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ABSTRACT1

 
We propose a novel video-based rendering algorithm with a single 
moving camera. We reconstruct a dynamic 3D model of the scene 
with a feature point set that “evolves” over time.  As the scene's 
appearance changes due to camera and object motions, some 
existing feature points dynamically disappear while some new 
feature points dynamically appear relative to the camera.  The 
newly generated feature points' 3D positions and motions are 
initialized using nearby existing feature points' positions and 
motions.  Our feature evolution, when incorporated into standard 
tracking and 3D reconstruction algorithms, provides for robust and 
dense 3D meshes, and their corresponding motions. Consequently, 
the evolution-based, time-dependent 3D meshes, motions, and 
textures render good-quality images at a virtual viewpoint and at a 
desired time instance. We also extend the proposed video-based 
rendering algorithm from using one single moving camera with 
one reconstructed depth map to using multiple moving cameras 
with multiple reconstructed depth maps to avoid occlusion and 
improve the rendering quality. 
 
Index Terms — stereo vision, motion analysis, 3D reconstruction, 
rendering, feature extraction 
 

1. INTRODUCTION 
 
With one or more cameras capturing a scene, the 3D modeling 
uses the captured images to reproduce the scene's 3D structure, or 
geometry [1].  Rendering an image from another viewpoint is then 
possible with this knowledge of the underlying 3D structure of the 
objects in the images [2].  In this paper, we study the rendering of 
dynamic scene using feature point evolution.  We first overview 
how to model dynamic scenes.  We then discuss dynamic 3D 
model building as well as our contribution of using dynamically 
appearing, evolving feature points applied to dynamic scenes in 
Section 2.  The experimental results are discussed in Section 3.  An 
experimental visualization using novel multi-depth-map video-
based rendering is also presented.  Finally, concluding remarks are 
given in Section 4.  

Video-based rendering typically models the dynamic scene 
with multiple synchronized video cameras [3][4].  [3] uses a color 
segmentation-based stereo algorithm to estimates the scene depth 
with the smoothness constraint between the segments and the 
spatial consistence between the synchronized images.  The 
dynamic modeling can be enhanced with multiple time frames 
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through finding the optical flow and addressing the temporal 
consistence.  Optical flow can be used to recover 3D scene flow 
and shape from multiple sparsely distributed cameras for high-
quality modeling [4].  By enforcing the temporal consistence, [5] 
shows better reconstructed geometry for a time-varying scene 
surface.  

To improve the standard tracking techniques, for example, the 
KLT tracker [6],  the type of dynamic modeling of particular 
interest to our own work is time series modeling, such as the 
Kalman filter [7], the extended Kalman filter (EKF) [8], and 
particle filters [9] to enforce the temporal consistence.  Kalman 
filtering has been used to track feature points in video frames for 
reconstructing the scene [10].  EKF allows for more complex 
modeling than the Kalman filter for estimating the structure and 
motion of a rigid object, assuming smooth motion [10].  Its use in 
vision has been refined, for example, by recursively recovering 
motion and geometry [11] and by assuming that all tracked points 
lie on a plane [12].  Particle filters provide an approximation to the 
tracking and were used by [13] in template-based tracking which 
adapted the number of particles used in the observation and 
velocity models. 

For modeling scenes, the time-series-modeling-based tracking 
algorithms typically use a static set of feature points/patches, 
which may not remain reliable as the scene evolves.  [13] does 
provide a framework for changing the size of the particle set over 
time; however, they do not make provisions for how to incorporate 
the particles/feature points which dynamically appear.  [14] 
incorporates the new feature points which best discriminate 
between the changing foreground object and background to 
improve the object tracking performance in the 2D image.  As their 
goal is 2D tracking and not the more demanding 3D 
reconstruction, their correspondences are not very precise.  
[15][16][17] provide different mechanisms for generating and 
deleting feature points as they appear or leave the scene. However, 
all of them focus on tracking a sparse feature point set only of 
dominant features for scene modeling.  [15] initializes the state of 
each new feature point typically using the state of its single nearest 
neighbor.   

In contrast, for high-quality rendering, our work not only 
tracks a dense 3D point set of both dominant and subtle features, 
but also initializes their underlying states (especially for subtle 
features) using the existing prior knowledge: the tracking results of 
their multiple neighboring states.  The final result is the improved 
modeling and rendering of the 3D geometry and motions of 
dynamic scene from a single moving camera.  

 
2. MODELING EVOLUTION SCENES 

 



Figure 1. Evolution Flow Chart.  The evolution of the features is modeled on top: images with sample feature points are marked.  The 
respective evolution of the states is modeled on bottom: the estimated 3D positions and 3D motions of the sample feature points are 
plotted.  INITIALIZATION, PREDICTION, and CORRECTION follow standard Kalman filtering while GENERATION and 
DESTRUCTION follow our proposed evolution framework.  

In this section, we introduce our novel tracking algorithm for 
video-based rendering, and the reconstruction and rendering 
algorithms. 
 
2.1. Tracking 
 
Evolution, the core contribution of this work, is a dynamic feature 
point extractor embedded in standard time-series analysis (see 
Figure 1).  As video progresses over time, certain tracked feature 
points (e.g., state Xt) will have noisy 2D image feature points Yt 
that become difficult to track while, conversely, new feature points 
will appear that are robust, and easy-to-track.  Hence, we only 
model each portion of the scene while it is easy to track.  In 
addition to proposing which feature points (and associated states) 
to model at each time frame, we also propose a novel “state 
passing” mechanism that initializes the states of the newly 
generated feature points in each frame.  Evolution proceeds as 
follows, where Steps 1, 2, & 3 below correspond to the EKF’s 
initialization, prediction, and correction and where Steps 4 & 5 
below are the key contributions of this work: 

We first introduce the EKF modeling used in evolution.  Let 
{Xt} be the set of the states, which are 3D positions pt and 3D 
motions vt, and 2D image feature point set {Yt} be the observations.  
By assuming constant velocity model for each feature point, we 
have 
State equation: Xt+1 = Ft Xt + Qt, Qt ~ N(0, qt)           (1) 
Observation equation:  Yt = ft(Xt) + Rt, Rt ~ N(0, rt)            (2) 
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position pt to the current image plane with known intrinsic and 
extrinsic camera calibration parameters.  Qt and Rt represent the 
Gaussian noises in the modeling with variance qt and rt, 

respectively.  In the current implementation, the noise modeling qt 
and rt are time-independent.  

1. Initialization (time t = 0 only) 
 Find 2D feature point set {Y0} at time t = 0, using a Harris 

corner detector [18].   
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where 3D position p0 is calculated by assuming a constant 
depth, and 3D motion v0 is set to zero.   

2. Prediction 
• For each xt ∈  Xt, predict  using the EKF modeling above.   −

+1tx
 For each yt ∈  Yt, find its corresponding position yt+1 in frame 

t+1 using the pyramid KLT tracker [6].   

3. Correction 
 For the predicted state  X−

+1tx ∈ t+1, correct its value xt+1 using 
the EKF modeling. 

4. Generation 
 As in Step 1, find feature point set { }1

~
+tY  using a Harris corner 

detector.  These feature points are chosen independently of the 
predicted {Yt+1}. 

 For each of the new feature points { }11
~~
++ ∈ tt Yy , find its 

corresponding position ty~  in frame t using (reverse) pyramid 
KLT tracker.  Let { }1

~
+tX  be their (un-initialized) states. 
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where ty~ , , and  are the observations of ty ty′ tx~ , , andtx tx′ , 
respectively; Thy is the threshold for defining a new state's 
neighbors in the 2D image; β is the weight on the prior state 
X0; ( ) )'('' −−= ttttt xfyxE  is the Kalman error of the state tx′  at 

time t, and Age (  is the number of frames that state )1+′tx 1+′tx  
has been in existence. 

5. Destruction 
 Define  as the square patch centered at pixel ( )tt yP ′ ty′  in time 

frame t.  Determine the optical flow matching error for each 
existing  and for each new feature point { }11 ++ ∈ tt Yy { }11

~~
++ ∈ tt Yy , 

respectively: 
( ) ( ) ( )1111 , ++++ −= ttttttt yPyPyyE                   (6) 

( ) ( ) ( )ttttttt yPyPyyE ~~~,~
1111 −= ++++                   (7) 

 Define HCt(yt) as the corner score returned by the Harris 
corner detector for feature point yt at time frame t. 

 Destroy any existing feature point yt+1 or new feature point 
1

~
+ty that fails either of its respective tests: 

( ) Etttt ThyyEy <+++ 111 ,:                     (8) 
( ) HCtt Thy >++ 11HC                        (9) 
( ) Etttt ThyyEy <+++ 111

~,~:~                   (10) 
( ) HCtt Thy >++ 11
~HC                      (11) 

where ThE is the threshold for the optical flow matching error 
and ThHC  is the threshold for the corner score.  

 Let the sets of states and of feature points for the next iteration 
be: 

{ } { } { }111
~

+++ += ttt XXX                          (12) 

{ } { } { }111
~
+++ += ttt YYY                            (13) 

In summary, with evolution we detect additional new feature 
points in each frame.  Instead of initializing the state of the newly 
generated feature point from scratch, we borrow information from 
its neighbors.  Only the feature points with good 2D 
correspondences (large corner scores and low matching errors) can 
be passed on to the next iteration.  Therefore, we allow those 
feature points with good 2D correspondence to continue in the 
future iterations where they would hopefully become more reliable 
and have a low Kalman error.  We also let a feature point die if it 
does not have good 2D correspondence across neighboring frames 
since we cannot accurately reconstruct its 3D point position 
anyways. 
 
2.2. Reconstruction and Rendering 
 
Once the tracking of the evolving points is complete, the 
underlying states can then be used to construct 3D depth maps.  
First, as we are tracking the feature points using EKF, we utilize 
the Kalman error to remove those feature points which were poorly 
tracked. The remaining, reliable states (3D positions) are then used 
to build the time-dependent 3D mesh (depth map) using Delaunay 
triangulation [19] at each time instance of capturing.  Finally, the 

meshes are deformed locally in time based on the reliable states’ 
motions for rendering at a desired time instance.  Given the 
deformed meshes and textures from the captured images, we were 
able to render the scenes at the desired time instance.   
 

3. EXPERIMENTS 
 
We first show the experimental results of our video-based 
rendering with a single moving camera.  A better visualization 
using novel multi-depth-map video-based rendering with multiple 
moving cameras is also presented.   

 
Figure 2. Experiment setup of a moving car 

 
Figure 3. Sample input images of a moving car 

         
     (a) 3D points       (b) 3D mesh        (c) Rendered image 

Figure 4. The reconstruction of dynamic scene 

    
 (a) Frame 35      (b) Frame 55       (c) Frame 115     (d) Frame 155 
Figure 5. The proposed video-based rendering at virtual viewpoint 

We first ran experiments on synthetic data with a single 
moving camera.  A moving toy car was captured by an oscillating 
camera simulated by POV-ray [20].  The car moved with the speed 
of 0.04 from left to right.  The camera oscillated between -0.2 to 
0.2, and was 5 away from the car center vertically.  We rendered 
the scene activities at the virtual viewpoint x = 0.05 as shown in 
Figure 2.  As illustrated in Figure 3, a total of 160 images were 
captured at a low resolution of 320x240 pixels with the known 
intrinsic and extrinsic camera calibration parameters as the input 
image sequence.  As shown in Figure 4, we first reconstructed the 
feature points of the scene using our proposed evolution algorithm 
of Section 2.1.  Based on the reconstructed feature points’ 
positions and motions in space, we then built the triangle mesh of 
the scene at the desired time instance.  Finally, we rendered the 
scene at a novel virtual viewpoint (see Figure 2) using the time-
dependent meshes and textures from the captured images, as 
explained in Section 2.2.  We showed that evolution had a good 
rendering quality in the experiment, for example, the car’s 
geometry and motion were well rendered as shown in Figure 5.  A 
video with both capturing, rendering and detail parameter settings 
can be downloaded at 



ftp://amp.ece.cmu.edu/Outbox/ICIP2006/SynMoveCar.zip.  
The rendering results in Figure 4 and Figure 5 will be bad 

without the feature point evolution involved, since the object 
appearance relative to the camera changes dramatically between 
the first frame and the last frame as shown in Figure 3. 

We also extended our video based rendering to using multiple 
moving cameras to reconstruct multiple depth-maps for better 
driver visualization.  We can attach one camera to vehicle’s 
moving wind-shield wiper.  POV-ray [20] is used again to simulate 
the oscillating camera to capture the street scene as shown in 
Figure 6(b).  The driver can visualize the dynamic street scene at a 
higher virtual viewpoint using the proposed video-based rendering 
algorithm with a single moving camera.  However, due to the 
occluded area blocked by the school bus ahead, the rending result 
Figure 6(c) at a higher virtual viewpoint did not render the broken 
vehicle existing in the scene as shown in Figure 6(a), which is 
important information to avoid a potential accident. 

  
     (a) Bird-view         (b) Input image        (c) Rendered image 

Figure 6. Visualization with a single camera 

            
(a) Bird-view  (b) Rendered image   

             
  (c) Captured from Camera1             (d) Captured from Camera2

Figure 7. Visualization with two cameras 
Since vehicles can communicate between each other in future, 

with the multiple-depth-map modeling, we can have a better 
visualization using neighboring vehicles’ cameras.  In this 
example, we simply composed the textures, the resulting depth 
maps reconstructed by current vehicle (Figure 7(c)), and those 
reconstructed by the school bus ahead (Figure 7(d)).  As shown in 
Figure 7(a), we had less occluded area compared to Figure 6(a). 
Our rendering result at a higher viewpoint rendered the broken 
vehicle as shown in Figure 7(b), which was a better visualization.  
The dynamic rendering results (video) can be downloaded at 
ftp://amp.ece.cmu.edu/Outbox/ICIP2006/SynMultiCam.zip. 
 

4. CONCLUSIONS 
 
We proposed a feature point evolution algorithm for dynamic 
scene reconstruction that exploits the characteristics of dynamic, 

video-based rendering using a moving camera.  We also proposed 
the video-based rendering with the multi-depth-map modeling 
using multiple moving cameras to have a better rendering quality. 
 

evolving scenes.  The result is an evolution model dealing with 
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