
VIDEO-BASED RENDERING USING FEATURE POINT EVOLUTION

Wende Zhang* and Tsuhan Chen

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
{wendez, tsuhan}@andrew.cmu.edu

ABSTRACT1

We propose a novel video-based rendering algorithm with a single
moving camera. We reconstruct a dynamic 3D model of the scene
with a feature point set that “evolves” over time. As the scene's
appearance changes due to camera and object motions, some
existing feature points dynamically disappear while some new
feature points dynamically appear relative to the camera. The
newly generated feature points' 3D positions and motions are
initialized using nearby existing feature points' positions and
motions. Our feature evolution, when incorporated into standard
tracking and 3D reconstruction algorithms, provides for robust and
dense 3D meshes, and their corresponding motions. Consequently,
the evolution-based, time-dependent 3D meshes, motions, and
textures render good-quality images at a virtual viewpoint and at a
desired time instance. We also extend the proposed video-based
rendering algorithm from using one single moving camera with
one reconstructed depth map to using multiple moving cameras
with multiple reconstructed depth maps to avoid occlusion and
improve the rendering quality.

Index Terms — stereo vision, motion analysis, 3D reconstruction,
rendering, feature extraction

1. INTRODUCTION

With one or more cameras capturing a scene, the 3D modeling
uses the captured images to reproduce the scene's 3D structure, or
geometry [1]. Rendering an image from another viewpoint is then
possible with this knowledge of the underlying 3D structure of the
objects in the images [2]. In this paper, we study the rendering of
dynamic scene using feature point evolution. We first overview
how to model dynamic scenes. We then discuss dynamic 3D
model building as well as our contribution of using dynamically
appearing, evolving feature points applied to dynamic scenes in
Section 2. The experimental results are discussed in Section 3. An
experimental visualization using novel multi-depth-map video-
based rendering is also presented. Finally, concluding remarks are
given in Section 4.

Video-based rendering typically models the dynamic scene
with multiple synchronized video cameras [3][4]. [3] uses a color
segmentation-based stereo algorithm to estimates the scene depth
with the smoothness constraint between the segments and the
spatial consistence between the synchronized images. The
dynamic modeling can be enhanced with multiple time frames

* Wende Zhang is currently with General Motors Corporation, Warren, MI.
1 Work supported in part by General Motors Corporation and Industrial
Technology Research Institute, Taiwan.

through finding the optical flow and addressing the temporal
consistence. Optical flow can be used to recover 3D scene flow
and shape from multiple sparsely distributed cameras for high-
quality modeling [4]. By enforcing the temporal consistence, [5]
shows better reconstructed geometry for a time-varying scene
surface.

To improve the standard tracking techniques, for example, the
KLT tracker [6], the type of dynamic modeling of particular
interest to our own work is time series modeling, such as the
Kalman filter [7], the extended Kalman filter (EKF) [8], and
particle filters [9] to enforce the temporal consistence. Kalman
filtering has been used to track feature points in video frames for
reconstructing the scene [10]. EKF allows for more complex
modeling than the Kalman filter for estimating the structure and
motion of a rigid object, assuming smooth motion [10]. Its use in
vision has been refined, for example, by recursively recovering
motion and geometry [11] and by assuming that all tracked points
lie on a plane [12]. Particle filters provide an approximation to the
tracking and were used by [13] in template-based tracking which
adapted the number of particles used in the observation and
velocity models.

For modeling scenes, the time-series-modeling-based tracking
algorithms typically use a static set of feature points/patches,
which may not remain reliable as the scene evolves. [13] does
provide a framework for changing the size of the particle set over
time; however, they do not make provisions for how to incorporate
the particles/feature points which dynamically appear. [14]
incorporates the new feature points which best discriminate
between the changing foreground object and background to
improve the object tracking performance in the 2D image. As their
goal is 2D tracking and not the more demanding 3D
reconstruction, their correspondences are not very precise.
[15][16][17] provide different mechanisms for generating and
deleting feature points as they appear or leave the scene. However,
all of them focus on tracking a sparse feature point set only of
dominant features for scene modeling. [15] initializes the state of
each new feature point typically using the state of its single nearest
neighbor.

In contrast, for high-quality rendering, our work not only
tracks a dense 3D point set of both dominant and subtle features,
but also initializes their underlying states (especially for subtle
features) using the existing prior knowledge: the tracking results of
their multiple neighboring states. The final result is the improved
modeling and rendering of the 3D geometry and motions of
dynamic scene from a single moving camera.

2. MODELING EVOLUTION SCENES

Figure 1. Evolution Flow Chart. The evolution of the features is modeled on top: images with sample feature points are marked. The
respective evolution of the states is modeled on bottom: the estimated 3D positions and 3D motions of the sample feature points are
plotted. INITIALIZATION, PREDICTION, and CORRECTION follow standard Kalman filtering while GENERATION and
DESTRUCTION follow our proposed evolution framework.

In this section, we introduce our novel tracking algorithm for
video-based rendering, and the reconstruction and rendering
algorithms.

2.1. Tracking

Evolution, the core contribution of this work, is a dynamic feature
point extractor embedded in standard time-series analysis (see
Figure 1). As video progresses over time, certain tracked feature
points (e.g., state Xt) will have noisy 2D image feature points Yt
that become difficult to track while, conversely, new feature points
will appear that are robust, and easy-to-track. Hence, we only
model each portion of the scene while it is easy to track. In
addition to proposing which feature points (and associated states)
to model at each time frame, we also propose a novel “state
passing” mechanism that initializes the states of the newly
generated feature points in each frame. Evolution proceeds as
follows, where Steps 1, 2, & 3 below correspond to the EKF’s
initialization, prediction, and correction and where Steps 4 & 5
below are the key contributions of this work:

We first introduce the EKF modeling used in evolution. Let
{Xt} be the set of the states, which are 3D positions pt and 3D
motions vt, and 2D image feature point set {Yt} be the observations.
By assuming constant velocity model for each feature point, we
have
State equation: Xt+1 = Ft Xt + Qt, Qt ~ N(0, qt) (1)
Observation equation: Yt = ft(Xt) + Rt, Rt ~ N(0, rt) (2)

where , , and f⎥
⎦

⎤
⎢
⎣

⎡
=

t

t
tX

v
p

⎥
⎦

⎤
⎢
⎣

⎡
=

I
II

Ft 0
t projects the feature points’

position pt to the current image plane with known intrinsic and
extrinsic camera calibration parameters. Qt and Rt represent the
Gaussian noises in the modeling with variance qt and rt,

respectively. In the current implementation, the noise modeling qt
and rt are time-independent.

1. Initialization (time t = 0 only)
 Find 2D feature point set {Y0} at time t = 0, using a Harris

corner detector [18].
 For each y0 ∈ Y0, initialize its state x0 ∈ {X0}:

⎥
⎦

⎤
⎢
⎣

⎡
=

0

0
0 v

p
x (3)

where 3D position p0 is calculated by assuming a constant
depth, and 3D motion v0 is set to zero.

2. Prediction
• For each xt ∈ Xt, predict using the EKF modeling above. −

+1tx
 For each yt ∈ Yt, find its corresponding position yt+1 in frame

t+1 using the pyramid KLT tracker [6].

3. Correction
 For the predicted state X−

+1tx ∈ t+1, correct its value xt+1 using
the EKF modeling.

4. Generation
 As in Step 1, find feature point set { }1

~
+tY using a Harris corner

detector. These feature points are chosen independently of the
predicted {Yt+1}.

 For each of the new feature points { }11
~~
++ ∈ tt Yy , find its

corresponding position ty~ in frame t using (reverse) pyramid
KLT tracker. Let { }1

~
+tX be their (un-initialized) states.

 Initialize each new state { }11
~~

++ ∈ tt Xx . Let 1
~

+tx be initialized
using weights on the nearby existing states

1+′txw

{ }ytttt ThyXxX <−∈=′ +++++ 11t111
~y :

()
()

()∑
+

′−+=
++

+
′

+

+

′−′

′
= 1

Age1

2
11t

1

1

1 ~y

Age
t

xti
iit

t
x

t

t

xEy

x
w (4)

∑
∑

++
+

++
+

′∈′
′

′∈′ +′

+

+′
=

11
1

11
1 01

1
~

tt
t

tt
t

Xx
x

Xx
tx

t
w

Xxw
x

β
 (5)

where ty~ , , and are the observations of ty ty′ tx~ , , andtx tx′ ,
respectively; Thy is the threshold for defining a new state's
neighbors in the 2D image; β is the weight on the prior state
X0; ())'('' −−= ttttt xfyxE is the Kalman error of the state tx′ at

time t, and Age (is the number of frames that state)1+′tx 1+′tx
has been in existence.

5. Destruction
 Define as the square patch centered at pixel ()tt yP ′ ty′ in time

frame t. Determine the optical flow matching error for each
existing and for each new feature point { }11 ++ ∈ tt Yy { }11

~~
++ ∈ tt Yy ,

respectively:
() () ()1111 , ++++ −= ttttttt yPyPyyE (6)

() () ()ttttttt yPyPyyE ~~~,~
1111 −= ++++ (7)

 Define HCt(yt) as the corner score returned by the Harris
corner detector for feature point yt at time frame t.

 Destroy any existing feature point yt+1 or new feature point
1

~
+ty that fails either of its respective tests:

() Etttt ThyyEy <+++ 111 ,: (8)
() HCtt Thy >++ 11HC (9)
() Etttt ThyyEy <+++ 111

~,~:~ (10)
() HCtt Thy >++ 11
~HC (11)

where ThE is the threshold for the optical flow matching error
and ThHC is the threshold for the corner score.

 Let the sets of states and of feature points for the next iteration
be:

{ } { } { }111
~

+++ += ttt XXX (12)

{ } { } { }111
~
+++ += ttt YYY (13)

In summary, with evolution we detect additional new feature
points in each frame. Instead of initializing the state of the newly
generated feature point from scratch, we borrow information from
its neighbors. Only the feature points with good 2D
correspondences (large corner scores and low matching errors) can
be passed on to the next iteration. Therefore, we allow those
feature points with good 2D correspondence to continue in the
future iterations where they would hopefully become more reliable
and have a low Kalman error. We also let a feature point die if it
does not have good 2D correspondence across neighboring frames
since we cannot accurately reconstruct its 3D point position
anyways.

2.2. Reconstruction and Rendering

Once the tracking of the evolving points is complete, the
underlying states can then be used to construct 3D depth maps.
First, as we are tracking the feature points using EKF, we utilize
the Kalman error to remove those feature points which were poorly
tracked. The remaining, reliable states (3D positions) are then used
to build the time-dependent 3D mesh (depth map) using Delaunay
triangulation [19] at each time instance of capturing. Finally, the

meshes are deformed locally in time based on the reliable states’
motions for rendering at a desired time instance. Given the
deformed meshes and textures from the captured images, we were
able to render the scenes at the desired time instance.

3. EXPERIMENTS

We first show the experimental results of our video-based
rendering with a single moving camera. A better visualization
using novel multi-depth-map video-based rendering with multiple
moving cameras is also presented.

Figure 2. Experiment setup of a moving car

Figure 3. Sample input images of a moving car

 (a) 3D points (b) 3D mesh (c) Rendered image

Figure 4. The reconstruction of dynamic scene

 (a) Frame 35 (b) Frame 55 (c) Frame 115 (d) Frame 155
Figure 5. The proposed video-based rendering at virtual viewpoint

We first ran experiments on synthetic data with a single
moving camera. A moving toy car was captured by an oscillating
camera simulated by POV-ray [20]. The car moved with the speed
of 0.04 from left to right. The camera oscillated between -0.2 to
0.2, and was 5 away from the car center vertically. We rendered
the scene activities at the virtual viewpoint x = 0.05 as shown in
Figure 2. As illustrated in Figure 3, a total of 160 images were
captured at a low resolution of 320x240 pixels with the known
intrinsic and extrinsic camera calibration parameters as the input
image sequence. As shown in Figure 4, we first reconstructed the
feature points of the scene using our proposed evolution algorithm
of Section 2.1. Based on the reconstructed feature points’
positions and motions in space, we then built the triangle mesh of
the scene at the desired time instance. Finally, we rendered the
scene at a novel virtual viewpoint (see Figure 2) using the time-
dependent meshes and textures from the captured images, as
explained in Section 2.2. We showed that evolution had a good
rendering quality in the experiment, for example, the car’s
geometry and motion were well rendered as shown in Figure 5. A
video with both capturing, rendering and detail parameter settings
can be downloaded at

ftp://amp.ece.cmu.edu/Outbox/ICIP2006/SynMoveCar.zip.
The rendering results in Figure 4 and Figure 5 will be bad

without the feature point evolution involved, since the object
appearance relative to the camera changes dramatically between
the first frame and the last frame as shown in Figure 3.

We also extended our video based rendering to using multiple
moving cameras to reconstruct multiple depth-maps for better
driver visualization. We can attach one camera to vehicle’s
moving wind-shield wiper. POV-ray [20] is used again to simulate
the oscillating camera to capture the street scene as shown in
Figure 6(b). The driver can visualize the dynamic street scene at a
higher virtual viewpoint using the proposed video-based rendering
algorithm with a single moving camera. However, due to the
occluded area blocked by the school bus ahead, the rending result
Figure 6(c) at a higher virtual viewpoint did not render the broken
vehicle existing in the scene as shown in Figure 6(a), which is
important information to avoid a potential accident.

 (a) Bird-view (b) Input image (c) Rendered image

Figure 6. Visualization with a single camera

(a) Bird-view (b) Rendered image

 (c) Captured from Camera1 (d) Captured from Camera2

Figure 7. Visualization with two cameras
Since vehicles can communicate between each other in future,

with the multiple-depth-map modeling, we can have a better
visualization using neighboring vehicles’ cameras. In this
example, we simply composed the textures, the resulting depth
maps reconstructed by current vehicle (Figure 7(c)), and those
reconstructed by the school bus ahead (Figure 7(d)). As shown in
Figure 7(a), we had less occluded area compared to Figure 6(a).
Our rendering result at a higher viewpoint rendered the broken
vehicle as shown in Figure 7(b), which was a better visualization.
The dynamic rendering results (video) can be downloaded at
ftp://amp.ece.cmu.edu/Outbox/ICIP2006/SynMultiCam.zip.

4. CONCLUSIONS

We proposed a feature point evolution algorithm for dynamic
scene reconstruction that exploits the characteristics of dynamic,

video-based rendering using a moving camera. We also proposed
the video-based rendering with the multi-depth-map modeling
using multiple moving cameras to have a better rendering quality.

evolving scenes. The result is an evolution model dealing with

REFERENCES

] C. Zhang and T. Chen, “A Survey on Image-Based Rendering –

tler, and M. Cohen,

 S. Winder and R. Szeliski,

age-Based Spatio-Temporal

e-continuous Geometry Meshes

 registration technique

.E. Kalman. “A new approach to linear filtering and prediction

f state variables and parameters for

. Doucet, S. Godsill, and C. Andrieu, "On sequential Monte Carlo

drasekhar, and R. Chellappa, “Recursive 3-D

otion,

off, "Recursive Estimation of Motion and Planar

and

 of

. Hedley, "Robust Recursive Structure and

g a Dynamic Set of Feature

alization and

edge detector,”

essellations: Concepts

ay.org/.

[1
Representation, Sampling and Compression”, EURASIP Signal Processing:
Image Communication, Vol. 19, pp. 1-28, Jan. 2004.
[2] C. Buehler, M. Bosse, L. McMillan, S. Gor
“Unstructured Lumigraph rendering”, Computer Graphics (SIG-
GRAPH’01), pp 425-432, Aug. 2001.
[3] C.L. Zitnick, S.B. Kang, M. Uyttendaele,
“High-quality video view interpolation using a layered represenation,”
Computer Graphics (SIGGRAPH), Aug. 2004.
[4] S. Vedula, S. Baker, and T. Kanade, "Im
Modeling and View Interpolation of Dynamic Events," ACM Transactions
on Graphics, Vol. 24, No. 2, April, 2005.
[5] B. Goldluecke, M. Magnor, "Spacetim
from Multi-view Video Sequences," Proc. IEEE International Conference
on Image Processing (ICIP'05), Genoa, Italy, 2005.
[6] B. D. Lucas and T. Kanade, “An iterative image
with an application to stereo vision,” In Proc. of International Joint Conf.
on Artificial Intelligence (IJCAI '81), pages 674-679, Vancouver, April
1981.
[7] R
problems,” Transactions of the ASME: Series D, Journal of Basic
Engineering, 82:35.45, March 1960.
[8] H. Cox, “On the estimation o
noisy dynamic systems,” IEEE Trans. on Automatic Control, 9(1):5.12,
1964.
[9] A
sampling methods for bayesian filtering," Statistics and Computing, vol. 10,
no. 3, pp. 197-208, 2000.
[10] T. Broida, S. Chan
Motion Estimation from a Monocular Image Sequence,” IEEE Transactions
on Aerospace and Electronic Systems AES-26(4): pp 639-655, 1990.
[11] A. Azarbayejani, A.P. Pentland. "Recursive Estimation of M
Structure, and Focal Length," IEEE Transactions on PAMI, vol. 17, no. 6,
pp. 562-575, June 1995.
[12] J. Alon and S. Sclar
Structure," in Proc. of IEEE Conf. on CVPR, Vol. 2, pp 550-556, 2000.
[13] S. Zhou, R. Chellappa, and B. Moghaddam, "Visual tracking
recognition using appearance-adaptive models in particle filters," IEEE
Transactions on Image Processing (IP), Vol. 11, pp. 1434-1456, 2004.
[14] R. Collins, Y. Liu, and M. Leordeanu, “On-line selection
discriminative tracking features,” IEEE Transaction on PAMI, 27(10), pp
1631-1643, October 2005.
[15] M. Trajkovic and M
Motion Recovery under Affine Projection", Proc. British Machine Vision
Conference-97, Essex, UK, September 1997.
[16] Y. S. Yao and R. Chellappa, "Trackin
Points," IEEE Trans. Image Processing, Vol. 4, No. 10, 1995.
[17] A. J. Davison and D. W. Murray, "Simultaneous Loc
Map-Building Using Active Vision," IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(7):865—880, 2002.
[18] C. Harris and M. Stephens, “A combined corner and
In 4th Alvey Vision Conference, pp. 189-192, 1988.
[19] A. Okabe, B. Boots, and K. Sugihara, Spatial T
and Applications of Voronoi Diagrams, New York, Wiley, 1992.
[20] Persistence of vision ray tracer (POV-Ray). http://www.povr

ftp://amp.ece.cmu.edu/Outbox/ICIP2006/SynMoveCar.zip
ftp://amp.ece.cmu.edu/Outbox/ICIP2006/SynMultiCam.zip

	ABSTRACT

