consists of new algorithms and code optimization. We emphas
on keeping the highly data parallel structure in algorithm
design such that the algorithms can be effectively mapped
to massively data parallel platforms. We propose two stereo
algorithms named exponential step size adaptive weight (EZ8V)

and not good quality (error rate above 11.0). Stereo algoist
producing very good disparity quality usually involve cdemp
computations for global optimization, segmentation, plan
fitting and occlusion handling, etc. To our best knowledge,
none of the algorithms in the first class (very good quality)

and exponential step size message propagation (ESMP). ESAWhave been implemented in a real-time system yet. The only

reduces computational complexity without sacrificing disprity
accuracy. ESMP is an extension of ESAW, which incorporateshie
smoothness term. ESMP offers additional choice in the accacy
and speed trade-off space. When mapping an algorithm to a
hardware platform, there are many choices to be made to achie
the best performance. We discuss code optimization technigs
widely applied in the performance tuning community, rather
than optimizing the code in an ‘ad hoc’ manner. We compare
our results with state-of-the-art real-time stereo visionsystems.
Experiment results demonstrate a speed-up factor of 2.7 t0.B
over existing systems at comparable disparity accuracy.

Index Terms—stereo, real-time, multi-core, data parallel, GPU,
code optimization.

T

I. INTRODUCTION

near real-time solution we know of is proposed by Yang, Q., et
al. in [1€], achieving error rate of 5.8 at system throughput of

9.4 MDS. At this throughput, it takes 1.3s to process a stereo
image pair of size884 x 512 and 60 disparity levels.

A number of real-time systems for algorithms in the second
class (good quality) have been proposéfd [15], [11]. All of
them have been implemented on graphics cards. The fastest
among them is the system proposed by Gong et 4l. [
achieving error rate of 11.0 at system throughput of 124 MDS.
At this throughput, it takes 96ms to process a stereo image
pair of size384 x 512 and 60 disparity levels. Therefore, to
improve system throughput at good disparity accuracy resai
a challenging problem.

Contribution. The main contributions in this paper is a

HE goal of stereo vision is to reconstruct a disparitytereo system built on hardware-aware software design con-
map (reciprocal of depth) from two views. Both accuracyept. We keep the highly data parallel structure in algonith

and speed are important metrics in designing real-timesteljesign, such that the algorithms can be efficiently mapped

systems. Existing stereo systems usually performs welh# oto a GPU platform. We propose two algorithms and code
aspect but not good in the other, because they focus on eitgtimization.

improving accuracy or code optimization for an existingaalg
rithm. We take a different approach by designing algorithms
in aware of hardware features. Data parallel architectares
widely used for real time stereo, because for most stereo
algorithms a large portion of the computing time is spent
on data parallel processing. The hardware platform we use is
GPU (Graphics Processing Unit), an instance of massively da
parallel architectures. Our goal is to design stereo algms
that can be effectively mapped to such platform. .
Stereo accuracy can be evaluated by error rate, which

is the average percent of bad pixels (the same as the last 41 widely used in performance tuning community, but
column “average percent of bad pixels” in Middlebury stereo rarely found in the vision literature.

evaluation online systen?{]) of all four benchmark datasets Organization. In Section Il we present the necessary back-

ground and related work. First, we explain hardware platfor
features and code optimization guidelines. Then we discuss
existing real-time or near real-time stereo systems. Ini@ec

lll, we introduce two stereo algorithms and analyze their
complexity and accuracy. In Section IV, we present code

The two algorithms are exponential step size adaptive
weight (ESAW) and exponential step size message prop-
agation (ESMP). ESAW allows cost information from
distant pixels to propagate to the center pixel within
a few iterations. ESMP is an extension of ESAW by
incorporating the smoothness term commonly used in
belief propagation for global stereo. ESMP can improve
the disparity accuracy at the cost of lower throughput.
We discuss various choices in code optimization and
analyze the trade-offs in efficiency. The methodologies

W. Yu, F. Franchetti, and J. C. Hoe are with the DepartmentiettEcal and
Computer Engineering, Carnegie Mellon University, Pittgh, PA, 15213
USA e-mail: wy@andrew.cmu.edu, franzf@ece.cmu.edu, @eee.cmu.edu

T. Chen is with the School of Electrical and Computer Engiimgg Cornell
University, tsuhan@ece.cornell.edu.

Manuscript received ; revised

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY 2

optimization techniques to efficiently map both algorithtos may introduce side effects like breaking down regular
the hardware. Section V presents experiment results and a data structure if not used properly.

comparison with existing systems. Finally, we offer conclu « G2 Reducing off-chip memory accesses. This can be
sions in Section VI. achieved by improving data reuse in on-chip memory. A
common strategy is “blocking”: to organize the computa-
tion and data structure to better explore the data locality.

o G3 Choosing appropriate memory types to optimally
We provide background of the hardware platform and basic pajance their pros and cons.

optimization guidelines. We also discuss existing work on, g4 Organizing global memory accesses in haps in

designing real-time stereo systems. a coalesced manner when possible.

o G5 Choosing optimal thread block size to balance im-
pacts of occupancy and register utilization efficiency.
Higher occupancy can better hide instruction latency, but
it may reversely affect the overall performance if leading
to worse utilization of register resources (e.g. causing a

Il. BACKGROUND AND RELATED WORK

A. Hardware platform

Stereo vision demonstrates intensive fine-grained data par
allelism, which can take advantage of the massively data
parallel architectures. GPU is an instance of such datdlplara large number of register spills).
platforms. The GPU we used is NVIDIA GeForce GTX

8800, with CUDA (Computer Unified Device Architecture) The .f'rSt two g_wdelmesslandGz are re_Iated to first order
. analysis to identify whether the program is compute bound or
programming interface.

GPU architecture features. The GTX 8800 is a hierarchi- T oo"Y bound. The Fhe.oreUcaI upper bound for computation
: . ._and memory access indicates
cal architecture consisting of a total of 128 cores orgahize

into 16 stream multi-processors (SM), each SM containing 8 #of arithmetic ops_ 345.6Gflop/s 1)
stream processors (SP), or cores. Each SP runs at 1.35GHz, processing time — '

and has one 32-bit single-precision floating point multiptid #of memory access (Bytesg $6.4GB/s @)
arithmetic unit. Fully pipelined arithmetic units yield atal of processing time =

1:35GH2x 16SM> (8 x 2)flop/SM = 345.6Gflop/s theoretical G3 addresses choosing the right type of memory for specific

peak performance. o .
. pplications. The GTX 8800 offers various types of memory
The memory system of the GTX 8800 comprises 768M§uited for different situations5]. G4 is important for im-

off-chip global memory, 64kB on-chip cache for texture ment, oving memory bandwidth utilization efficiency. The highe

ory, 16kB on-chip cache for constant memory per SM, 16k ; .
shared memory per SM, 8k 32-bit registers and local memorandW|dth can be achieved when the global memory accesses

for register spilling purpose. Off-chip memory access bithi ate organized in a coalesced way, i.e., 16 threads in a half

: . warp access 16 continuous data elements of 32-, 64- or 128-
very long latency (200—300 cycles if L1 hit and 400-600 cgcle . .)
if L1 miss); latency for on-chip texture cache is about 10 it data types , and the starting address must be alig@gd.

cycles; and accessing other on-chip memory is very fast (_ngggests tuning for the optimal thread block size to balance

2 cycles). Though the GTX 8800 features a high off-chi\éanous factors for the best overall performance.

bandwidth of 86.4GB/s, it is still easy to saturate the mgmor
bandwidth given the high peak computing power. B. Related Work

CUDA GPU Programming model. The GTX 8800 sup- Most existing stereo vision algorithms consist of four step
ports single program multiple data (SPMD) programmingg suggested by Scharstein and Szeliski [1) matching
model. The computation task is coded ik@nel functions. ¢ost initialization: (2) cost aggregation ; (3) disparitptie
Eachkernel is executed by multiple threads concurrently ofhization; and (4) disparity refinement. Stereo algorithras ¢
different data. Eaclkernel creates a singlgrid that consists pe roughly classified into local and global approaches. Loca
of multiple thread blocks. Every thread block is assigned to algorithms use Winner-Take-All (WTA) strategy, simply itad
execute on one SM. Eadhread block is further partitioned the disparity level that minimizes the aggregation cosabal
into warps of 32 threads. SM can support zero-overheaggorithms apply energy minimization techniques to coreput
scheduling to switch betweewarps to hide long latency the optimal solution to a global energy function, which ukua
operations like off-chip memory access. The total numbg{corporates explicit smoothness assumptions. We categor
of concurrentwarps reflects theoccupancy of SM, which is existing real-time or near real-time stereo systems inta fo
determined by the physical resource limitations on chip. FPnajor classes: local/global stereo on GPU/CPU.
more details of GPU programming, readers are referred to thq gcal stereo on GPU. Local approaches on a graphics
NVIDIA GPU Programming Guide or online course materia'érocessing unit (GPU) produce good quality disparity map
[5]. at very fast speed. Gong et all][discusses an interesting

Optimization on GPU. We summarize five guidelines toaccuracy-speed trade-off of six cost aggregation appesach
improve implementation efficiency on GPU, which will beyjth WTA optimization under the real-time constraint on an
used in Section IV. ATl Radeon X800 graphics card. Their experiments show that

o G1 Reducing the arithmetic operation count. This is aa modified version of the adaptive weight window approach

algorithm level optimization. Reducing operation courperforms the best in terms of accuracy, running at about

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY 3

TABLE |

SUMMARY OF REAL-TIME OR NEAR REAL-TIME STEREO SYSTEMY QUANTITATIVE RESULTS ARE GIVEN LATER IN TABLE V)
GPU local ({1, [13], [14]) very fast, good accuracy

global ([15], [16], [11], [3]) slower and better accuracy than local stereo on GPU

proposed ESAW faster than local stereo on GPU at comparableacy

proposed ESMP faster than global stereo on GPU at compaaablgacy
CPU local (B, [6], [10]) worse Pareto-efficiency in accuracy-speed trade-ofteghan local stereo on GPU

global ([1], [2]) worse Pareto-efficiency in accuracy-speed trade-ofteghan global stereo on GPU

124 MDS on the ATl Radeon X800. The adaptive weighhethods.
approach was originally proposed by Yoon and Kweor],[Global stereo on CPUFast global stereo systems on a CPU
which was very expensive in computation. Earlier real-timare not common. Felzenszwalb and Huttenlochgpfoposed
local stereo systems on the GPU include multi-resolutiannear real-time stereo system on the 2GHz Pentium IV based
stereo by Yang, R., et al.1f], [14]. Other related work on loopy belief propagation, running at about 1.8 MDS. They
includes real time high quality stereo-based view synthegiropose several algorithm level optimization techniqiies]
systems on GPU<[], [21]. also used those techniques in the GPU acceleration. Faretma
Global stereo on GPU.Global stereo on the GPU is alsoet al. [2] accelerated a dynamic programming based algorithm
extensively studied. Gong et aB][proposed a near real-timeusing MMX instructions, achieving about 100 MDS on an
stereo based on ORDP (orthogonal reliability-based dyaanfithlonXP 2800+ 2.2G computer.
programming) on the ATl Radeon 9800 XT graphics card, Summary. Table | gives an overview of the trade-off
running at about 20 MDS. Wang, L., et al.l] proposed a real- of various real-time stereo systems. Quantitative resarés
time stereo algorithm on the ATl Radeon XL1800 graphiagiven later in Table IV. Generally speaking, stereo aldwnis
card. It integrated the adaptive weight aggregation aldmg ton CPU platforms can hardly match the Pareto-efficiency
vertical direction with dynamic programming optimizatiorachieved on GPU platforms. Stereo systems based on global
along horizontal scanlines. The disparity accuracy ishdlyg optimization methods like dynamic programming or belief
better than4]. The system runs at about 52.8 MDS. Yang, Qpropagation usually produce more accurate disparity map, a
et al. [L5 proposed a near real-time global stereo matchirthe cost of slower processing speed.
using hierarchical belief propagation on the NVIDIA Geferc
7900 GTX graphics card. It produces better accuracy than I1l. PROPOSEDSTEREOALGORITHM
[11], but runs slower at_about 17MDS. Yang, Q., et alo][In this section, we propose two stereo algorithms: exponen-
proposed a near real-time S)_/stem on the NVIDIA Gefor(_:[%l step size adaptive weight (ESAW) and exponential step
8800 GTX g_ra_ph|cs _card that mcorpora_tes color segmemtatlgIze message propagation (ESMP).
and plane fitting with belief propagation. The accuracy Is
further improved compared td §]. The system runs at about)) _ _)
9.4 MDS. 4] propose an efficient implementation of dynamié» Exponential Sep Sze Adaptive Weight Algorithm
programming approach using a recursive scheme, suitable foExponential step size adaptive weight (ESAW) is an ex-
parallel stream computation modeP?] propose a near real tension of the real-time adaptive weight approach4j The
time implementation of the semi-global matching algoritinm main advantage of the proposed ESAW is to save arithmetic
[23], running at about 9MDS for large image size and disparigomputation without degrading parallelism or accuracye Th
range. algorithm in [] is a simplification of the adaptive weight
Local stereo on CPU.Several real-time local stereo systemwindow cost aggregation originally proposed in/]. We first
on a general purpose CPU have been proposed. The Point Gregfly summarize the basic adaptive weight aggregatiod, an
commercial stereo package can achieve 205 MDS on a 2.8GHen explain the proposed ESAW.
Intel PIV PC based on local window matching].[Veksler Algorithm description. In cost aggregation, the matching
[10] proposed a fast stereo based on variable windows usiogst of a pixel is the aggregated cost of all pixels in a
integral images. Tombari et alg][presents a segmentation-surrounding support window of the center pixel. The basic
based cost aggregation strategy that runs at 18.9 MDS on ithea of the adaptive weight approach is to adjust the pegtpix
Intel Core Duo 2.14 GHz CPU, achieving the best accurameight based on color dissimilarity and geometric relattip
among existing near real-time local approaches on CPWith the center pixel under consideration. Intuitively,izgbis
However, both accuracy and speed are worse comparedassigned a higher weight if it is closer in color and distatace
the real-time local stereo on GPU platform§, [showing a the center pixel. Figure 1 second column illustrates exampl
certain gap between CPU/GPU processing power for stergfoadaptive pixel weights with respect to the center pixel.
vision. In addition, Tombari et al.9 classify the main cost The advantage of the adaptive weight approach is that it can
aggregation approaches proposed in the literature basedposserve arbitrarily shaped depth discontinuities usirige
both accuracy and processing speed on the Intel Core Duo 2wiiddow size. The disadvantage is that it performs worse than
GHz CPU. Though implementation is not fully optimized, ibox filtering for heavy-textured areas, e.g., meadows.
gives an interesting overview picture of the trade-off tkegw Gong et al. {] propose two simplifications over the basic
accuracy and computational complexity for cost aggregatiadaptive weight to achieve real-time implementation on GPU

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY

Fig. 1. From left to right: sample window, AW[], RtAW [4] and ESAW.

Iteration 1, step size =1, impact range (-1,1)

Iteration 2, step size =3, impact range (-4,4)
Impact range from

1
! 1
! 1
! 686686bb0ccscocce |
1

, 00000000 000000000 - :

e —|

! 1
! 1

Iteration 3, step size =9, impact range (-13,13)
Impact range from
previous iteration

~+...(...“..;‘...&‘..;‘....+""
0 13

Fig. 2. A 1-D example of cost aggregation: (a) conventiorgdgregation
used in [], (b) exponential step size information propagation.

We name it RtAW in the following text. First, only weights
in the reference view are used in cost aggregation. Seco
instead of using a fixed window of siz& x N, a two pass

defined as the largest pixel offset where the pixel matching
cost is aggregated into the center pixel. After each itenati
the impact range grows, first from (-1, 1) to (-4, 4), then from
(-4, 4) to (-13, 13). In this way, aggregating the matchingtso
of all pixels within range (-13, 13) just needs computation o
3 x 3 =9 pixels.

Now we generalize the toy example. Assuming that the
impact range after iteration— 1 is —r(t — 1) to r(¢ — 1),
then the maximum step siz€t) at iterationt is

sy=2r(t—-1)+1

to avoid holes or gaps, which we don’t expect to see because
closer pixels are more correlated. With this step size, the
impact range after iterationbecomes—r(t) to r(t), where

r(t) =3r(t—1)+1

With simple recursion, it can be derived that starting from
r(0) = 0, the maximum step size and the impact range are

s(t)y=3"1 and r(t)=(3"-1)/2

By using exponential step size, aggregating the costév of
pixels needs only)(log N) computations.

The idea can easily be extended to the 2-D case, by applying
a vertical pass after a horizontal pass in each iteratiois ish
the proposed ESAW cost aggregation scheme. Using ESAW
approach, aggregating the costs¥éfx N pixels is reduced
to O(log N) computations per pixel.

The complete ESAW algorithm is summarized as following:

1. Initialize the matching costsat each pixelp at every disparity

C°(p,d) = Amin(ZL (P, py) — Zr(pz — d,py), T) ®)
2. lterative cost aggregation
forte=1:T

(a) Compute offset:
s = roundd' 1) (4)

(b) Aggregate the costs horizontallyof center pixelp at
(z,y), pr at(z — s,y) andpr at (z + s,y):

c"p)= Y wep)C' V(g ®)
nd, q€{p,p,pr}

(c) Aggregate the costs verticallyof center pixelp at (z,

approach is employed: the first pass aggregates cost along), p. at (z,y — s) andpg at (z, y + s):

horizontal scanline, followed by a pass aggregating castcal
vertical scanline. This reduces the arithmetic complefibyn
O(N?) to O(N) per pixel.

C'p)= > w(g,p)C"(q) 6)

9€{pu,p,pq}

. . . . end
We propose to use exponential step size in cost aggregati®nshoose the best disparity

which greatly saves the operation count without sacrificing
data parallelism. We first explain the idea of exponential

step size cost aggregation in the 1-D case. It ta€d/)

computations to aggregate the costs of all pixels within

d = arg mdin Ct(p))

4. Post-processinglisparity map using x 3 median filter.

r = | IN/2] offset to the center pixel along 1-D scanline using Z(p.,p,) is the grayscale luminance of pixg| by elimi-

the direct aggregation method id]][Figure 2 (a) shows a

nating the hue and saturatio@!(p) is a vector denoting all

simple example of aggregating pixels within range (-13, 18)*(p, d), which is the aggregated cost of pixebfter iteration
needs computation on 27 pixels. Figure 2 (b) shows anotherC”(p) is the intermediate horizontally aggregated cast.
way of aggregation with much less computation, achieved ks/the normalized weight computed as in/.

3 iterations. In each iteration, every pixel aggregatesctists

Algorithm analysis. Figure 3 shows the reconstruction

of three pixels, itself and pixels ats and +s offset. Offset accuracy of the ESAW algorithm, for varying number of

s is setto 1, 3, 9 for three iterations. The “impact range” i

gerations (3 to 10) and bade(1.5 to 3). The average error

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY 5

- -A- -iter3 - o -iter4 —e—iter5 —a—iter6 - -a- -iter7 - <- -iter8 —o—iter9 —a—iter 10

S can be formulated as
Q
d, = arg rlginZE(q, P)(C%(q,dy) +V(dy—dy)) (9)
& g
4 V(z) = min(clz,n) ~ (10)
[
<, ‘ ‘ dq(g # p) can take arbitrary disparity valueg.(z) is exactly
v * base * ** the smoothness term widely used in belief propagation based
PoeT—— P e e—T: stereo P9, [1], penalizing disparity changes fromto ¢. The
Optimal base 310 260 260 270 28 170 190 1.80 solution to equation (9) can be computed as:
Avg. % bad pixels 13.34 10.81 956 9.04 865 847 822 828 . 0
M(g, d) = min(C%(q, dq) + V(d, - d)) (12)
q
Fig. 3. Error rate of ESAW for varying and iteration numbers. d, = arg r%in w(q, p) Z M (q,d,) (12)
P

q

rate is average percent of bad pixels (last column in Middle- T We compare equation (8) and (12), the difference is that
bury stereo evaluation online system) of all four benchmafk?2) aggregates “messagel (¢, d) and (8) aggregates “cost”
datasets. The other parameters are empirically chosen €' (¢,d). Equation (11) is about how to map®(q, d) to .

M (q,d), which is exactly the min-sum message computation

Ye =17, 7p =36, 7 =12. in [1]. This mapping has a “smoothing” effect aii’(q, d).

e, 7, are parameters used for computing the adaptive Weigﬁ\f_é(q, d_) is the lower envelop of cones roqted at each di_screte
as in [L7]. Since the computing time grows linearly with the?!SParity level and the constant truncation value. A simple
number of iterations, we choose an optimal baggving the example is illustrated in Figure 5. For more details, resder
best accuracy for each iteration number, as summarized 3¢ referred to).
Figure 3. Sensitivity of the average error rate with respect
each parameter is shown in Figure 4.

8.4 20 20 DR
15 F 15 F pE
83 r :
10 W 10 : =
1 2 3 a4 Tr
8.2 L L L 5 L L L 5
26 31 36 41 46 7 12 17 22 27 2 7 12 17 2)))))))
Yp Ye - Fig. 5. An illustration of min-sum computation (without treation). Output

is the lower envelop of four Cones rooted(g,, h(fp)). Dashed blue curve
showsh(fp), dotted red curve shows the lower envelop.

Fig. 4. Sensitivity analysis of ESAW parameters.

It is observed that the accuracy improves with the number loft view P,
of iterations, though improvement gets very marginal after e .

iteration 7. right view - -

Our aggregation scheme does not produce exactly the same

result as {] or [17]. But all three approaches have one thing 2dgregated cost aggregated message

in common: in general, they tend to assign higher weights to « e sum

closer pixels. Figure 1 shows the weights for three cases: 1) .l — o L P
window has constant color; 2) window has sharp color change; ™ p— D
3) a real window from Tsukuba image. In all three approaches, disparity) disparity '

pixels assigned high weights are close to the center in tefms @ ®)

both color and geometric distance. That's why they generz?:te

di it £ simil lit ig. 6. A synthesized example showing difference of agdhegamatching
ISparity maps ot similar quality. costs and aggregating messages. Ground truth dispariixafypis 2. (a) blue
curve shows the result of aggregating matching costg,farhere minimum is

- - : reached at disparity 1. (b) blue curve shows the result ofegding messages
B. Exponentlal Sep Sze Message Propagation Algorlthm for p, where minimum is reached at true disparity 2. Messagesanpated

Motivation. One basic assumption in the local cost aggreg#iem matching costs using equation (11). In this examplér) = 10]z|.
tion is that pixels within the window have the same disparity
i.e. the local window is frontal plane. The optimal solutisn ~ In Figure 6, we use a toy example to show the difference
. _ 0 between aggregating matching costs and aggregating mes-
d= argmdme(q,p)C’ (¢,d) (8) sages. Assuming true disparities of pixel, p,p; are 1, 2,
a 3 respectively, and totally there are only three dispagtels.
If we relax the constraint of frontal plane to allow small-disin Figure 6 (a), we show the matching cost of each pixel at
parity variation within the window, the optimization preh all 3 disparity levels. The blue line is the summation of sost

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY 6

of all pixels. In Figure 6 (b), we show the message of each (d) Map costs to messagescost 2nsg):
pixel at all 3 disparity levels. Messages are computed from
matching costs using equation (11). Blue curves in Figure
6 (a) and (b) show the aggregation results. By aggregating (e) Aggregate the messages vertically

messages instead of matching costs, the blue curve in Feigure Clp) = S we,p)Mg) (16)
(b) can reach minimum at the true disparity. This is becanise i 0E (pampal}

highly textured areas, pixels may have large matching grror R
at disparity levels deviating a little from the true dispyari

In this examplep;, p,. have large matching costs at disparity We use the fast min-sum algorithm as ifi] [to reduce

2, resulting in a large aggregation cost pfat disparity 2. the complexity fromO(¢2) to O(¢) (¢ is the total number of

Aggregating messages tend to have a “smoothing” effect g, 4 ity evels). The fast algorithm to méfp, d) to M (p, d)
the matching costs as illustrated in Figure 5, therefores it is

more robust to small variation in disparity.
Figure 7 shows a more complicated synthesized example.

M(p.d) = min(V(d—d)+C"(p,d)) (15)

nd

Assuming that disparity increases from left to right lingar M) = C) (17)
from 0 to 64 pixels, the right view is synthesized from the ho = minM(p,d)+n (18)
left view and the given disparity map. The second row showStor ¢ —1:1:¢-1

the disparity results of ESAW and ESMP (parameters are Mp.d) = min(M(p.d— 1)+ e M(p.d)) 19)

the same as those in Section V). The disparity of ESMP is
much smoother than the disparity of ESAW. The third row end
shows error pixels (whose estimation errerl pixel) of two M(p,t—1) = min(M(p,£—1),h) (20)
algorithms. In this case, the error rate for ESAW2is of the ford—f—2:—1:0

error rate for ESMP. ESMP demonstrates to be much more
robust than ESAW when true disparity deviates from frontal M(p,d) = min(M(p,d+1)+c,M(p,d),h) (21)

plane assumption. end

Algorithm analysis. Figure 8 shows the reconstruction
accuracy of the ESMP algorithm, for varying number of
iterations (3 to 10) and bage(1.6 to 3.1). The average error

rate is average percent of bad pixels (last column in Middle-
ight v Ground truth disparity pury stereo evaluation online system) of all four benchmark

| ' N datasets. The other parameters are empirically chosen
: Ve =18, v, =29, T =17, A=0.15, c =1, n = 0.0375d,,,
¥ whered,,, is the maximum disparity value. Sensitivity of the

ESAW result ESMP result

7= e

average error rate with respect to each parameter is shown in
Figure 9.
@ - -A- -iter3 - - -iter4 —e—iter5 —a—iter6 - -a- -iter7 - < -iter8 —o—iter9 —a—iter 10
i'; 2
error >1 (ESAW) error >1 (ESMP) g

o 15
@

Fig. 7. A synthesized example to demonstrate that ESMP pesda more % 10

accurate disparity map than ESAW when true disparity is nfobtal plane. §
x

Algorithm description. As an extension of the ESAW
algorithm, ESMP shares the same steps 1, 3 and 4 of ESAW. #of iterations 3 4 5 6 7 8 9 10

The difference lies in step 2, as shown in the following: Optimal base 810 260 260 300 180 280 180 250
Avg. % bad pixels 12.06 9.64 8.56 7.86 7.71 7.42 7.37 7.52

2. lterative cost aggregation
forte=1:T . . .)
(a) Compute offset as in equation (4) Fig. 8. Error rate of ESMP for varying and iteration numbers.

(b) Map costs to messagescpst 2nsg):))
Compared to standard belief propagation (BP) based global
M(p,d) = min(V(d~d)+CD(p,d) (13) optimization, ESMP has three differences:
« Global optimization optimizes a global energy function.
ESMP instead aggregates messages coming from a pre-
chp) = S e M) (14) defingd bounded support like other local aggregation
a€lpr e} algorithms.

(c) Aggregate the messages horizontally

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY 7

76
15
74
73

20
15

10

jz | ﬁ corresponding to one thread block. The block dizex b,, is

W ™ \ adjustable, but it must be a multiple of 32 to be divided into
I 10 Mrvvsrirrereenr 5 multiple warps. Block width b,, should be a multiple of 16

o S " . . o ., toallow coalesced memory access pattern. In our baseline,
poa o E s g nn T block size is fixed to bel x 32. After each aggregation,

20 the aggregation cost is copied into texture memory to save

B 15 | management of out-of-boundary addressing.
____,,,.4 0L For ESAW at iteration 9 on Teddy dataset, the baseline

e IiSaseassesssssetttl implementation takes about 99.9ms. The time spent on each

o5 1 15 2 o5 1 15 2 25 kernel function, memory copy to or from the host CPU, and
1677 10-A memory copy time on the GPU device are illustrated in Figure
12 “ESAW baseline”. About 35% of the time is spent on

Fig. 9. Sensitivity analysis of ESMP parameters. memory copy on the GPU device, and 61% of the time is

spent on horizontal/vertical iterative aggregation.

ESMP aggregates information using an exponential stgp Optimization technigues

size, while the standard BP always uses step size 1.
Messages in ESMP are isotropic, independent of the T€xture vs. global memory. Both texture memory and

direction where the message is sent to, thus reducififpP@ memory can be used for storing the costs. We simply
the memory tol/4 of what's needed in the Standamsubstitute texture memory with global memory without any
BP. The huge message storage requirement (about 1étgim_ization on memory access pattern. The overall pracgss
for 640 x 480 with 200 disparities in the standard BP)t'm? Increases to 113.9m_s (Figure 12 ES.AW global mem-
presents great challenge for embedded systems and). The memory copy time on the GPU is mu<_:h reduced,
cessors exhibiting memory bandwidth limitations. Othd!t 299" _H kernel is slowed down by about 4 times. The
solutions include compression techniquéd and search reason |s_that 75% of load mstrulctlons are un-coalescgsi. It
space reduction1]. However, those solutions eitherWOrth noticing thakernel aggr _Vis sped up byi.59>x. This

require an additional coding/decoding process, or makifRy PEcause memory access pattern dggr _V is naturally

data structure less regular and parallelization on mum_oalescegl. For the same coalesced memory transactiobal glo
gnemory is usually faster than texture memory.

Coalescing memory accesse3o further improve the per-
formance, we organize global memory accesses into coaesce
transactions. The reason for the un-coalesced loaalggn H
is that the offset value in equation (4) may not be a multiple

core platforms more difficult. ESMP, on the other han
keeps the highly parallel data structure.

IV. MAPPINGALGORITHMS TO THEGPU

On a high level, ESAW and ESMP are highly data parallgyf 16. This will violate the starting address alignment rieeu

algorithms suitable to be implemented on a GPU architectufgent in the coalesced access pattern. Figure 10 illusttiages
However, there are still various choices to be made in coggse whens = 3. Each thread needs to read 3 pixels at
optimization to achieve the best performance. Followingsu (; — 3 4, (z,y), (z + 3,y). Though 16 pixels atz,y) can

tions are what we found most related to the performance, Firge accessed in the coalesced pattern, the left and righetoffs
which kind of off-chip memory should be used for storing thgjxels cannot be loaded in a coalesced way.

costs after each aggregation pass? Second, how to organize
off-chip memory accesses to improve the bandwidth utitirat
efficiency? Third, whats the optimal thread block size? Hgur
where the intermediate results should be stored and when to
transfer data to off-chip memory? We start from a straight
forward implementation of ESAW, then gradually optimize th
code by answering the above questions.

16 pixels (half warp)

I~ left offset by J pixels
right offset by 3 pixels]

Fig. 10. An example of un-aligned memory access pattern nizdwatal
A. Baseline implementation aggregation, whes = 3.

In ESAW, computatiorkernel.s include: _ The solution for coalescing memory accesses is to use the
« rgb2grey (compute luminance from a color image); on-chip shared memory, as illustrated in Figure 11. Chunks
« init_cost (initialize matching cost in equation (3)); of pixels are first read from global memory into the on-chip

« aggr _H (horizontal aggregation in equation (5)); shared memory in a coalesced way, and then threads load data

- aggr _V (vertical aggregation in equation (6)); from the shared memory for computation. Accessing data in

« sel ect _disparity (choose the best disparity inthe shared memory does not require address alignment and is
equation (7)); as fast as registers. Coalescing memory accesses redeces th

« median_filter (post-processing). processing time to 53.5ms (Figure 12 “ESAW coalesced”).

In eachkernel, the same computation is done on every pixel. Tuning thread block size. Tuning block size involves
Naturally, the image is segmented intg@ad of blocks, each intricate trade-off between per block efficiency and ocaugya

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY 8

on-chip shared memory 120
W median filter
100 - O select_disparity
M init_cost
80 —
lobal
glol admegmry C(p,d) } - O rgb2grey
— i E & | W agar V
d=1 e ggr_)
: 32'p, 32 O memcpy(on GPU)
d =DL—1 20 & memcpy(CPU)
B cost2msg
0
ESAW ESAW ESAW ESAW ESMP ESMP
Fig. 11. lllustration of bringing data from the off-chip meny to the on- baseline gm"e’t:(')ry coalesed tune | baselina v anized
chip shared memory. Every block of sikg x b,, brings pixels inside this size

block, and extends 32 pixels to the left and right.

Fig. 12. Profile of execution time of different implementats on Teddy
Total number of bytes loaded from the global memory in oriataset, at iteration 9. (Best view in color)

horizontal pass is

(94 (14 64/by,)4ADL)hw nels: aggr _H, aggr _V in “ESAW tune block size”, and
. . . . aggr _H+, aggr _V+, cost 2nmsg- in “ESMP reorganized”.
whereh,w are image height and widtl, is the number of Clearly the performance is memory bound. Figure 12 shows

d:c?p:;l]r.ny levels. So mcreasléngt;.block width, hglps redutc:; the time spent on eackernel in the above implementations
off-chip memory accesses. But increasinggmay decrease €on Teddy image dataset at iteration 9.

occupancy because eacthread block needs more resources.
We search for the best block size configuration that gives the TABLE |I

best performance. With tuning, computation time reduces to COMPUTATIONAL AND COMMUNICATIONAL COST FOR THE MOST
43.4ms (Figure 12 “ESAW tune block sizeaggr H and TIME-CONSUMING KERNELS

aggr _V count for about 92% of the total processing time.

) S arithmetic off-chip off-chip op/s BW

So far, we have discussed about optimization for ESAW. operations read(B) write(B) (Gflop/s) (GBJs)
Next we will discuss implementation of ESMP. aggr _H (33 +50hw (94 60)hw Alhw 19.4 345
- aggr_V (33+50)hw (9+ 120)hw 4Lhw 22.7 63.9
Reorgamzmg data accgssesThe most natural way of agar H (331 80hw (94 60k Athw 287 334
extending ESAW to ESMP is to add one méeenel function aggr_v+ (33 +80)hw (94 120)hw 4hw 33.9 62.8
cost 2nsg that maps the costs to messages using equatiQrf§st2mg- 3¢thw Athw Alhw 216 577

(18)—(21). A straight-forward implementation foost 2nsg h, w are image height and widti. is the total number of disparity levels.
kernel takes 90.5mscost 2nsg contains a forward pass

(equation (18)-(19)) and a backward pass (equation (20)rjqre 13 shows processing time of our final version

(21)). We found that performance farost 2nsg kernel SESAW t block size” and “ESMP ized” for the f
is 22.2 Gflop/s, and bandwidth utilized is 59.3GB/s. Thg_ L o e A a1

cost 2nsg kernel is memory bound.

It is not practical to use the on-chip shared memory to ESAW ESMP
alleviate off-chip memory accesses, because each threat$ n& ® %
4¢ bytes space to store cost values. This means each 60 60 —e—tsukubg
needs 8k bytes on-chip memory whén= 64, so at most : 4°__3§m§g_/_a_/yu(£f§/_"f___ e |
2 warps can run concurrently on one SM, leading to ar‘g 2 e 20 _/./-/'/'/'/“l —o—cones
extremely lowoccupancy of 0.08. Also for stereo requiring = ok - 5 S0 ; " -
large number of disparity levels, this technique is notaioial. iteration iteration

We propose a more practical solution. At the end of each
aggregation, costs are written back to the global memoxy, aﬂg. 13. Execution time of “ESAW tune block size” and “ESMPmganized”
then they are read from the global memory at the beginnigg four datasets, for 3 to 10 iterations. Red dashed line §33imows where
of cost 2nsg kernel. This motivates us to integrate the for~eal-time performance can be achieved.
ward pass otost 2nsg with the aggregatiokernel, which
slightly increases the complexity of the aggregati@nnel,
but saves half of the global memory accessesdst 2msg. V. EXPERIMENTAL RESULTS
We rename the reorganizédrnels asaggr _H+, aggr _V+ In this section, we compare both accuracy and system
andcost 2nmsg- . With this techniquekernel execution time throughput with existing stereo systems. Our implemeniati
for cost 2nmsg is sped up by abou2x. The total process- uses all optimization techniques discussed in Section e T
ing time reduces to 65.2 ms for ESMP (Figure 12 “ESMRBccuracy is measured by the average percent of bad pixels
reorganized”). for non-occluded, all, and discontinuous areas on all four

In Table Il, we summarize the arithmetic operation courtenchmark datasets. The throughput is reported as average
and bandwidth used for the most time-consumikg- MDS on Teddy and Cones dataset (MDS for Tsukuba and

sing time

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY

Venus is bit lower due to the higher overhead for small imadgke accuracy-speed trade-off space.

size).

Comparison to RtAW[4] and AW[17]. Figure 14 shows
trade-off between the average error rate and algorithm co
plexity in ESAW, RtAW[M] and original window based
AW[17]. It is worth noticing that in RtAW and AW after

fixing v.,v, and 7, the window size decides both algorithm O 25

© square window[5] o shiftable window[5] © oriented window[5]
e adaptive window[5] * boundary guided[5] x adaptive weight[5]
+ HBP[15] 2 DP[11] s WeaklyTex[13]

30

<

complexity and accuracy. However in ESAW after fixing v, 2 20 e © : ;
andr, the accuracy depends on iteration numbeand base 3 15 - ~-A.‘:-&‘ . ¢ e
b. The algorithm complexity depends Gh. It can be seen ® 1| ESAWIeST10 "800 ’ .
in Figure 3 that the optimal base is not the one having s s ESMP iter3~10
largest impact range or the effective window size, meanir o :
in ESAW the effective window size itself cannot decide th 0 ! 2 3 4 5 6 7 8
accuracy. Therefore, a fair comparison is to compare tl
accuracy complexity trade-off. 14
In Figure 14, parameters for ESAW are the same as 3 12 | °
Figure 3.7.,7, andr are the same for ESAW and RtAW. For g 104 ° « °
RtAW, we show results of varying window size {17, 33,65, 8 81 A
97}. For AW, we use the code provided onlin€], and show § 61 ESAW“eré:.;g,% x .
results of varying window size if17, 33. Program is aborted % *] "Af’sé * .
due to lack of memory on a 4G RAM machine for window siz § Z ESMP iter3~10
65 and 97. Algorithm complexity is estimated by arithmeti 0]) 3 4 5 6 7 8
operations(ops) per pixel per disparity level. For ESAWSit i processing time per disparity evaluation in log, scale (ns)

about27 - 5, because 5 ops are needed to compute Eq. (5) or

(6). For RtAW it is abou®- (2W,—1) (W is the window size), Fig. 15. Error rate versus processing time for real-timeest@n the GPU.
becaus@IV, —1 ops are needed to compute horizontal/vertical
aggregation. For AW it is abouwiV2 — 1 to compute window-
based aggregated error, according to Eq. (7)lif].[Clearly
complexity of ESAW is the lowest among three algorithms at
comparable accuracy. We also implement message aggnegatio esaw iter 5 ~. = 17, v, = 36, 7 = 12, b= 2.60

TABLE Il
PARAMETER SETTINGS INESAW AND ESMP.

for RtAW. Results of ESMP and RtAW+MP are also shown. iter 9 . =17, v =36, T =12, b=1.90
Parameter setting for ESMP is the same as in Figure.8. ESMP iter8 ~.=18, 7p =29, 7 =17, A=0.15, c= 1,
7p, T, A andn are the same for ESMP and RtAW+MP. For n = 0.0375dm, b=2.80

both ESAW and RtAW, we see message aggregation improves

accuracy at the cost of higher complexity compared to directTable IV shows quantitative comparison results using four

cost aggregation. benchmark datasets. Parameter settings are listed in Mable
Disparity maps are shown in Figure 16. In terms of accuracy,

ESAW TETESMP T RIAW 27 RUAWMP = AW ESMP at iteration 9 outperforms all other real-time or near

s s 17 x 17 real-time stereo systems on GPU except for WeaklyTex Gh [
2 ., WeaklyTex incorporates color segmentation and plane dittin
= 33033 and it is much slower than ESMP. At comparable accuracy,
o] 65 65 33x33 the proposed systems can achieve much higher throughput
%" compared to existing stereo systems. We also show C code im-
& 9 97%97 plementation result of ESAW for reference on an off-theshe
ESAW iter3- 10 Core 2 Duo desktop CPU (Intel E6750 2.66GHz) with 2GB
7 ; ; ESMP iters—‘lo . . .
i i . - M Y memory. Please note this result is based on single-threaded

scalar code without full optimizations, which probably isch
slower than the best code (fully optimized, using multiple

o 14 A ety trade-off of ESAW. ESMP. RIARLAWMP threads and SSE vector instructions) possible.
ig. 14. Accuracy-complexity trade-off o A . REAREAW+MP, . . . - o
and AW.z-axis shows arithmetic operation count per pixel per dispéevel. Comparison of implementation efficiency.lt is important

y-axis shows the average error rate. Parameter settingsadee én text. to note that some previous works are not implemented on ex-
actly the same platform. For a fair comparison across differ
Comparison to other real-time stereo systemsFigure platforms, we made our best effort to compare implememiatio
15 plots error rates for non-occluded and discontinuouasarefficiency with RtAW (adaptive weigh83 x 33 in [4]) and
versus the normalized processing timelig, scale (ns per HBP ([15]), as shown in Table V. The estimation of memory
disparity evaluation, which is the reciprocal of MDS), feal- access is a lower bound, based on the assumption that in each
time stereo systems on the GPU. The proposed ESAW agmaks cost values are at least read and write once. Compared to
ESMP suggest a number of Pareto-optimal configurations BBAW, RtAW achieves comparable computational efficiency

op/(pixel-DL) (in log2 scale)

10

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY

TABLE IV
ACCURACY-SPEED COMPARISON OF REALTIME OR NEAR REAL-TIME STEREO SYSTEMS THE DATASET AND ERROR RATE ARE THE SAME AS
MIDDLEBURY ONLINE EVALUATION STEREO SYSTEM 2€].

Tsukuba Venus Teddy Cones Err MDS
vis all disc vis all disc vis all disc vis all disc
GPU local ESMP(iter 8) 14 19 71 0.4 1.0 27 8.6 152 195 56125 132 742 1444
ESAW(iter 9) 19 25 97 1.0 1.7 6.9 8.5 142 187 6.6 127 1482 194.8
ESAW(iter 5) 14 24 71 1.6 26 129 94 16.0 194 86 15.6 917.9.6 307.2
RtAW([4]) 23 36 112 36 46 198 109 188 232 59 143 138 11.04.112
RealTime([L4]) 9.7 15.7 117.0
global WeaklyTex([6¢]) 1.0 1.8 5.3 0.2 05 1.7 6.7 121 147 4.2 10.7 106 5.8 9.4
HBP([15]) 15 34 79 0.8 19 9.0 8.7 13.2 172 46 116 124 7.7 17.0
DP([11]) 21 42 106 19 30 203 72 144 176 6.4 13.7 165 9.8 52.8
ORDP([]) 14 7.4 2.4 135 20.0
CPU local ESAW(iter 9) 19 25 97 1.0 1.7 6.9 8.5 142 187 6.612.7 144 82 2.3
ESAW(iter 5) 14 24 71 1.6 26 129 94 16.0 194 86 15.6 917.9.6 4.2
aggregate({]) 30 44 132 35 46 255 107 175 234 49 12.7 113 11.2.918
Integral([LO]) 2.4 122 1.2 13.4 <1
global BP([L]) 19 38 101 12 22 156 231 309 338 206 276 290 16.68 1
RealTimeDP(®]) 2.9 156 6.4 25.3 100.0
AW([17]) 14 19 6.9 0.7 12 6.1 7.9 13.3 186 4.0 9.8 8.3 6.7< 0.1

; ESAW iteration 5

(op/s). We believe this is due to the strong data locality i

the RtAW algorithm. Another point worth noticing is that the

operation count of ESAW at iteration 4 is only ab&0 of

RtAW, but they generate disparity maps of the same qualit i

TABLE V ESAW iteration 9

COMPUTATIONAL AND COMMUNICATIONAL EFFICIENCY COMPARISON.
op/s BW used # of ops memory
(Gflop/s) (GBIs) (G) accesses(B) '
ESMP iter5 28.0 50.5 1.00 1.80]
ESAW iterd 20.9 48.1 0.39 0.90 ‘
RtAW 20.3 2.1% 1.30 0.147 ESMP iteration 8
HBP 4.3 0.5% 2.55 0.6471
Note: ESMP and ESAW are run on GTX 8800, with peak performafcgs0 Gflop/s
and BW 86.4 GB/s; RtAW]] is run on ATl Radeon X800, with peak performance of
200 Gflop/s and BW 35.8 GB/s; HBFEL{] is run on Geforce 7900 GTX, with peak g A
performance of 255 Gflop/s and BW 51.2 GBfestimation is a lower-bound. i) ‘

Fig. 16. Disparity map results.
VI. CONCLUSIONS 9 pariy map

In this paper, we propose a high performance stereo system
based on hardware-aware software design concept. Ounsyste REFERENCES

consists of two new algorithms: exponential step size adapt - .
. . . I[I'H P. F. Felzenszwalb, and D. P. Huttenlocher, Efficienti@ePropagation
weight (ESAW) and exponential step size message propagatioo, garly Vision, International Journal of Computer Vision, 2006

(ESMP). ESAW can effectively reduce the operation coufff] S. Forstmann, J. Ohya, Y. Kanou, A. Schmitt, and S. Thgeri Real-
time stereo by using dynamic programmiriyoc. of CVPR Workshop on

f_rom Q(N) to Q(log N) per pixel, whereN is Fhe aggrega- o e Y e s Their Uss 2004
tion window size. ESMP extends ESAW to Incorporate th[§] M. L. Gong and Y.-H. Yang , Near real-time reliable steremtching

smoothness term, thus can better model non-frontal planes. using programmable graphics hardwaPec. of CVPR, 2005
| M. L. Gong, R. Yang, L. Wang, and M. W. Gong, A Performandedy

We also discuss various choices in code optimization. : A . !
. s . , on Different Cost Aggregation Approaches Used in Real-TiStereo
stead of doing optimization in an ‘ad hoc’ manner, we analyze \;,iching, international Journal of Computer Vision, 2007
the trade-offs and bottleneck in the implementation toyfullls] w. M. Hwu and D. Kirk, UIUC ECE 498: Programming Massively

understand the efficiency of our code. Parallel Processors _ _ _
] Point Grey Reseach IncTriclops Library Performance on Sereo Vision,

With the fast evolvement of computer architecture, af http: // waw. ptgrey. com suppor t/ kb/ dat a

interesting future research direction may be to investiggt] D. Scharstein and R. Szeliski, A taxonomy and evaluataindense
hardware-software co-design for real time stereo. two-frame stereo correspondence algorithmhaternational Journal of
Computer Vision, 2002
[8] F. Tombari, S. Mattoccia, L. D. Stefano, and E. Addimagn@iassification
ACKNOWLEDGMENT and performance evaluation of different aggregation cdets stereo
. . matching,Proc. of CVPR, 2008
We would like to thank Prof. Mlnglun Gong and Petefg] F. Tombari, S. Mattoccia, L. D. Stefano, and E. AddimgnNaar real-

Milder for their helpful suggestions and discussions. time stereo based on effective cost aggregati@®R, 2008

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY

[10] O. Veksler, Fast variable window for stereo correspom using
integral imagesProc. of CVPR, 2003

[11] L. Wang, M. Liao, M. L. Gong, R. Yang and D. Nister, Highu&lity
Real-Time Stereo Using Adaptive Cost Aggregation and Dyoaro-
gramming,3DPTV, 2006

[12] L. Wang, H. Jin, and R. Yang, Search Space Reduction feFNstereo,
Proc. of ECCV, 2008

[13] R. Yang and M. Pollefeys, Multi-resolution real-timéeeo on com-
modity graphics hardwardiroc. of CVPR, 2003

[14] R. Yang, M. Pollefeys, and S. Li, Improved real-timersteon commod-
ity graphics hardwareRroc. of CVPR Workshop on Real-time 3D Sensors
and Their Use, 2004

[15] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao and D. NistegaRtime
Global Stereo Matching Using Hierarchical Belief Propagat BMVC,
2006

[16] Q. Yang, C. Engels and A. Akbarzadeh, Near real-timgestefor
weakly-textured scene&MIVC, 2008

[17] K. J. Yoon and I|. S. Kweon, Adaptive Support-Weight Apach
for Correspondence SearctEEE Trans. Pattern Analysis and Machine
Intelligence, 2006

[18] http://vision. mddl ebury. edu/ st ereo/ code/

[19] T.Yu, R. S. Lin, B. Super, and B. Tang, Efficient messag@esentations
for belief propagationProc. of ICCV, 2007

[20] S. Rogmans, J. Lu, P. Bekaert, and G. Lafruit, Real-TiBtereo-
Based View Synthesis Algorithms: A Unified Framework and |EaBon
on Commodity GPUsSgnal Processing: Image Communication, Special
Issue on Advances in Three-Dimensional Television and Video, 2009

[21] J. Lu, S. Rogmans, G. Lafruit, and F. Catthoor, Streaentfic Stereo
Matching and View Synthesis: A High-Speed Image-Based Bamgl
Paradigm on GPU§ansactions on Circuit Systems and Video Technology,
2009

[22] I. Ernst and H. Hirschmuller, Mutual Information Bas&&mi-Global
Stereo Matching on the GPWSVC, Part |, LNCS 5358, 2008

[23] H. Hirschmuller, Stereo processing by semi-global ¢hatg and mu-
tual information, LIEEE Transactions on Pattern Analysis and Machine
Intelligence, 2008

[24] C. Zach, M. Sormann, K. Karner, Scanline Optimization $tereo On
Graphics Hardware3DPTV, 2006

[25] J. Sun, N.-N. Zheng, and H.-Y. Shum, Stereo MatchingngsBelief
Propagation|EEE Trans. Pattern Analysis and Machine Intelligence, 2003

[26] D. Scharstein and R. Szeliskiliddlebury Stereo Evaluation - Version
2, http://vision.mddl ebury. edu/ stereo/ eval /

11

