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ABSTRACT1 

 
In this paper, we study biometric key generation using face 
images. Given a face image, a set of biometric features are 
extracted. Each feature is compared with a threshold to generate 
a key-bit. By cascading the key-bits from all the features, we 
obtain one bio-key that can be used for security applications. 
The performance of a biometric key generation system, 
determined by the chosen thresholds, can be evaluated according 
to reliability and security. A generalized optimal thresholding 
method is proposed in this paper to improve the reliability by 
minimizing the authentication error rate and the security by 
maximizing the entropy of the generated key.  
 
 

1. INTRODUCTION 
 
Security applications often need certain private information to 
authenticate the user’s privilege. Digital keys are widely used to 
serve such a purpose. For example, we use a PIN number as the 
key to access ATM accounts; we use a password as the key to 
login to a computer system; we also use keys for data encryption 
or decryption.  

Given certain input from the user, a traditional key 
generator often generates a long key [1][2] to achieve a high key 
entropy. Such strategy can defer a hacker’s attack as the hacker 
has to search the entire key space exhaustively. However, a long 
key is easily forgotten and not user-friendly. Hence it usually 
results in a high false reject rate (FRR).  

Instead of asking users to memorize long keys, some recent 
key generation systems [3]-[9] try to generate keys based on the 
users’ biometric information.  

 
Figure 1. Biometric key generation  
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A flowchart of a general bio-key generation device is 
shown in Figure 1. First, the biometric features are extracted 
from the biometric data based on the feature extraction module. 
Then, the biometric features are thresholded into a bio-key by 
the thresholding module. A bio-key generation system can be 
either user-independent [3][4][5] or user-dependent [6][7][8].  

A user-independent bio-key generation system creates a 
single device, which can be used to generate keys for all 
subjects. This is similar to the traditional key generation 
systems.  

Monrose et al. [3][4][5] proposed a secret sharing method 
to generate the bio-key. First, the distinguishing biometric 
features [3] are selected based on the separation between the 
authentic and imposter data, and then binarized by some 
thresholds. The key is released under the secret sharing scheme 
by matching all the bits of the input biometrics with the 
authentic bits, which are computed from the distinguishing 
features.  

A user-dependent bio-key generation system, however, 
contains multiple devices, one for each subject. A subject can 
only gain access using the device created specifically for the 
same subject, and will be denied if he/she wants to access a 
device belonging to another subject.  

Soutar et al. [6] proposed a biometric encryption method. 
In this method, the input biometric image is correlated with a 
pre-designed user-dependent filter to create the correlation 
output. The key is then generated based on this binarized output 
pattern.  

Based on Monrose et al.’s [4] bio-key generation approach, 
Chang et al. [7] extended the distinguishing feature selection to 
user-dependent feature transformation in order to generate more 
distinguishing features using the cascaded two-class 
classification scheme. They also extended the binary values of 
each feature to multiple values so that each feature may 
contribute multiple bits rather than one bit to improve the 
security of the bio-key generation system. 

However, both Monrose et al. [4] and Chang et al. [7] did 
not address the issue of setting the thresholds for the features. 
Zhang et al. [8] proposed a method to minimize the 
authentication error rate in terms of the false accept rate (FAR) 
and the false reject rate (FRR) of the bio-key generation system 
by setting the optimal thresholds for each extracted feature.  

Zhang et al. [10] presented a comprehensive analysis on the 
security of general bio-key generation systems. They classified 
the hacker’s attacks into three categories, and showed how 
robust a bio-key generation system is under these attacks.  



A biometric key generation system should be evaluated on 
both authentication performance and security. However, in [8], 
the thresholds are chosen to optimize only authentication 
performance regardless of security of the bio-key generation 
system. In this paper, we propose a generalized optimal 
thresholding method to optimize both authentication 
performance and security of the bio-key generation system.  

This paper is organized as follows: In Section 2, we detail 
the generalized optimal thresholding method for the bio-key 
generation system. In Section 3, we describe the biometric face 
image database used in the experiment and present the 
performance of the proposed bio-key generation system. Our 
conclusions are given in Section 4. 

 
2. GENERALIZED OPTIMAL THRESHOLDING 

 
A bio-key generation system is evaluated based on 
authentication error rate in terms of FAR and FRR and on 
security in terms of guessing entropy [11][12] of the generated 
key. FAR is defined as the rate that imposter users generate the 
same bit-sequence as the claimed users. FRR is defined as the 
rate that an authentic user generates a bit-sequence other than 
the correct key. Guessing entropy is the expected number of 
guesses a hacker needs to make to get the authentic key. 

In this paper, we want to find the optimal threshold for each 
feature to minimize FAR and FRR and maximize the guessing 
entropy.  

Assuming that a random vector k has m states and that the 
probability distribution of k, say , satisfies 

, the guessing entropy G(k) is defined as: 
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Guessing entropy G(k) is lower-bounded by the Shannon 
entropy H(k) [11] as follows: 
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Since it is not easy to maximize the guessing entropy 
directly, we maximize its lower bound in the optimization. That 
is, we maximize the Shannon entropy. 

Therefore, we propose a generalized method to determine 
the optimal threshold for each feature, thereby minimizing FAR 
and FRR as well as maximizing the Shannon entropy of the 
generated key with trade-off parameters α and β: 
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where , , and 

  is the probability density function of the feature vector 
, given the authentic class  or the 

imposter class . The number of the features is n. RA is 
the classification decision region for the authentic wA, and RI is 
the classification decision region for the imposter  wI.  
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The authentic decision region RA is defined by the threshold 
for each feature xi in the feature vector x. The decision region RA 
can be rewritten as in Equation (2), since it is separated from the 
imposter decision region RI by thresholding each feature 
individually.  
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In order to generate one-bit from each feature as shown in 

Figure 2, we assume that the authentic decision region Ri of 
feature xi is on one side of the threshold .  The threshold  
separates the authentic decision region Ri from the imposter 
decision region of feature xi. We can easily extend this one key-
bit generation with a single threshold to multiple key-bits 
generation with multiple thresholds for each feature using the 
approach proposed in [8].  
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 Figure 2. The ith feature for one-bit generation 

Assumption 1: assuming all the features are conditionally 
independent given the class labels, we have 
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Therefore, the overall FAR and FRR can be derived as the 
functions of the individual FARi and FRRi as follow:  
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Assumption 2: assuming all the key-bits ki from each 
feature are generated independent, the key entropy of the key-bit 
sequence [ ]nkkk ..., , , 21=k  can be derived as follows:  
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where  is the probability of the jth key bit among all the 

subjects on feature xi . Since  is a function of the 

threshold  of feature xi, , and hence , is also a 
function of . 
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Instead of maximizing (1) using an exhaustive search over 

all the features, we search for the threshold on each feature 
individually as follows: 
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Note that based on the two assumptions, by maximizing 
)()log()1log( iii kHFARFRR βα +−−  with the same tradeoff 

parameters βα ,  on each feature individually, we can find the 
optimal point ( , , )for each feature, 
which results in optimal value for (1). By tuning different

)log( iFAR )1log( iFRR− )( ikH
βα , ’s, 

we can find the solution for any optimal point with different 
tradeoffs among FAR, FRR and H(k).  

 
3. EXPERIMENTAL RESULTS 

 
We conduct experiments to evaluate the biometric key 
generation systems on the AMP face database as shown in 
Figure 3. As the face images of each subject contain a significant 
amount of expression variation and registration errors, this is a 
relatively challenging database. We take 20 subjects in this 
database for performance evaluation. Each subject has 137 face 
images of size 64×64. In order to compare with the system 
proposed in [10], we use 25 images of each user to train the 
feature extraction module. Principal Component Analysis (PCA) 
[13] is performed on all the training images to form a 100-
dimensional user-independent global PCA subspace to reduce 
the features’ dimensionality. The first n (n = 5, 17 in our 
experiments) distinguishing features [3] of each user are taken as 
the output of the feature extraction module. We use another 25 
images of each user to determine one user-dependent threshold 
for each feature to generate a user-dependent biometric key 
generation device using the proposed method. While Shannon 
entropy H(k) is optimized in the design stage, we evaluate the 
security of the biometric key generation system using the 
guessing entropy G(k) in the test stage.  The remaining 87 
images of each user are used as test images to evaluate the 
average FAR, FRR and the average expected number of guesses, 
G(k), of these 20 user-dependent biometric key generators.   

 
Figure 3. Sample images of the AMP face database 

We evaluate the authentication performance (FAR, FRR) 
and security of the biometric key generation system G(k) for 
different emphases (β) on H(k) with a fixed α on FAR in (1) for  
feature number n = 5 and feature number n = 17. The resulting 
average FAR, FRR, H(k) and G(k) are listed in Table 1-Table 5. 
We show that although H(k) and G(k) are small in the tables due 
to the small number of users in the database,   we can reach the 
upper bound [10] of G(k)=10.5 for this 20-user system as shown 
in Table 5. In a real system, G(k) can be large with a large 
number of users in the system.  

In all experiments, both the Shannon entropy H(k) and the 
guessing entropy G(k) increase, as β increases. FAR decreases 
and FRR increases, as α increases. Therefore, our optimization 
method can adjust the thresholds to find the best operation point 

that strikes the balance among the authentication error rate FAR, 
FRR and the guessing entropy G(k).  

When β = 0, the proposed method degenerates to the 
optimal thresholding method proposed in [8], which optimizes 
the authentication performance only. The resulting entropy in 
such a case is relatively small. 

Table 1. Authentication performance and security of the system 
for feature number n = 5, and α = 0.035 

β FAR FRR H(k) G(k) 
0 2.0% 0.46% 3.21 4.23 

0.015 1.9% 0.46% 3.32 4.52 
0.031 1.6% 0.46% 3.39 4.71 
0.049 1.9% 0.46% 3.66 5.80 
0.070 1.7% 0.46% 3.69 5.95 
0.095 1.6% 0.52% 3.78 6.70 
0.131 1.6% 0.75% 3.82 6.79 
0.187 1.7% 0.75% 3.99 7.53 

Table 2. Authentication performance and security of the system 
for feature number n = 5, and α = 0.087 

β FAR FRR H(k) G(k) 
0 1.10% 6.67% 3.14 4.00 

0.015 0.92% 6.67% 3.15 4.07 
0.031 0.80% 6.72% 3.15 4.08 
0.049 0.84% 6.55% 3.18 4.19 
0.070 0.67% 6.55% 3.32 4.53 
0.095 0.51% 6.61% 3.31 4.54 
0.131 0.52% 6.32% 3.50 4.98 
0.187 0.60% 6.26% 3.56 5.27 

Table 3. Authentication performance and security of the system 
for feature number n = 17, and α = 0.035 

β FAR FRR H(k) G(k) 
0 1.04% 1.3% 4.19 8.27 

0.015 0.81% 1.9% 4.27 9.36 
0.031 0.57% 2.5% 4.28 9.44 
0.049 0.53% 3.6% 4.29 9.78 
0.070 0.25% 5.6% 4.30 9.90 
0.095 0.13% 6.7% 4.32 10.45 
0.131 0.06% 9.3% 4.32 10.45 
0.187 0.02% 13.8% 4.32 10.45 

Table 4. Authentication performance and security of the system 
for feature number n = 17, and α = 0.087 

β FAR FRR H(k) G(k) 
0 0.0% 22.9% 4.25 8.94 

0.015 0.0% 22.9% 4.25 8.94 
0.031 0.0% 23.8% 4.29 9.68 
0.049 0.0% 24.4% 4.31 9.84 
0.070 0.0% 25.3% 4.32 10.30 
0.095 0.0% 26.8% 4.32 10.45 
0.131 0.0% 28.6% 4.32 10.45 
0.187 0.0% 31.0% 4.32 10.50 

 



Table 5. Authentication performance and security of the system  
for β  = ∞  

Feature 
Number FAR FRR H(k) G(k) 

5 1.9% 12.9% 4.02 7.33 
17 0.0% 69.3% 4.32 10.50 

When β =∞ , it is effectively ignoring the authentication 
performance (FAR, FRR) in the optimization. The thresholds are 
optimized for the Shannon entropy H(k) only. The resulting 
threshold for each feature is the median point Tmedian,i of all the 
subjects of that feature to achieve maximal . Note that in 
this case, the thresholds, and hence the whole system, become 
user-independent. 

)(kH i

 
(a) Authentic and imposter data distribution 

 

(b) Each subject’s data distribution 

Figure 4. Maximal Shannon entropy on the ith feature 

Since the number of subjects in the database is large, the 
median point Tmedian,i of all the subjects is close to  the median 
point of the imposter subjects for xi. Therefore, with the 
threshold Tmedian,i, it results in FARi ≈ 0.5 for all the subjects as 
shown in Figure 4(a). Based on Equation (3), we can roughly 
estimate , which is consistent with the experimental 
results in Table 5. 

( )nFAR 5.0≈

There is very likely to be at least one subject’s data points 
distributed around the threshold Tmedian,i of xi since the number of 
subjects in the database is large. Then, the FRRi of that subject 
(w2) turns out to be bad because the imposter region covers a 
substantial portion of authentic data as shown in Figure 4(b). 
Based on Equation (4), we can prove that . 
Therefore, the average FRR of all the subjects in Table 5 is large. 

iFRRFRR ≥

 
4. CONCLUSIONS 

 
In this paper, we propose a bio-key generation system using 

face images with a generalized optimal thresholding approach to 
reach the balance between the authentication error rate and 

security. The experimental results show that the proposed 
generalized optimal thresholding approach optimizes both the 
authentication performance and the guessing entropy of the 
generated key. 
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