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Abstract 

In this paper, we propose a probabilistic framework for reconstructing scene geometry 

and object motion utilizing prior knowledge of a class of scenes, for example, scenes 

captured by a camera mounted on a vehicle driving through city streets.  In this 

framework, we assume the video camera is calibrated, i.e., the intrinsic and extrinsic 

parameters are known all the time.   While we assume a single camera moving during the 

capturing, the framework can be generalized to multiple stationary or moving cameras as 

well.  Traditional approaches match the points, lines or patches in multiple images to 

reconstruct scene geometry and object motion.  The proposed framework also takes 

advantage of each patch’s appearance and location to infer its orientation and motion 

direction using prior information based on statistical learning from training data. The 

prior hence enhances the performance of geometry and motion reconstruction.  We show 

that the prior-based 3D reconstruction outperformed traditional 3D reconstruction with 

synthetic data and real data, especially in textureless areas for geometry estimation and 

faraway areas for motion estimation. 
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1. Introduction 

We categorize scenes by motion: stationary scenes and dynamic scenes.  Stationary 

scenes contain no object motion, while dynamic scenes have at least one moving object.  

Image-based geometry reconstruction for stationary scenes has been intensively 

studied recently (Seitz et al., 2006; Shum et al., 2003).  

Pollefeys et al. (2004) presented geometry reconstruction systems to automatically 

extract 3D models from a sequence of images.  They matched features and computed the 

relations between images.  From this, both the structure of the stationary scene and the 

motion of the camera were reconstructed.  Collins (1996) proposed an efficient multi-

image matching technique using plane-sweeping for geometry reconstruction.  Recently, 

Akbarzadeh et al. (2006) extended the plane-sweeping algorithm by sweeping planes in 

multiple directions for urban geometry reconstruction.  Zitnick et al. (2004) used the 

modified plane-sweeping algorithm to estimate the current scene’s geometry with a 

smoothness constraint between patches and a spatial consistency constraint between 

images. Other methods for geometry estimation include Voxel coloring (Seitz and Dyer 

1999) or stereo (Scharstein and Szeliski 2002) methods, etc.  

Some previous work requires multiple synchronized cameras to reconstruct dynamic 

scenes. These algorithms (Akbarzadeh et al. 2006; Zitnick et al. 2004), which were 

suitable for the stationary scene reconstruction, could be applied to identify the current 

scene geometry based on the synchronized multiple cameras without considering 

temporal consistency.   

Reconstruction quality can be further improved if object motion is also estimated.  

Some researchers assumed a model for a specific class of objects, e.g., the human body, 
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and estimate its motion.  Gavrilla (1999) introduced the marker-free motion capture 

algorithms that employed a prior model of human body.  Fitzgibbon et al. (2000) 

reconstructed the independently moving objects, but only for a sparse set of feature 

points.  

Most existing reconstruction approaches match points, lines or patches among 

multiple images for scene reconstruction.  Considering that humans can easily understand 

the scene geometry structure based on prior knowledge, Hoiem et al. (2005) proposed 

prior-based geometry estimation from a single image using statistical learning.  They 

could reconstruct a coarse geometry model by classifying each patch into ground, vertical 

or sky.  Saxena et al. (2005) also applied supervised learning to predict the depth map of 

an outdoor scene from a single image.  Their depth-map estimation model used a Markov 

Random Field that contained multi-scale local and global image features, and modeled 

both the depth at each individual point and the spatial relationship between depths at 

neighboring points.  Zhang and Chen (2007) reconstructed stationary scene geometry 

from video using geometric prior information.  They represented the scenes by small 

patches with different orientations: horizontal (e.g., ground), vertical (e.g., building facets 

towards the street and parallel to the camera motion), and frontal (e.g., building facets 

towards the street and perpendicular to the camera motion).   

In this paper, we reconstruct dynamic scenes from video captured by a calibrated 

camera on a moving vehicle as shown in Figure 2.  The camera can be calibrated based 

on vehicle’s GPS sensor, speed sensor, and gyro/yaw-rate sensor.  We represent the 

scenes by small patches with different orientations (Zhang and Chen, 2007); and objects 

(e.g., vehicles) move on the flat ground.  We approximate the patch’s motion directions 
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to be either parallel or perpendicular to the camera motion (e.g., left, right, forward or 

backward) in a short time period.  Since humans can also identify object motion 

directions from a single image as shown in Figure 3, we also take advantage of each 

image patch’s appearance and location to infer its motion direction from prior 

information. Our prior-based geometry and motion reconstruction algorithm extends 

Hoiem et al. (2005)’s approach and Zhang and Chen (2007)’s approach to reconstruct 

dense depth maps and motion maps from video as shown in Figure 4.   

The paper is organized as follows.  In the next section, we describe the prior-based 

geometry and motion reconstruction.  In Section 3, we show experimental results and 

compare the geometry and motion reconstruction quality between the approaches with 

and without prior information as shown in Figure 1.  Conclusions and future work are 

given in Section 4.  

2. Prior-Based Geometry and Motion Reconstruction 

In this section, we first provide an overview of prior learning methods and prior-based 

geometry and motion reconstruction approach, and then introduce each component in 

detail. 

2.1 Overview 

As shown in Figure 5, for the prior learning, we first segment training images into 

patches.  We then train an orientation estimator and a motion direction estimator using 

labeled patches.   

For the prior-based geometry and motion reconstruction, input images are first 

segmented into patches Sj.  We then infer each patch’s orientation distribution  and )(oPj

 4 



motion direction distribution  based on image patch’s appearance and location 

using the orientation estimator and the motion direction estimator, respectively.  Motion 

magnitude distribution  is application-dependent.  Meanwhile, we calculate the 

color consistency of every patch among multiple images at an assumed depth d with a 

given orientation o and a motion vector m to estimate the conditional 

probability , where 

)( dirj mP

)( magj mP

),|( modPj ],[ magdir mm=m .   The initial likelihood of patch’s 

geometry and motion  is approximated by the product of the prior 

probabilities ,  and , and the conditional probability .  

A coarse patch-based smoothing algorithm is then applied to refine the initial geometry 

and motion likelihood  between its neighboring patches and between its 

corresponding regions at multiple times/viewpoints iteratively.  The maximum likelihood 

estimates of patch’s depth , orientation  and motion vector m , based on the resulting 

,  determine initial depth map , orientation map, and initial motion map 

 at each pixel position x.  The initial depth map  and the initial motion map 

 are further smoothed iteratively per pixel between images to have a refined depth 

map  and a refined motion map . 

),,(0 modPj

)(oPj )( dirj mP )( magj mP ),|( modPj

),,(0 modPj

d̂ ô ˆ

),,( modPt
j )(0 xd
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)(xd t )(xtm

2.2 Image Segmentation 

We use the efficient graph-based image segmentation technique proposed by 

Felzenszwalb and Huttenlocher (2004).  Each image is represented by RGB pixels.  The 

image pixels are grouped into small patches based on their intensities.  The use of patches 

improves the computational efficiency of our algorithm to estimate the depth and motion 
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for each pixel, and allows complex statistics to be extracted for prior knowledge 

(orientation and motion direction) estimation.   

2.3 Prior Estimation 

Prior estimation contains two stages:  learning and inference.  In the prior learning stage, 

we first extract features from training patches, and then train the prior estimators using 

the extracted features with their labels.   

Similar to human vision system, texture, color and location features are extracted 

from each patch as shown in Figure 6.  The texture feature is the 15 mean values of the 

absolute responses of the Leung-Malik (LM) filter bank (Leung and Malik 2001).  The 

color feature is the 6 mean values of RGB and HSV.  And the location feature is the 2D 

mean location in the image coordinates.   

In the training stage, we label image patch’s orientation into frontal, vertical, 

horizontal, or sky as shown in Figure 7.  Sky is treated as a special category, which is 

farthest-away frontal patch from the camera.  We also label patch’s motion direction into 

stationary, forward, backward, or left/right.  We train the orientation estimator and 

motion direction estimator individually using Support Vector Machines (SVM) 

probability estimation (Wu et al. 2004) based on the labeled patch features.   Compared 

to Hoiem et al. (2005)’s approach, we apply a weaker statistic learning approach only 

based on patch features.   

In the inference stage, we calculate the prior distributions of patch’s orientation and 

motion direction.  We first extract patch Sj’s features, and then infer its orientation 

distribution  and motion direction distribution  using the orientation )(oPj )( dirj mP
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estimator and motion direction estimator, respectively.  The SVM-based estimators 

provide the probabilities of all possible labels as shown in Figure 8.   

The prior distribution  is approximated by a heuristic distribution 

 with a pre-determined value a in our experiment. 

)( magj mP

)exp()( magmagj mamP ⋅−∝

2.4 Initial Geometry and Motion Estimation  

The initial distribution of patch geometry and motion  is evaluated by the 

product of the prior probabilities , , , and the conditional 

probability  of patch’s depth d given the orientation o and motion m, where 

.  

),,(0 modPj

)(oPj )( dirj mP )( magj mP

),|( modPj

],[ magdir mm=m

),(),|(),,(0 mmm oPodPodP jjj = ,                                    (1) 

where , since we assume that 

orientation o, motion direction , and motion magnitude  are statistically 

independent of each other. 

)()()(),,(),( 00
magjdirjjmagdirjj mPmPoPmmoPoP ≈=m

dirm magm

The conditional probability  is determined based on color consistency 

between images using the extended plane-sweeping algorithm with the given orientation 

and motion.  We assume that scene patches follow a constant motion in a short time 

period.  Patch S

),|( modPj

j’s depth with the given orientation and motion is evaluated by its color 

consistency between multiple images at the reference viewpoint (Camera 2) as illustrated 

in Figure 9.  (In our scenario, the camera would be moving towards the scene, which is 

different from the illustration.)  We compare the RGB color difference between every 

pixel in patch Sj at the reference viewpoint and its corresponding pixels with motion shift 
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at the other times/viewpoints k, k = 1...N, (in Camera 1 and Camera 3) to measure the 

color consistency  using the following robust function with a parameter th: )( jdiff Se

∑ ∑
∈ +

=
k Spixel k

k

S
jdiff

jj
th

Se 22

2

num
1)(

γ
γ ,                      (2) 

where kcorrefkcorrefkcorrefk bbggrr ,,, −+−+−=γ is the RGB color difference, and 

 is the number of the pixels in S
jSnum j.  The extended plane-sweeping algorithm is an 

extension to the oriented plane-sweeping algorithm (Akbarzadeh et al. 2006) with 

additional motion estimation. 

The conditional probability  is determined by the color consistency 

measures :    

),|( modPj

)( jdiff Se

∑
=

'
),,'(

),,(),|(

d

j odg
odgodP

m
mm , where  )(1),,( jdiff Seodg −=m .     (3) 

2.5 Patch-Based Smoothing 

We refine patch’s initial geometry and motion distribution  between its 

neighboring patches and between its corresponding regions at multiple times/viewpoints 

iteratively, which is similar to approach in Zitnick et al. 2004, with the extension of 

smoothing for additional orientation and motion estimation.  We enforce a smoothness 

constraint that the neighboring patches (S

),,(0 modPj

j and sl  in Frame 1) with similar colors (blue) 

should have similar depths (d ≈ di), orientation (o = vertical) and motion vectors as 

shown in Figure 10.  We also ensure scene’s geometry and motion consistency constraint 

between images.   We assume that a scene patch (Sj) follow a constant motion (m) in a 

short time period.  If we project Sj with its ground-truth depth d, orientation o, and motion 
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vector m into a neighboring image, the projected region (in Frame 2) should have the 

similar depth, orientation and motion if not occluded.   

The likelihood distribution of patch’s geometry and motion  is updated 

iteratively as follows: 

),,( modPt
j

∑ ∏
∏

∈

∈+ =
',',' ,

,1

)',','()'()','(
),,()(),(

),,(
m

mm
mm

m
od Nk kjjj

Nk kjjjt
j odcnodn

odcnodn
odP              (4) 

where  enforces patch’s geometry smoothness constraint, and  enforces 

patch’s motion smoothness constraint.  ensures patch’s consistency 

constraint in each projected region at multiple times/viewpoints k, k = 1…, N.   

),( odn j )(mjn

),,(, modc kj

The geometry smoothness coefficient  enforces that the neighboring patches 

with similar colors should have similar depths and the same orientation.   

),( odn j

Let sl denote one of patch Sj’s neighboring patches as shown in Figure 10.  ,  and 

 are the maximum likelihood estimates of its depth, orientation, and motion based on 

, respectively.   

ld̂ lô

lm̂

),,( modPt
l
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mm
m

odPod t
l

od
lll =                   (5) 

We assume that if patches Sj and sl have the same orientation, the depth d of patch Sj 

is modeled by a contaminated Gaussian distribution with mean  and variance .  We 

define  to be: 

ld̂ 2
lσ
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where  is the Gaussian distribution, and ),;( 2σmeanxN ε  and c are small constants 

(e.g. ).  We evaluate the variance  using color similarity, neighboring similarity, 

and s

1010− 2
lσ

l’s geometry and motion maximum likelihood:  

• Color similarity of the patches lj ,∆ , which  measures the color difference between 

patches Sj and sl. 

• Neighboring similarity , which is the percentage  of patch Sljb , j’s border between 

patches Sj and sl. 

• Geometry and motion maximum likelihood for patch sl: , which 

represents the accuracy of the maximum likelihood estimates for patch s

)ˆ,ˆ,ˆ( lll
t

l odP m

l’s 

geometry and motion. 

2
lσ  is defined as 

),0;()ˆ,ˆ,ˆ( 2
,,

2
2

∆∆
=

σ
σ

ljljlll
t

l
l

NbodP
v

m
           (7) 

where v and  are constants.  Therefore, if patch S2
∆σ j and its neighboring patch sl have 

similar colors, and patch Sj’s depth and orientation are consistent with its neighbor’s 

depth and orientation maximum likelihood estimates, we expect  to be large. ),( odn j

The motion smoothness coefficient  enforces that the neighboring patches with 

similar colors should have similar motion.  We assume that patch S

)(mjn

j’s motion vector m is 

also modeled by a contaminated Gaussian distribution with mean  and variance lm̂ lΣ . 

Therefore, we define  as follows: )(mjn

∏ +Σ=
ls

llj Nn ε),ˆ;()( mmm , where .        (8) 22
2

×=Σ Ill σ
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If patch Sj and its neighboring patch sl have similar colors, and patch Sj’s motion is 

consistent with its neighbor’s motion maximum likelihood estimate, we expect  to 

be large. 

)(mjn

The spatial consistency coefficient  ensures that the patch S),,(, modc kj j’s depth, 

orientation and motion estimates are consistent with the depth, orientation and motion 

estimates at time/viewpoint k.  We compute  based on spatial consistency, 

visibility, and patch S

),,(, modc kj

j’s initial geometry and motion likelihood: 

1. Spatial consistency without occlusion.  We first project patch Sj with the depth d, 

orientation o and motion vector m onto a neighboring image.  We then calculate patch 

Sj’s projecting distribution  based on the geometry and motion distribution at 

the projected time/viewpoint k to estimate the spatial consistency without occlusion. 

),,(, modbt
kj

∑
∈

=
jj Sx

t
xkr

S

t
kj odP

num
odb ),,(1),,( ),(, mm                                         (9) 

where r(k,x) is the patch index at the time/viewpoint k, on which the corresponding pixel 

of the pixel position x on patch Sj is.  And  is the number of the pixels on patch S
jSnum j.  

If the projected region’s depth, orientation and motion maximum likelihood estimates are 

consistent with patch Sj’s estimates, we expect to be large when patch S),,(, modbt
kj j is 

visible at the time/viewpoint k (Frame 2) as shown in Figure 10.  

2. Visibility.  Due to the possible occlusions, a patch might not have the 

corresponding pixels at another time/viewpoint as shown in Figure 11.  We estimate the 

overall visibility likelihood vj,k, that the patch is visible: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

',','
,, )',','(,0.1min

m
m

od

t
kjkj odbv                                             (10) 
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If the patch Sj is visible at the time/viewpoint k (Frame 2) as shown in Figure 10, we 

can find its corresponding region when we search the space of the depth d, orientation o, 

and motion m.  The ground-truth solution and its neighboring solutions offer large 

 values.   If the patch S)',','(, modbt
kj j is occluded at the time/viewpoint k (Frame 2) as 

shown in Figure 11, we can not find its corresponding region when we search the space 

of depth d, orientation o, and motion m.  No solution provides large  value.  

Therefore, we use v

)',','(, modbt
kj

j,k as a robust and computational efficient measure of patch’s 

visibility.    

We also estimate the specific visible likelihood vcj,k(d,o,m) that given depth d, 

orientation o and motion m, patch Sj is visible at time/viewpoint k as follows:   

)'ˆ(),,(1),,( ),(, ddhodP
num

odvc l
Sx

t
xkr

S
kj

jj

−= ∑
∈

mm ,                                 (11) 

where h(x) is the Heaviside step function. 

This suggests that if patch Sj is visible at the time/viewpoint k, its corresponding 

depth d should not be under the surface of the depth map  estimated at the 

time/viewpoint k. 

ld 'ˆ

3. Initial Sj’s geometry and motion likelihood .  ),,(0 modPj

Now, we combine the visible and occluded cases.  If the patch is visible,  

is calculated from the visible consistency likelihood .  Otherwise, 

its occluded consistency likelihood is  with uniform prior 

.  size(d), size(o), and size(m) are the sizes of depth, 

orientation and motion hypothesis spaces, respectively.  Therefore, 

),,(, modc kj

),,(),,( 0
, mm odPodb j

t
kj

0
, )),,(1( Podvc kj m−

)}()()(/{10 msizeosizedsizeP =
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2.6 Pixel-Based Motion and Depth Smoothing 

The maximum likelihood estimates of each patch’s depth d , motion m  and orientation 

 based on  determine initial depth map ,  initial motion map , 

and orientation map for each pixel x.   

ˆ ˆ

ô ),,( modPt
j )(0 xd )(0 xm

),,(maxargˆˆˆ
,,

mm
m

odPod t
l

od
lll =                                     (13) 

We further refine the depth map  and motion map  iteratively between 

images.  For each pixel x at the current time/viewpoint, we find its corresponding pixel y 

at the neighboring time/viewpoint k with the constant motion assumption.   If the 

corresponding pixel’s depth  is similar to pixel x’s depth , the pixel x’s depth 

 is replaced by the average of  and .  If the corresponding pixel’s 

motion  is similar to pixel x’s motion , the pixel x’s motion  is 

replaced by the average of  and .  The iterative updating equations are  

)(xd t )(xtm
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where )  ( ,, kdkdk and δδµ = , and , .   d
t
k

t
kd ydxd λδ <−= |)()(|, mm mm λδ <−= |)()(|, yx t

k
t

k

δ  is the indicator variable (0,1) testing input similarity with the threshold parameter λ, 

and N is the number of the neighboring images. 
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3. Experiments 

In this section, we first showed the experimental results of the prior-based estimation 

based on a single image.   

We trained the SVM-based orientation estimator with 4756 labeled patches, extracted 

from 29 color images with the resolution of 320x240 pixel2.  The sample images for 

training the orientation estimator were shown in Figure 12.   

We inferred the orientation distribution of each image patch using the orientation 

estimator.  In Figure 13, we showed the classification results of the orientation estimator 

on a sample image with the maximum likelihood estimates represented by the shaded 

colors: red (horizontal), green (vertical), and blue (frontal).     

The SVM-based motion direction estimator was trained based on 10109 patches, 

extracted from 59 color images with resolution 320x240 pixel2.  The sample images for 

training the motion direction estimator were shown in Figure 12. 

We inferred the motion direction distribution of each patch using the motion direction 

estimator.  In Figure 14, we showed the classification results of the motion direction 

estimator on a sample image with the maximum likelihood estimates represented by the 

shaded colors: red (forward), green (backward), yellow (left/right) and blue (stationary). 

Next, we showed experimental results of the prior-based geometry and motion 

reconstruction from video.    

We ran experiments on synthetic data of a dynamic street simulated by POV-ray (Ray 

tracking software at http://www.povray.org/).  As illustrated in Figure 15, six images 

were captured by a forward moving camera with the known intrinsic and extrinsic camera 
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calibration parameters.  Only the yellow school bus in the scene was moving towards 

right.   

Each image was segmented into small patches, and patch’s orientation and motion 

direction distributions were inferred based on patch’s appearance and location. We 

applied the prior-based geometry and motion reconstruction algorithm to reconstruct a 

depth map and a motion map as illustrated in Figure 4. 

We compared the results of the proposed prior-based algorithm with the estimated 

prior distributions (  and ) and the results of previous work without using 

any prior, which is effectively our algorithm with uniform prior distributions (

)(oPj )( dirj mP

oj coP =)(  

and ) for geometry and motion reconstruction in Figure 16.   The results are 

summarized in Table 1.  Compared with the ground-truth depth map, the prior-based 

method provided the reconstructed depth map with 6.1 error/pixel on average, while the 

baseline approach without prior information offered 13.1 error/pixel.  Compared with the 

ground-truth motion map, the prior-based method provided the reconstructed motion map 

with 0.0084 error/pixel on average, while the baseline approach offered 0.0497 

error/pixel.  Therefore, the prior-based method provided better depth map and motion 

map than the baseline approach, especially in the textureless (e.g. ground) areas.  

mdirj cmP =)(

We also ran experiments on real data.  A forward moving camera captured 7 input 

images in a lab as shown in Figure 17.  Only the grey vehicle in the scene was moving 

towards left.   

We calibrated the camera’s intrinsic parameters (camera’s focal length and optical 

center) with checker board patterns offline and the extrinsic parameters (the translation 

vector and the rotation matrix) with markers on the ground using Zhang (1998)’s method.  
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We applied the prior-based geometry and motion reconstruction algorithm on these input 

images to reconstruct the depth map and motion map at each time instance as shown in 

Figure 4.   

We compared the results of the proposed prior-based algorithm with the estimated 

prior distributions and the results of previous work without using any prior for geometry 

and motion reconstruction.   

In Figure 18, we showed the comparison of resulting motion maps.  The prior-based 

method also offered better motion maps, since it identified the grey vehicle’s correct 

motion (median speed towards left).   The method without prior information provided 

wrong motion at the ground and faraway background areas, since ground was textureless, 

and it was difficult to tell whether the faraway scene was stationary or moving slightly 

without any prior information.  Therefore, the prior-based method had better 

reconstructed depth maps than the traditional approach in Figure 19. 

We also showed experimental results of our prior-based geometry and motion 

reconstruction of a parking lot scene.   A forward moving camera captured 6 images with 

a white car as shown in Figure 20.  Only the white car was moving towards right.  We 

have no similar environments in the training set as shown in Figure 12.   

In Figure 21, we showed the comparison of resulting motion maps.  The prior-based 

method offered better motion maps, since it recovered the white car’s motion (median 

speed towards right).   The method without prior information indicated wrong motions at 

the ground and sky areas, since the ground was textureless, and it was difficult to tell the 

motion of the sky without any prior information.  Therefore, the prior-based method had 

better estimated depth maps than the traditional approach in Figure 22. 
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4. Conclusions and Future Work 

In this paper, we proposed a novel framework for reconstructing scene geometry and 

object motion utilizing prior information.  Traditional approaches match the points, lines 

or patches among multiple images to reconstruct scene geometry and object motion.  Our 

framework also takes advantage of each image patch’s appearance and location to infer 

its orientation and motion direction using statistical learning.  We showed that the prior-

based geometry and motion reconstruction method outperformed the traditional 

reconstruction methods, especially in the textureless areas for geometry estimation and 

faraway areas for motion estimation. Compared with ground-truth values of a synthetic 

scene, the reconstructed depth-map errors of the proposed method are 1/2 of the errors of 

the baseline method.  The reconstructed motion-map errors of the proposed method are 

1/6 of the errors of the baseline method. 

In future, we will include rotation into the motion modeling and estimation. 
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Figure 1. Experimental results.  (a) shows one of the images captured in a parking lot by 

a forward moving camera with a white car moving towards right.  (b) is the rendering 

 2 



result of the prior-based geometry and motion reconstruction.  (c) shows that the 

proposed prior-based method outperforms the traditional technique in terms of the 

reconstructed depth map and motion map.  The depth is represented by a color map.  

Assuming all objects are moving either left/right or forward/backward (no vertical 

motion), the motion is quantized into fast, medium, slow and no motion, and represented 

by different colors in the motion map. 

 

Figure 2. Illustration of scene capture scenario 

 

Figure 3. Sample images captured by a moving camera 
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Figure 4. Prior-based geometry and motion reconstruction.  The depth is represented by a 

color map.  We assume that objects have no vertical motion.  The motion vector (x, y) is 

quantized into fast, medium, slow or no motion in 4 directions, and represented by 

different colors for illustration. 

 

Figure 5. Prior learning and prior-based geometry and motion reconstruction 
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Figure 6.  Feature extraction 

 

Figure 7.  Labeled data for training the estimators 

 

Figure 8. Patch’s prior distribution inference  
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Figure 9. Extended plane-sweeping algorithm with orientation and motion hypotheses 

 

Figure 10. Patch-based smoothing 

 

Figure 11. Red patch is occluded in Frame 2. 

 

Figure 12. Sample images for training the orientation estimator and motion direction 

estimator 
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         (a) Sample image   (b) Classification results 

Figure 13. Prior-based orientation estimation results 

 

      (a) Sample image   (b) Classification results 

Figure 14. Prior-based motion direction estimation results 

 

Figure 15. Sample input images of a dynamic street  
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Figure 16. Depth map and motion map comparison of different algorithms for dynamic 

scene reconstruction. 

 

Figure 17. Sample input images of a dynamic lab scene  

 

Figure 18. Motion map comparison on a lab scene 

 

Figure 19. Depth map comparison on a lab scene 
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Figure 20. Sample input images of a parking lot  

 

Figure 21. Motion map comparison on an outdoor scene 

 

Figure 22. Depth map comparison on an outdoor scene 

Reconstruction error 
(Unit/pixel) Baseline Approach Prior-Based Approach 

Depth Map 13.1 6.1 
Motion Map 0.0497 0.0084 

Table 1.  Experiment results on synthetic data 
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