
SECURITY ANALYSIS FOR KEY GENERATION SYSTEMS USING FACE IMAGES

Wende Zhang, Cha Zhang and Tsuhan Chen

Dept. of Electrical and Computer Engineering, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{wendez, czhang, tsuhan}@andrew.cmu.edu

ABSTRACT

In this paper, we analyze the security problem of user informa-
tion associated key generation (UIAKG) systems. We consider
three kinds of attacks from the hacker: the exhaustive search
attack, the authentic key statistics attack and the device key
statistics attack. Under each attack, we give the estimate of the
number of guesses the hacker has to make in order to access the
system. Such analysis provides useful guidelines in designing a
UIAKG system. The analysis also suggests that a user-
dependent UIAKG is more secure than a user-independent one.
Two UIAKG systems using face images as inputs are designed
and compared to support the above theoretical analysis.

1. INTRODUCTION

Security applications often need certain private information to
authenticate the user’s privilege. Digital keys are widely used to
serve such a purpose in many applications. For example, we use
a PIN number as the key to access ATM accounts; we use a
password as the key to login the computer system; we also use
keys for data encryption / decryption.

Given certain input from the user, a traditional key genera-
tor often generates a long key at random [1][2]. Such strategy
can prevent the hackers’ exhaustive search attack as the entire
key space is very large. However, a long key is easily forgotten
and not user-friendly. Hence it has a high false reject rate (FRR).

Instead of asking users to memorize long keys, some recent
key generation systems [3]-[10] have been trying to generate
keys based on the users’ personal information, e.g., the users’
biometric information. We call such systems user information
associated key generation (UIAKG) systems. Compared with the
traditional key generator, UIAKG systems are often designed
based on a close set of subjects. Such set of subjects form the
subject space of the key generation system. The keys generated
by UIAKG systems are thus limited by the variation in the sub-
ject space, and cannot be both distinguishable and arbitrarily
long. It is therefore very important to know how secure UIAKG
systems really are under the above constraints.

Given the subject space, a UIAKG system can be either
user-independent [4][5][6] or user-dependent [7][8]. A user-
independent UIAKG system creates a single piece of device,
which can be used to generate keys for all subjects in the subject
space. This is similar to the traditional key generation systems,
except that the subject space is a close set. A user-dependent

UIAKG system, in contrast, will create many devices, one for
each subject. A subject can only access the device created spe-
cifically for the same subject, and will be denied if he/she wants
to access a device belonging to another subject. In general, since
the devices created by a user-dependent UIAKG system can be
fine-tuned for their authentic subjects, they tend to have better
authentication performance (in terms of false accept rate (FAR)
and false reject rate (FRR)) than the devices created by user-
independent UIAKG systems. On the other hand, although there
has not been a proof which shows that user-independent UIAKG
systems are more secure than user-dependent UIAKG systems,
there is a wide concern that a user-dependent UIAKG system
might expose the user’s identity in an inexplicit way and is thus
insecure.

In this paper, we present a comprehensive analysis on the
security of general UIAKG systems. We classify the hacker’s
attacks into several categories, and show how robust a UIAKG
system is under these attacks. Such analysis also serves as guide-
lines when designing a UIAKG system. Meanwhile, our analysis
suggests that a user-dependent UIAKG system can be secure if it
is carefully designed. Experimental results also demonstrate that
user-dependent UIAKG systems outperform user-independent
systems.

The paper is organized as follows. In Section 2, we briefly
describe two biometrics-based key generation systems, one be-
ing user-independent and the other being user-dependent. In
Section 3, we detail the security analysis for general UIAKG
systems. Experimental results are shown in Section 4 and con-
clusions are given in Section 5.

2. TWO TYPICAL UIAKG SYSTEMS

In this section, we introduce two UIAKG systems in the
application of key generation from subject face images. Note
that the detailed algorithms described below can be replaced by
other biometrics such as fingerprints or iris images, and by other
user inputs such as passwords or passphrases. However, the
general frameworks of the two systems are applicable to many
other user inputs.

The first system is user-independent. It creates a single
device for generating keys for all the subjects, as shown in
Figure 1. The biometric features are first extracted from the
biometric data using the feature extraction module. For example,
we use Principal Component Analysis (PCA) [11] to extract the
eigen-coefficients from the data as the biometric features. A
user-independent key generator then produces the authentic keys

of the subjects based on the biometric features. In this paper, we
binarize each feature into 1 bit by a user-independent threshold,
which is the global mean of the feature values for all the subjects.
Some of these features are selected as distinguishing features
based on the separation between the authentic and imposter
values. A secret sharing method [5] is then used to test whether
all the bits of the input biometrics matches with the authentic
bits, which are computed from the distinguishing features. This
process resembles the algorithm used in [5].

Figure 1 A user-independent key generation system.

Figure 2 A user-dependent key generation system.

Figure 2 shows a user-dependent UIAKG system. The
system creates different devices for different subjects. For
example, the device for subject X contains a key generator
specifically designed for him. When subject X tries to access the
device, the device will generate an authentic key and grant the
access. If subject Y also tries to access the device, the device will
generate an invalid key, which denies the access. In this paper,
we will refer to such invalid keys as the imposter keys.

To design such a system, we first extract biometric features
using the feature extraction module, which can be shared by all
the devices. Then the user-dependent key generators are
designed based on the biometric features. In this paper, we
design the key generators such that each feature is binarized into
1-bit by a user-dependent threshold to minimizing the
authentication error rate (FAR and FRR). Interested readers are
referred to [8] for more details about the algorithm.

3. SECURITY ANALYSIS FOR UIAKG SYSTEMS

The hackers have many ways to break into a key generation
system. In this section, we examine the average number of
guesses they have to make in order to achieve the authentic key
using different attacking methods. Such analysis also serves as a
guideline for designing a secure UIAKG system (e.g., a system
that denies the access after the failure of a certain number of
trials).

3.1. Exhaustive Search Attack (ESA)
If the hacker does not have any information about the subject
space or key statistics information, he/she has to perform an
exhaustive search in the entire key space. Let the key length be
L. If the key space is very large, i.e., L is very large, the
expected number of guesses by exhaustive search is roughly:

12 −≈ LN (1)
Therefore, a longer key is more secure under ESA. This is a
well-known result.

3.2. Authentic Key Statistics Attack (AKSA)
If the hacker knows the statistics of the authentic keys generated
by the key generator system, he/she may try to guess the keys
smartly. Let Misi ,,2,1, L= be the M subjects considered
during the design of the key generation system. Let

MiKi ,,2,1, L= be their corresponding authentic keys. Since it
is possible for a key generation system to generate the same
authentic key for different subjects, we denote PjK j ,,2,1,' L=

as the keys among MiKi ,,2,1, L= that are unique and ordered
by their frequency Pjf j ,,2,1, L= . That is, we assume

Pfff ≥≥≥ L21 . The estimated number of guesses the hacker
must make is thus:

∑
=

⋅=
P

j
jAKSA fjN

1
 (2)

Equation (2) assumes that the hacker makes the guess in the
order of the authentic key frequency (from high to low), which
is the best strategy he/she can use. Equation (2) is also used in [4]
for security analysis, which is given the name guessing entropy
[12][13].

In a user-independent key generation system, once the
feature vectors and the thresholds are determined, the keys for
all the subjects are determined. Therefore, in order to increase
the guessing entropy, the system designer must select the feature
vectors and thresholds very carefully. This is not an easy task, as
tuning the feature vectors and thresholds may also affect the
FAR and FRR of the system. The system designer usually has to
make a tradeoff between the guessing entropy and the FAR/FRR.

In a user-dependent key generation system, such problem
does not exist, thanks to the different feature vectors and
thresholds one may use for different subjects. The system
designer can easily select different authentic keys for different
subjects, because each subject has his/her own feature space,
which can be binarized per the system designer’s wish
independently. As long as the size of the entire key space is
larger than the number of subjects, i.e., ML >2 , a user-
dependent system designer can always make sure that

MiKi ,,2,1, L= are all different from each other, resulting the
largest possible guessing entropy:

2
11

1

+
=⋅= ∑

=

M
M

iN
M

i
AKSA (3)

3.3. Device Key Statistics Attack (DKSA)
If the hacker knows the subject space of the system, he/she may
probe the key generation system by inputting the subject
information and collecting the statistics of the generated keys.

Given such statistics, the hacker may have better ways to guess
the authentic key. Since such attack focuses on a single piece of
device, we name it the device key statistics attack (DKSA).

In a user-independent key generation system, there is only
one single device. When the hacker inputs a subject to the
device, he/she will always get an authentic key. Therefore, the
DKSA for a user-independent key generation system is
equivalent to its AKSA.

However, in a user-dependent key generation system, the
DKSA is no longer the same as the AKSA. Given a device
which belongs to a single subject, only the subject who owns the
device will result in an authentic key. The remaining subjects
will get some imposter keys which might be different from their
own authentic ones.

By probing the device with all the subjects, the hacker can
collect a set of unique keys, denoted as PjK j ,,2,1,' L= . We

may order these keys by their frequency Pjf j ,,2,1, L= in

non-decreasing order, i.e., Pfff ≤≤≤ L21 . The problem is,
following which order the hacker should try these keys.

A UIAKG system often needs to improve its authentication
performance by reducing FAR and FRR. However, such
property can also be utilized by the hacker to attack the system.
For instance, if the hacker knows that the system’s FAR is very
low, he/she will try the keys in the order PKKK ',,',' 21 L . This
is because a low FAR of the device implies that the authentic
subject will not share his/her key with many other subjects.
Therefore, trying the key that has the least frequency will have
the largest chance of success.

We next present a scheme to calculate what is the number
of expected guesses for a user-dependent system under DKSA.
Consider a user-dependent system which has M subjects

Misi ,,2,1, L= . For subject is , we can build a device for
him/her. Let iij PjK ,,2,1,' L= be the unique keys generated
when inputting all the subjects to the device and

iij Pjf ,,2,1, L= be the frequencies of the keys. Again ijK ' is
ordered in non-decreasing frequency order, i.e.,

iiPii fff ≤≤≤ L21 . Among these Pi unique keys, one of them

is the authentic key. Let it be iiq PqK ≤≤1,' . We say that an

event Eq has happened when the qth unique key iqK ' is the

authentic one for the subject is .
When all the subjects are considered, we may count the

frequencies of iiq PqE max1, ≤≤ . Let the frequencies be

iiq PqF max1, ≤≤ . The best strategy of the hacker is thus to

assume event Eq has happened in a decreasing order of Fq. That
is, if Eq happens most frequently for all the subjects, the hacker
will try the qth unique key qK ' first. The expected number of
guesses is thus:

∑
=

′⋅=
ii

P

j
jDKSA FjN

max

1
 (4)

where iij PjF max1, ≤≤′ is the reordering of iiq PqF max1, ≤≤

in non-increasing manner.

Table 1 shows a very simple user dependent key
generation system. It has 6 subjects, and the key space is 2 bits.
The authentic keys are along the diagonal direction (marked
with bold font). Among the authentic keys, 00 and 11 appear
once, 01 and 10 appear twice. Therefore, under AKSA attack,
the guessing entropy of the system is:

6
12

6
14

6
13

6
22

6
21 =×+×+×+×=AKSAN (5)

Table 1 A simple user-dependent key generation system
Subject

Device s1 s2 s3 s4 s5 s6

For s1 00 01 10 01 10 10
For s2 10 01 11 11 11 10
For s3 00 00 10 11 11 11
For s4 00 00 00 11 01 01
For s5 01 01 11 01 10 11
For s6 11 10 11 10 10 01

Under DKSA attack, consider the device for subject s1 as

an example. There are three unique keys: 00, 01 and 10. Key 00
is the authentic key, which appears once. 01 appears twice and
10 appears three times. If we order the unique keys based on
their frequency, the order should be 00'11 =K , 01'12 =K and

10'13 =K , with frequency
6
1

11 =f ,
6
2

12 =f and
6
3

13 =f .

Since 11'K is the authentic key, event E1 has happened for the
subject s1. Similarly, we may perform the same procedure for
the other subjects. When all the subjects are considered, it is not
difficulty to see that only E1 happens 6 times, with frequency 1.
E2 and E3 never happen. Therefore, when the hacker tries to
access a device, he/she will always guess the authentic key be
the first unique key in non-decreasing frequency order. By
doing so, the hacker will obtain the authentic key in one shot.
The number of guesses is thus:

111 =×=DKSAN . (6)
Therefore, this system is very vulnerable to DKSA attack.

Knowing how AKSA and DKSA are performed, we should
be careful when designing a user-dependent key generation
system. We first need to make sure that different subjects should
have different authentic keys. This is easily achievable by
manipulate the binarization process for each device.
Furthermore, to avoid DKSA, event iiq PqE max1, ≤≤ should

better be uniformly distributed with respect to q. An easy way to
guarantee this is to let the keys (including the authentic key and
the imposter keys) generated for different subjects be different
from each other in every created user-dependent device. The
hacker will then not be able to know which key to use when
starting the guessing process and have to try them all one by one.
Such goal is not difficult to achieve, because usually the key
space is much larger than the subject space. A large key space
will very likely make all the subjects generate different keys.

4. EXPERIMENTAL RESULTS

Experiments are conducted on the AMP face database with ex-
pression and registration error (as shown in Figure 3) to compare

the performance of the user-dependent and user-independent
UIAKG systems. We take 20 subjects in this database for
evaluation. Each subject has 137 face images at size 64×64. We
use 25 images of each user to train the feature extraction mod-
ule. Principal Component Analysis is performed on all the train-
ing images to reduce the features’ dimensionality. The first 100
eigen-coefficients are taken as the biometric features in Figure 1
and Figure 2. We use another 25 images of each user to deter-
mine the threshold for each feature. The remaining 87 images of
each user are used as test images to evaluate FAR, FRR and the
expected number of guesses the hacker need to make (N).

Figure 3. Sample images of AMP face database with expres-
sion and registration error.

FAR

FRR

User-independent
system

User-dependent
system

Figure 4 FAR and FRR performance of the two systems.

Figure 4 shows the FAR and FRR performance of the two
systems when we fix the number of distinguishing features used
in the system as 5=L (therefore the key length is 5 bits). As
the user-independent system has fixed thresholds for all the
features, we only obtain one operating point, marked as a red dot
in Figure 4. The dashed curve represents the user-dependent
system’s FAR and FRR. Obviously, the user-dependent system
performs better, because at the same FRR, its FAR is lower, or
at the same FAR, the FRR is lower. The operating point of the
user-dependent system can be decided by the system designer
based on the design specifications.

Table 2 Performance and security comparison of the two
systems

 FAR FRR L NAKSA NDKSA
User-independent 2.0% 2.8% 5 2.9 2.9
User-dependent 1.4% 1.0% 5 10.5 4.38

User-independent 0% 53.4% 17 7.95 7.95
User-dependent 1.0% 0.9% 17 10.5 8.27

Table 2 shows the performance and security comparison of
the two systems at different key lengths. In both configurations,
the user-dependent system has much better authentication
performance. Under AKSA, the number of guesses NAKSA for the
user-dependent system is always 10.5, which is the largest
possible. Under DKSA, the user-dependent system also
outperforms the user-independent system in terms of NDKSA.
Therefore, the user-dependent system is also more secure than
the user-dependent system under hacker attacks.

5. CONCLUSIONS

We have given comprehensive analysis on the security of
UIAKG systems under different kinds of attacks. We also
showed that if a user-dependent system is designed carefully, it
outperforms a user-independent system in both authentication
performance and security. Such conclusions are supported by
comparing the performance of two UIAKG systems using face
images as inputs.

REFERENCES

[1] S. Burnett and S. Paine, RSA Security's Official Guide to

Cryptography, RSA Press, McGraw-Hill/Osborne Media, 2001.
[2] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.
[3] C. Soutar, D. Roberge, A. Stoianov, R. Gilroy and B.V.K. Vijaya

Kumar, "Biometric Encryption™," Chapter 22 in ICSA Guide to
Cryptography, edited by R.K. Nicholls, 1999, pp.649-675.

[4] F. Monrose, M.K. Reiter, and S.G. Wetzel, “Password hardening
based on keystroke dynamics,” International Journal on
Information Security 1(2), February 2002. pp. 69–83.

[5] F. Monrose, M.K. Reiter, Q. Li, and S. Wetzel, “Cryptographic key
generation from voice,” Proceedings of the 2001 IEEE Symposium
on Security and Privacy, 2001, pp. 202-213.

[6] F. Monrose, M.K. Reiter, Q. Li and S. Wetzel, “Using voice to
generate cryptographic keys,” Proceedings of 2001: A Speaker
Odyssey, The Speaker Recognition Workshop, June 2001, pp. 237–
242.

[7] Y. Chang, W. Zhang and T. Chen, “Biometric-based cryptographic
key generation,” submitted to IEEE Conference on Multimedia and
Expo, 2004.

[8] W. Zhang, Y. Chang and T. Chen, “Optimal thresolding for key
generation based on biometrics,” submitted to IEEE Conference
on Image Processing, 2004.

[9] J. Daugman, "High confidence visual recognition of persons by a
test of statistical independence," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15(11), 1993, pp. 1148-
1161.

[10] C. Ellison, C. Hall, R. Milbert, B.Schneier, “Protecting secret keys
with personal entropy,” Future Generation Computer Systems, 16,
2000, pp. 311-318.

[11] I.T. Jolliffe, Principle Component Analysis, Spring-Verlag, New
York, 1986.

[12] J.L. Massey, “Guessing and entropy,” Proceedings of the 1994
IEEE International Symposium on Information Theory, Trondheim,
Morway, 1994, pp.204.

[13] C. Cachin, Entropy measures and unconditional security in
cryptography, Ph. D. Thesis, ETH Zurich, Hartung-Gorre Verlag,
Konstanz, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

