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ABSTRACT 
 
In this paper, we analyze the security problem of user informa-
tion associated key generation (UIAKG) systems. We consider 
three kinds of attacks from the hacker: the exhaustive search 
attack, the authentic key statistics attack and the device key 
statistics attack. Under each attack, we give the estimate of the 
number of guesses the hacker has to make in order to access the 
system. Such analysis provides useful guidelines in designing a 
UIAKG system. The analysis also suggests that a user-
dependent UIAKG is more secure than a user-independent one. 
Two UIAKG systems using face images as inputs are designed 
and compared to support the above theoretical analysis.   
 

1. INTRODUCTION 
 
Security applications often need certain private information to 
authenticate the user’s privilege. Digital keys are widely used to 
serve such a purpose in many applications. For example, we use 
a PIN number as the key to access ATM accounts; we use a 
password as the key to login the computer system; we also use 
keys for data encryption / decryption.  

Given certain input from the user, a traditional key genera-
tor often generates a long key at random [1][2]. Such strategy 
can prevent the hackers’ exhaustive search attack as the entire 
key space is very large. However, a long key is easily forgotten 
and not user-friendly. Hence it has a high false reject rate (FRR).  

Instead of asking users to memorize long keys, some recent 
key generation systems [3]-[10] have been trying to generate 
keys based on the users’ personal information, e.g., the users’ 
biometric information. We call such systems user information 
associated key generation (UIAKG) systems. Compared with the 
traditional key generator, UIAKG systems are often designed 
based on a close set of subjects. Such set of subjects form the 
subject space of the key generation system. The keys generated 
by UIAKG systems are thus limited by the variation in the sub-
ject space, and cannot be both distinguishable and arbitrarily 
long. It is therefore very important to know how secure UIAKG 
systems really are under the above constraints.  

Given the subject space, a UIAKG system can be either 
user-independent [4][5][6] or user-dependent [7][8]. A user-
independent UIAKG system creates a single piece of device, 
which can be used to generate keys for all subjects in the subject 
space. This is similar to the traditional key generation systems, 
except that the subject space is a close set. A user-dependent 

UIAKG system, in contrast, will create many devices, one for 
each subject. A subject can only access the device created spe-
cifically for the same subject, and will be denied if he/she wants 
to access a device belonging to another subject. In general, since 
the devices created by a user-dependent UIAKG system can be 
fine-tuned for their authentic subjects, they tend to have better 
authentication performance (in terms of false accept rate (FAR) 
and false reject rate (FRR)) than the devices created by user-
independent UIAKG systems. On the other hand, although there 
has not been a proof which shows that user-independent UIAKG 
systems are more secure than user-dependent UIAKG systems, 
there is a wide concern that a user-dependent UIAKG system 
might expose the user’s identity in an inexplicit way and is thus 
insecure. 

In this paper, we present a comprehensive analysis on the 
security of general UIAKG systems. We classify the hacker’s 
attacks into several categories, and show how robust a UIAKG 
system is under these attacks. Such analysis also serves as guide-
lines when designing a UIAKG system. Meanwhile, our analysis 
suggests that a user-dependent UIAKG system can be secure if it 
is carefully designed. Experimental results also demonstrate that 
user-dependent UIAKG systems outperform user-independent 
systems.  

The paper is organized as follows. In Section 2, we briefly 
describe two biometrics-based key generation systems, one be-
ing user-independent and the other being user-dependent. In 
Section 3, we detail the security analysis for general UIAKG 
systems. Experimental results are shown in Section 4 and con-
clusions are given in Section 5.  

 
2. TWO TYPICAL UIAKG SYSTEMS 

 
In this section, we introduce two UIAKG systems in the 
application of key generation from subject face images. Note 
that the detailed algorithms described below can be replaced by 
other biometrics such as fingerprints or iris images, and by other 
user inputs such as passwords or passphrases. However, the 
general frameworks of the two systems are applicable to many 
other user inputs.  

The first system is user-independent. It creates a single 
device for generating keys for all the subjects, as shown in 
Figure 1. The biometric features are first extracted from the 
biometric data using the feature extraction module. For example, 
we use Principal Component Analysis (PCA) [11] to extract the 
eigen-coefficients from the data as the biometric features. A 
user-independent key generator then produces the authentic keys 



of the subjects based on the biometric features. In this paper, we 
binarize each feature into 1 bit by a user-independent threshold, 
which is the global mean of the feature values for all the subjects. 
Some of these features are selected as distinguishing features 
based on the separation between the authentic and imposter 
values. A secret sharing method [5] is then used to test whether 
all the bits of the input biometrics matches with the authentic 
bits, which are computed from the distinguishing features. This 
process resembles the algorithm used in [5].  

 
Figure 1 A user-independent key generation system. 

 
Figure 2 A user-dependent key generation system. 

Figure 2 shows a user-dependent UIAKG system. The 
system creates different devices for different subjects. For 
example, the device for subject X contains a key generator 
specifically designed for him. When subject X tries to access the 
device, the device will generate an authentic key and grant the 
access. If subject Y also tries to access the device, the device will 
generate an invalid key, which denies the access. In this paper, 
we will refer to such invalid keys as the imposter keys.  

To design such a system, we first extract biometric features 
using the feature extraction module, which can be shared by all 
the devices. Then the user-dependent key generators are 
designed based on the biometric features. In this paper, we 
design the key generators such that each feature is binarized into 
1-bit by a user-dependent threshold to minimizing the 
authentication error rate (FAR and FRR). Interested readers are 
referred to [8] for more details about the algorithm.  

 
3. SECURITY ANALYSIS FOR UIAKG SYSTEMS 

 
The hackers have many ways to break into a key generation 
system. In this section, we examine the average number of 
guesses they have to make in order to achieve the authentic key 
using different attacking methods. Such analysis also serves as a 
guideline for designing a secure UIAKG system (e.g., a system 
that denies the access after the failure of a certain number of 
trials).  

3.1. Exhaustive Search Attack (ESA) 
If the hacker does not have any information about the subject 
space or key statistics information, he/she has to perform an 
exhaustive search in the entire key space. Let the key length be 
L. If the key space is very large, i.e., L is very large, the 
expected number of guesses by exhaustive search is roughly:  

12 −≈ LN              (1) 
Therefore, a longer key is more secure under ESA. This is a 
well-known result.  
 
3.2. Authentic Key Statistics Attack (AKSA) 
If the hacker knows the statistics of the authentic keys generated 
by the key generator system, he/she may try to guess the keys 
smartly. Let Misi ,,2,1, L=  be the M subjects considered 
during the design of the key generation system. Let  

MiKi ,,2,1, L=  be their corresponding authentic keys. Since it 
is possible for a key generation system to generate the same 
authentic key for different subjects, we denote PjK j ,,2,1,' L=  

as the keys among MiKi ,,2,1, L=  that are unique and ordered 
by their frequency Pjf j ,,2,1, L= . That is, we assume 

Pfff ≥≥≥ L21 . The estimated number of guesses the hacker 
must make is thus:  

∑
=
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P
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jAKSA fjN
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   (2) 

Equation (2) assumes that the hacker makes the guess in the 
order of the authentic key frequency (from high to low), which 
is the best strategy he/she can use. Equation (2) is also used in [4] 
for security analysis, which is given the name guessing entropy 
[12][13].  

In a user-independent key generation system, once the 
feature vectors and the thresholds are determined, the keys for 
all the subjects are determined. Therefore, in order to increase 
the guessing entropy, the system designer must select the feature 
vectors and thresholds very carefully. This is not an easy task, as 
tuning the feature vectors and thresholds may also affect the 
FAR and FRR of the system. The system designer usually has to 
make a tradeoff between the guessing entropy and the FAR/FRR.  

In a user-dependent key generation system, such problem 
does not exist, thanks to the different feature vectors and 
thresholds one may use for different subjects. The system 
designer can easily select different authentic keys for different 
subjects, because each subject has his/her own feature space, 
which can be binarized per the system designer’s wish 
independently. As long as the size of the entire key space is 
larger than the number of subjects, i.e., ML >2 , a user-
dependent system designer can always make sure that 

MiKi ,,2,1, L=  are all different from each other, resulting the 
largest possible guessing entropy: 
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3.3. Device Key Statistics Attack (DKSA) 
If the hacker knows the subject space of the system, he/she may 
probe the key generation system by inputting the subject 
information and collecting the statistics of the generated keys. 



Given such statistics, the hacker may have better ways to guess 
the authentic key. Since such attack focuses on a single piece of 
device, we name it the device key statistics attack (DKSA).  

In a user-independent key generation system, there is only 
one single device. When the hacker inputs a subject to the 
device, he/she will always get an authentic key. Therefore, the 
DKSA for a user-independent key generation system is 
equivalent to its AKSA.  

However, in a user-dependent key generation system, the 
DKSA is no longer the same as the AKSA. Given a device 
which belongs to a single subject, only the subject who owns the 
device will result in an authentic key. The remaining subjects 
will get some imposter keys which might be different from their 
own authentic ones.  

By probing the device with all the subjects, the hacker can 
collect a set of unique keys, denoted as PjK j ,,2,1,' L= . We 

may order these keys by their frequency Pjf j ,,2,1, L=  in 

non-decreasing order, i.e., Pfff ≤≤≤ L21 . The problem is, 
following which order the hacker should try these keys.  

A UIAKG system often needs to improve its authentication 
performance by reducing FAR and FRR. However, such 
property can also be utilized by the hacker to attack the system. 
For instance, if the hacker knows that the system’s FAR is very 
low, he/she will try the keys in the order PKKK ',,',' 21 L . This 
is because a low FAR of the device implies that the authentic 
subject will not share his/her key with many other subjects. 
Therefore, trying the key that has the least frequency will have 
the largest chance of success.  

We next present a scheme to calculate what is the number 
of expected guesses for a user-dependent system under DKSA. 
Consider a user-dependent system which has M subjects 

Misi ,,2,1, L= . For subject is , we can build a device for 
him/her. Let iij PjK ,,2,1,' L=  be the unique keys generated 
when inputting all the subjects to the device and 

iij Pjf ,,2,1, L=  be the frequencies of the keys. Again ijK '  is 
ordered in non-decreasing frequency order, i.e., 

iiPii fff ≤≤≤ L21 . Among these Pi unique keys, one of them 

is the authentic key. Let it be iiq PqK ≤≤1,' . We say that an 

event Eq has happened when the qth unique key iqK '  is the 

authentic one for the subject is .  
When all the subjects are considered, we may count the 

frequencies of iiq PqE max1, ≤≤ . Let the frequencies be 

iiq PqF max1, ≤≤ . The best strategy of the hacker is thus to 

assume event Eq has happened in a decreasing order of Fq. That 
is, if Eq happens most frequently for all the subjects, the hacker 
will try the qth unique key qK '  first. The expected number of 
guesses is thus:  

∑
=
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P
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1
   (4) 

where iij PjF max1, ≤≤′  is the reordering of iiq PqF max1, ≤≤  

in non-increasing manner.  

Table 1 shows a very simple user dependent key 
generation system. It has 6 subjects, and the key space is 2 bits. 
The authentic keys are along the diagonal direction (marked 
with bold font). Among the authentic keys, 00 and 11 appear 
once, 01 and 10 appear twice. Therefore, under AKSA attack, 
the guessing entropy of the system is:  

6
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14
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13
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22

6
21 =×+×+×+×=AKSAN  (5) 

Table 1 A simple user-dependent key generation system 
Subject 

Device s1 s2 s3 s4 s5 s6 

For s1 00 01 10 01 10 10 
For s2 10 01 11 11 11 10 
For s3 00 00 10 11 11 11 
For s4 00 00 00 11 01 01 
For s5 01 01 11 01 10 11 
For s6 11 10 11 10 10 01 

 
Under DKSA attack, consider the device for subject s1 as 

an example. There are three unique keys: 00, 01 and 10. Key 00 
is the authentic key, which appears once. 01 appears twice and 
10 appears three times. If we order the unique keys based on 
their frequency, the order should be 00'11 =K , 01'12 =K  and 

10'13 =K , with frequency 
6
1

11 =f , 
6
2

12 =f  and 
6
3

13 =f . 

Since 11'K  is the authentic key, event E1 has happened for the 
subject s1. Similarly, we may perform the same procedure for 
the other subjects. When all the subjects are considered, it is not 
difficulty to see that only E1 happens 6 times, with frequency 1. 
E2 and E3 never happen. Therefore, when the hacker tries to 
access a device, he/she will always guess the authentic key be 
the first unique key in non-decreasing frequency order. By 
doing so, the hacker will obtain the authentic key in one shot. 
The number of guesses is thus:  

111 =×=DKSAN .   (6) 
Therefore, this system is very vulnerable to DKSA attack.  

Knowing how AKSA and DKSA are performed, we should 
be careful when designing a user-dependent key generation 
system. We first need to make sure that different subjects should 
have different authentic keys. This is easily achievable by 
manipulate the binarization process for each device. 
Furthermore, to avoid DKSA, event iiq PqE max1, ≤≤  should 

better be uniformly distributed with respect to q. An easy way to 
guarantee this is to let the keys (including the authentic key and 
the imposter keys) generated for different subjects be different 
from each other in every created user-dependent device. The 
hacker will then not be able to know which key to use when 
starting the guessing process and have to try them all one by one. 
Such goal is not difficult to achieve, because usually the key 
space is much larger than the subject space. A large key space 
will very likely make all the subjects generate different keys.  

 
4. EXPERIMENTAL RESULTS 

 

Experiments are conducted on the AMP face database with ex-
pression and registration error (as shown in Figure 3) to compare 



the performance of the user-dependent and user-independent 
UIAKG systems. We take 20 subjects in this database for 
evaluation. Each subject has 137 face images at size 64×64. We 
use 25 images of each user to train the feature extraction mod-
ule. Principal Component Analysis is performed on all the train-
ing images to reduce the features’ dimensionality. The first 100 
eigen-coefficients are taken as the biometric features in Figure 1 
and Figure 2. We use another 25 images of each user to deter-
mine the threshold for each feature. The remaining 87 images of 
each user are used as test images to evaluate FAR, FRR and the 
expected number of guesses the hacker need to make (N).   

 
Figure 3. Sample images of AMP face database with expres-
sion and registration error. 

FAR

FRR

User-independent
system

User-dependent
system

 
Figure 4 FAR and FRR performance of the two systems.  

Figure 4 shows the FAR and FRR performance of the two 
systems when we fix the number of distinguishing features used 
in the system as 5=L  (therefore the key length is 5 bits). As 
the user-independent system has fixed thresholds for all the 
features, we only obtain one operating point, marked as a red dot 
in Figure 4. The dashed curve represents the user-dependent 
system’s FAR and FRR. Obviously, the user-dependent system 
performs better, because at the same FRR, its FAR is lower, or 
at the same FAR, the FRR is lower. The operating point of the 
user-dependent system can be decided by the system designer 
based on the design specifications.  

Table 2 Performance and security comparison of the two 
systems 

 FAR FRR L NAKSA NDKSA 
User-independent 2.0% 2.8% 5 2.9 2.9 
User-dependent 1.4% 1.0% 5 10.5 4.38 

User-independent 0% 53.4% 17 7.95 7.95 
User-dependent 1.0% 0.9% 17 10.5 8.27 

 

Table 2 shows the performance and security comparison of 
the two systems at different key lengths. In both configurations, 
the user-dependent system has much better authentication 
performance. Under AKSA, the number of guesses NAKSA for the 
user-dependent system is always 10.5, which is the largest 
possible. Under DKSA, the user-dependent system also 
outperforms the user-independent system in terms of NDKSA. 
Therefore, the user-dependent system is also more secure than 
the user-dependent system under hacker attacks.  
 

5. CONCLUSIONS 
 
We have given comprehensive analysis on the security of 
UIAKG systems under different kinds of attacks. We also 
showed that if a user-dependent system is designed carefully, it 
outperforms a user-independent system in both authentication 
performance and security. Such conclusions are supported by 
comparing the performance of two UIAKG systems using face 
images as inputs.  
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