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ABSTRACT 

To record an exciting moment, we often capture scene activities from different 

viewpoints by moving the camera while capturing the video.  During playback, it is 

desirable to have the ability to interactively control the timeline, e.g., for slow motion 

playback, and to control the viewpoint to view the activities.    

In this thesis, we propose a probabilistic framework for reconstructing scene 

geometry and object motion utilizing prior knowledge of a class of scenes, for example, 

scenes captured by a camera mounted on a vehicle driving through city streets.  In this 

framework, we assume the video camera is calibrated, i.e., the intrinsic and extrinsic 

parameters are known all the time.  While we assume a single camera moving during 

capturing, the framework can be generalized to multiple stationary or moving cameras as 

well.  Traditional approaches try to match the points, lines or patches in multiple images 

to reconstruct scene geometry and object motion.  The proposed framework also takes 

advantage of each patch’s appearance and location to infer its orientation and motion 

direction using prior based on statistical learning from training data.  The prior hence 

enhances the performance of geometry and motion reconstruction.  We show that prior-

based 3D reconstruction outperforms traditional 3D reconstruction with synthetic data 

and real data for both stationary scenes and dynamic scenes, especially in the textureless 

areas for geometry estimation and faraway areas for motion estimation.  

xii   



 

 

1．Introduction 

 

To record an exciting moment, we often capture scene activities from different 

viewpoints by moving the camera while capturing the video.  During playback, it is 

desirable to have the ability to interactively control the timeline, e.g., for slow motion 

playback, and to control the viewpoint to view the activities.    

Scene reconstruction and rendering have been a popular research topic for decades.  

Given a set of images captured by one or more cameras, the goal of scene reconstruction 

and rendering is to reproduce a realistic image of the scene at an arbitrary time and 

viewpoint.  

We categorize scenes by motion: stationary scenes and dynamic scenes.  Stationary 

scenes contain no object motion, while dynamic scenes have at least one moving object. 

 

1.1 Geometry Reconstruction/Rendering for Stationary Scenes 

Image-based geometry reconstruction and rendering for stationary scenes have been 

intensively studied recently [1]-[6].  An early survey on various image-based geometry 

reconstruction and rendering techniques can be found in [7] and more recent ones are in 

[8][9].  A recent survey on various motion-parallax-based geometry estimation 

approaches to obtain a representation of geometry can be found in [10].    

For a multi-camera system, in Lumigraph approach [11], a volumetric model of the 

captured scene was initialized by the octree construction algorithm [12] and refined by 

the visual hull algorithm [13].  Tomasi and Kanade [14] used an affine factorization 
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method to reconstruct geometry from multiple images.  They assumed the orthographic 

projection.  Pollefeys et al. [15] presented 3D reconstruction systems to automatically 

extract detailed 3D models from a sequence of images.  They matched features and 

computed the relations between images.  From this, both the structure of the stationary 

scene and the motion of the camera were reconstructed.  Collins [16] proposed an 

efficient multi-image matching technique using plane-sweeping for geometry 

reconstruction.  Recently, Akbarzadeh et al. [17] extended the plane-sweeping algorithm 

by sweeping planes in multiple directions for urban geometry reconstruction.  Zitnick et 

al. [18] used the modified plane-sweeping algorithm to estimate the current scene’s 

geometry with a smoothness constraint between patches and a spatial consistency 

constraint between images.  Other methods for geometry estimation include voxel 

coloring [19] or stereo methods [20], etc.  

 

1.2 Geometry and Motion Reconstruction/Rendering for Dynamic Scenes 

There are mainly five approaches to reconstruct and rendering dynamic scenes: 

synchronized multi-view-based, model-based, scene-based or content-based, optical 

flow-based and time series analysis-based approaches. 

Some previous work requires multiple synchronized cameras to reconstruct and 

render dynamic scenes. These algorithms, which were suitable for stationary scene 

reconstruction, could be applied to identify the current geometry, and render the scene 

based on the synchronized multiple cameras. Such work [6][11][17][18] used the 

stationary geometry estimation and view interpolation rendering without considering 

dynamic motion estimation or temporal consistency.   
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Reconstruction and rendering quality can be further improved if 3D motion is also 

estimated. To estimate scene geometry and object motion, some researchers assumed a 

model for a specific class of objects, e.g., the human body, and estimate its motion. 

Cheng and Moura [21] modeled the human body as an articulated object connected by 

joints and rigid parts, and modeled the human walking as a periodic motion.  Gavrilla 

[22] introduced the marker-free motion capture algorithms that employed a prior model 

of human body.  Carranza et al. [23] combined the marker-free motion estimation and the 

multi-view texture rendering to effectively synthesize a moving human at a novel 

viewpoint.  Cheung et al. [24]-[26] first performed the 3D voxel-based Shape-From-

Silhouette reconstruction to find the initial shape of the object.  They further estimated 

the motion of the articulated objects over time to refine the reconstructed 3D shape.  They 

finally rendered the tracked human motion using a view-dependent texture mapping 

algorithm with a human model consisting of articulated rigid body parts.  

Given the segmented patches of objects and background in the scene, the scene-based 

video representation approach and the content-based video representation approach have 

been studied in [27][28] and [29] respectively.  They modeled the moving foreground 

objects and the static background using a mosaic representation to estimate scene’s 

geometry and motion. 

Irani and Anandan [27][28] proposed to represent the scene using the scene-based 

mosaics with their corresponding depths.  First, the static background was modeled by a 

single mosaic image without any moving objects.  Then, the moving foreground objects 

were overlaid to the static background mosaic by indicating their 2D trajectories and 

appearances.  The locations of the foreground objects were assumed to be at multiple 
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layers of frontal planes in 3D space.  In some applications, both the foreground moving 

objects and the background may not be suitable for the frontal plane modeling. 

Aguiar et al. [29] proposed to represent the scene using the content-based mosaics.  If 

the objects were very far from the viewpoint in 3D space, both the static background and 

the moving foreground objects were modeled by the classical mosaic images with object 

shape and velocity in 2D image [30]-[33].  If the objects were close to the viewpoint, they 

recovered the depths of the objects in the scene due to the parallax [34][35].  They first 

segmented the images into patches by simply sliding a rectangular window across the 

images and detecting abrupt changes in the motion parameters [36].  Their proposed 

rank-1 weighted factorization [35] was then applied to the corresponding segmented 

patches to reconstruct a piecewise 3D polynomial surface and camera motion.  The 

“sharper” feature points with the reliable 2D motion estimates were given more weights 

in the factorization process. 

Vedula et al. [37][38][39] proposed an image-based spatial and temporal view 

interpolation algorithm for non-rigid dynamic objects using the estimated dense 3D scene 

flow and shape from multiple sparse distributed cameras.  They developed an optical 

flow-based algorithm to recover the 3D scene flow and shape from multiple synchronized 

videos for high-quality rendering. 

Some researchers used time series analysis, such as Kalman filter [40][41], the 

extended Kalman filter (EKF) [41], and particle filter [42] to estimate object motion and 

enforce the temporal consistency.  Kalman filtering has been used to track feature points 

in video for scene reconstruction [43].  Larry et al. [43] proposed a Kalman filter-based 

algorithm for depth estimation based on the induced optical flow between adjacent 
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frames with a calibrated moving camera.  EKF allows for more complex modeling than 

the Kalman filter to estimate the structure and motion of a rigid object, assuming smooth 

motion.  Its use in vision has been refined, for example, by recursively recovering motion 

and geometry [44] and by assuming that all tracked points lie on a plane [45].  Particle 

filter provided an approximation to the tracking and were used by [46][47][48] in the 

template-based tracking, which adapted the number of particles used in the observation 

and velocity models.  For scene modeling, the time-series-analysis-based algorithms 

typically used a static set of feature points/patches, which may not remain reliable as the 

scene evolves.  [46] provided a framework for changing the size of the particle set over 

time; however, they did not make provisions for how to incorporate the particles/feature 

points which dynamically appeared.  [49] incorporated the new feature points which best 

discriminated between the changing foreground object and background to improve the 

object tracking performance in the 2D image. [50][51][52] provided different 

mechanisms for generating and deleting feature points as they appeared or disappeared in 

the scene. However, all of them focused on tracking a sparse feature point set only of 

dominant features for scene modeling.  [50] initialized the state of each new feature point 

typically using the state of its single nearest neighbor.   

In contrast, for high-quality rendering, our previous work [53], as shown in Appendix 

A, not only tracked a dense 3D point set of both dominant and subtle features, but also 

initialized their underlying states (especially for subtle features) using the existing 

knowledge: the tracking results of their multiple neighboring states.   

 

1.3 Prior-Based 3D Reconstruction 
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Most existing reconstruction approaches match points, lines or patches among 

multiple images for scene reconstruction.  Considering that humans can easily understand 

the geometry structure of the scene from a single image based on prior knowledge, 

Hoiem et al. [54][55] proposed prior-based geometry estimation for outdoor stationary 

scenes using statistical learning.  They could reconstruct a coarse 3D model from a single 

image by classifying each patch into ground, vertical or sky.  Saxena et al. [56] applied 

supervised learning to predict the depth map of an outdoor scene from a single image. 

Their depth-map estimation model used a Markov Random Field that contained multi-

scale local and global image features, and modeled both the depth at each individual 

point and the relation between depths at neighboring points.    

 

Figure 1. Illustration of scene capturing scenario 

In this thesis, we reconstruct dynamic scenes from multiple images captured by a 

single calibrated camera mounted on a moving vehicle as shown in Figure 1.  We assume 
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that the camera is calibrated based on the vehicle’s GPS sensor, speed sensor, and 

gyro/yaw-rate sensor.  We represent the scene by small patches with different 

orientations: horizontal (e.g., ground), vertical (e.g., building facets towards the street and 

parallel to the camera motion), and frontal (e.g., building facets towards the street and 

perpendicular to the camera motion); and objects (e.g., vehicles) move on the flat ground.   

 

Figure 2. Sample images captured by a moving camera 

We approximate the patch’s motion directions to be either parallel or perpendicular to 

the camera motion (e.g., left, right, forward and backward) in a short time period.  Since 

humans can also identify object’s motion direction from a single image as shown in 

Figure 2, we take advantage of each image patch’s appearance and location to infer its 

orientation and motion direction from prior information. Our prior-based geometry and 

motion reconstruction algorithm extends Hoiem’s approach to reconstruct dense depth 

maps and motion maps from a moving calibrated camera as shown in Figure 3.   
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Figure 3. Prior-based geometry and motion reconstruction.  The depth is represented by a 

color map.  We assume that objects have no vertical motion.  The motion vector (x, y) is 

quantized into fast, medium, slow or no motion in 4 directions, and represented by 

different colors for illustration. 

 

1.4 Thesis Structure 

The remaining of the thesis is organized as shown in Figure 4. 
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Figure 4. Algorithm outline 

Chapter 2 introduces the previous work of the prior-based 3D reconstruction.  We 

survey the previous work on 1) Collins’s plane-sweeping technique for depth-map 

reconstruction, 2) Zitnick’s modified plane-sweeping algorithm with the smoothness 

constraint between neighboring patches and the spatial consistency constraint between 

images, 3) Akbarzadeh’s oriented plane-sweeping algorithm by sweeping planes in 

multiple directions, and 4) Hoiem’s prior-based orientation estimation using statistical 

learning.   

Chapter 3 presents our prior-based geometry reconstruction algorithm for stationary 

scene of combining the modified plane-sweeping algorithm, the oriented plane-sweeping 

algorithm, and the prior-based orientation estimation.  We show an improvement of using 

the prior knowledge from the stationary scene reconstruction experiments. 
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Chapter 4 introduces our prior-based geometry and motion reconstruction algorithm 

for dynamic scene. We present our extended plane-sweeping algorithm by sweeping the 

plane in multiple directions and with different motions, and our prior-based motion 

direction estimation.  The prior-based geometry and motion reconstruction algorithm 

combines the prior-based estimation of orientation and motion direction and the extended 

plane sweeping algorithm with a neighboring smoothness constraint and a spatial 

consistency constraint.  We show the experimental results and compare the geometry and 

motion reconstruction quality of dynamic scenes between the algorithms with and 

without prior information.  The prior-based method provides better reconstruction 

quality. 

Finally, Chapter 5 concludes this thesis and points out the contributions. We discuss 

future work at the end. 
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2．Previous Work 

 

The modern computer vision applications, such as view synthesis and image-based 

rendering, require the dense-depth-map estimates in all image regions, even those 

occluded or without texture.  We first present the dense-depth-map estimation algorithms 

such as the Collins’s plane-sweeping algorithm with its extensions, and then introduce 

Hoiem’s prior-based orientation estimation for coarse 3D model reconstruction from a 

single image.  

 

2.1 Plane-Sweeping Algorithm 

Collins [16] proposed an efficient multi-image matching technique for depth map 

reconstruction based on the brightness constancy assumption as shown in Figure 5.  He 

assumed that 2D projected points on the images corresponding to the same 3D point 

should have the same or similar color intensities.  Therefore, if a point was at its correct 

depth plane, all the projected pixels should have similar values.  To recover depth, a 

plane was swept through the space in steps along a pre-defined direction, usually 

orthogonal to the optical axis.  At each step (depth), all images were projected onto 

plane’s surface to test the color consistency.  The estimated depth of each pixel in the 

current frame was the depth which provided the best color consistency score.   In 

practice, we defined a support region for each pixel in the current frame to have a robust 

color consistency score.  And the color consistency score at each depth could be simply 

defined as the sum of the absolute intensity differences between the image points within 
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the support region in the current frame and its corresponding points in all the other 

frames.   

 

Figure 5. Plane-sweeping algorithm 

 

2.2 Oriented Plane Sweeping Algorithm  

Akbarzadeh et al. [17] extended the plane-sweeping algorithm for 3D urban 

environment reconstruction.  Collins’s plane-sweeping techniques swept frontal-parallel 

planes only.  It did not account for perspective effect observed in the non-frontal surfaces, 

since the color consistency of each pixel was evaluated on a support region (patch) 

assumed to be frontal in space.  They extended the algorithm by sweeping planes in 

multiple directions as shown in Figure 6, where the direction were aligned with the planar 

surfaces expected to be observed in the urban environment such as the ground and 

building facades.  They assumed that the camera, mounted on the vehicle, moved parallel 

to the ground and to the building facades, and that the facades were vertical and met at 

right angles.  They showed the better geometry reconstruction quality by sweeping planes 

in multiple directions. 
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Figure 6. Oriented plane-sweeping algorithm 

 

2.3 Modified Plane-Sweeping Algorithm with Smoothing 

 

Figure 7. Depth estimation using the modified plane-sweeping algorithm 

Zitnick et al. [18] extended the plane-sweeping algorithm with the smoothness 

constraint between neighboring patches and with the spatial consistency constraint 

between multiple images as shown in Figure 7.  Their approach first segmented the input 

image into small patches Sj.  They then calculated the color consistency of every patch in 

multiple images at the assumed depth d as the measure of the initial depth distribution 

 using the plane-sweeping algorithm.   A coarse patch-based smoothing algorithm 

was applied to smooth the initial depth distribution  between the neighboring 

patches and between patch’s corresponding regions at the other viewpoints iteratively.  

)(0 dp j

)(0 dp j
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The maximum likelihood estimates of patch’s depth d , based on the resulting ,  

determined the initial depth map  at each pixel position x.  The depth estimates 

were further refined iteratively per pixel among the neighboring images to have the final 

depth map . 

ˆ )(dpt
j

)(0 xd

)(xd t

 

2.4 Prior-Based Orientation Estimation 

Hoiem et al. [54] proposed prior-based orientation estimation using statistical 

learning for outdoor scenes.  They reconstructed a coarse, scaled 3D model from a single 

image by classifying each patch’s orientation as ground, vertical or sky as shown in 

Figure 8.   

The input image was first segmented into small patches.  Color, texture and location 

features were then extracted from every patch.  Based on their features, patches were 

grouped into multiple constellations that were likely to be in the same orientation 

category, and the likelihood of the patches in constellation having the same orientation 

was estimated using prior information.   The generated multiple overlapping sets of 

possible constellations was used to help determine the final patch’s orientation based on 

constellation’s features (color, texture, location, shape and 3D geometry) using prior 

statistics.  Each patch’s orientation likelihood was determined by the constellation’s 

orientation likelihoods and the likelihoods of the patches in the constellation having the 

same label.   

They cut and folded the image, and reconstructed a 3D model of a scene directly 

based on patch’s orientation estimated in a single image. 
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Figure 8. Prior-based orientation estimation for 3D modeling 
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3．Prior-Based Geometry Reconstruction of a Stationary Scene 

 

In this chapter, we describe the prior-based geometry reconstruction of a stationary 

scene using a calibrated moving camera.   We first provide an overview of the prior 

learning method and the prior-based geometry reconstruction method, then introduce 

each component in detail, and finally show the experimental results.  

 

3.1 Overview 

As shown in Figure 9, for prior learning, we first segment the training images into 

patches.  We then train the orientation estimator based on the labeled patches.   

For the prior-based geometry reconstruction, input images are first segmented into 

patches Sj.  We then infer each patch’s orientation distribution  using the 

orientation estimator.  We calculate the color consistency of every patch among multiple 

images at the assumed depth d with a given orientation o to estimate the conditional 

probability .  The initial likelihood of patch’s geometry and motion  is 

approximated by the product of the prior probability  and the conditional 

probability .  A coarse patch-based smoothing algorithm is then applied to refine 

the initial geometry likelihood  between its neighboring patches and between its 

corresponding regions at different viewpoints iteratively.  The maximum likelihood 

estimates of patch’s depth d  and orientation , based on the resulting , 

determine the initial depth map  and the orientation map at each pixel position x.  

)(oPj

)|( odPj ),(0 odPj

)(oPj

)|( odPj

),(0 odPj

ˆ ô ),( odPt
j

)(0 xd
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The initial depth map  is further smoothed iteratively per pixel between images to 

create the refined depth map .  Next we will explain each of these steps in more 

detail. 

)(0 xd

)(xd t

 

Figure 9. Prior learning and prior-based geometry reconstruction 

 

3.2 Image Segmentation 

Each image is represented by RGB pixels.  The image pixels are grouped into small 

patches based on their intensities.  The use of patches improves the computational 

efficiency of our algorithm to find the depth for each pixel in the image and allows 

complex statistics to be extracted for prior knowledge estimation.   We use the efficient 

graph-based image segmentation technique proposed by Felzenszwalb and Huttenlocher 

[57]. 
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3.3 Prior-based Orientation Estimation 

Prior-based orientation estimation contains two stages:  learning and inference.  In the 

prior learning stage, we first extract the features from the training patches, and then train 

the orientation estimator using the patch features and the corresponding orientation labels 

provided.   

Similar to human vision system, texture, color and location features are extracted 

from each patch as shown in Figure 10.  The texture feature is the 15 mean values of the 

absolute responses of the Leung-Malik (LM) filter bank [59].  The color feature is the 6 

mean values of RGB and HSV.  And the location feature is the 2D mean location in the 

image coordinates.  A detail discussion about the LM filter bank is attached in Appendix 

B.  

 

Figure 10.  Feature extraction 

For the training of the orientation estimator, we require patch’s orientation label 

information (frontal, vertical, horizontal or sky) to be provided as shown in Figure 11.  
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Sky is treated as a special category, which is farthest-away frontal patch from the camera.  

We train the orientation estimator using Support Vector Machines (SVM) probability 

estimation [58] based on the labeled patch features.   Compared to [54], we apply a 

weaker statistic learning approach only using patch’s features without further grouping 

the patches.   

 

Figure 11. Training of the orientation estimator 

In the inference stage, we calculate the prior distributions of patch’s orientation.  We 

first extract patch Sj’s features, and then determine its orientation distribution  using 

the orientation estimator.  The SVM-based estimator provides the probabilities of all 

possible orientations as shown in Figure 12.  

)(oPj

 

Figure 12. Patch’s orientation distribution inference 

 

3.4 Initial Geometry Estimation of Stationary Scene 
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The initial distribution of the patch’s geometry  is evaluated by the product 

of the orientation probability  and the conditional probability  of the 

patch’s depth d given the orientation o.  

),(0 odPj

)(oPj )|( odPj

)|()(),(0 odPoPodP jjj =                                                 (1) 

The conditional probability  is determined based on color consistency between 

images using the oriented plane-sweeping algorithm with the given orientation as 

discussed in Section 2.2.  Patch S

)|( odPj

j’s depth with the given orientation is evaluated by its 

color consistency in multiple images at the current viewpoint (Camera 3) as illustrated 

Figure 6.  (In our scenario, the camera would be moving towards the scene, which is 

different from the illustration.)  We compare the RGB color difference between every 

pixel in patch Sj at the current viewpoint and its corresponding pixels at the other 

viewpoints k, k = 1...N, (in Camera 1 and Camera 2) to measure the color consistency 

 using the following robust function with a parameter th: )( jdiff Se

∑ ∑
∈ +

=
k Spixel k
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S
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jj
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1)(

γ
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where kcorcurkcorrefcurkcorcurk bbggrr ,,, −+−+−=γ  is the RGB color difference, and 

 is the number of the pixels in . 
jSnum jS

The conditional probability  is determined by the color consistency measures 

:    

)|( odPj

)( jdiff Se

∑
=

'
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d

j odg
odgodP , where  )(1),( jdiff Seodg −= .                           (3) 
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3.5 Patch-Based Smoothing for Stationary Scene 

We refine patch’s initial distribution  between its neighboring patches and 

between its corresponding regions at multiple viewpoints iteratively, which is similar to 

[18], with the extension of smoothing for additional orientation estimation.   We enforce 

a smoothness constraint that the neighboring patches (S

),( odPt
j

j and sl  in Frame 1) with similar 

colors (blue) should have similar depths (d ≈ di) and the same orientations (o = vertical) 

as shown in Figure 13.  We also ensure scene’s geometry consistency constraint between 

images.   If we project a patch (Sj) with its ground-truth depth d and orientation o into a 

neighboring image, the projected region (in Frame 2) should have the similar depth and 

the same orientation if not occluded.   

 

Figure 13. Patch-based smoothing for stationary scenes 

The likelihood distribution of the patch’s geometry  is updated iteratively 

with two constraints. 

),( odPt
j
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where   enforces patch’s smoothness constraint and  enforces patch’s 

consistency constraint in each projected region at multiple viewpoints k, k = 1…, N.  The 

details are given below. 

),( odn j ),(, odc kj

3.5.1 Patch-Based Smoothness Constraint for Stationary Scene 

The geometry smoothness coefficient  enforces that the neighboring patches 

with similar colors should have similar depths and the same orientation.  Let s

),( odn j

l denote 

one of patch Sj’s neighboring patches as shown in Figure 13.   and  are the  

maximum likelihood estimates of its depth and orientation based on .   

ld̂ lô

),( odPt
l

),(maxargˆˆ
,

odPod t
l

od
ll =                                         (5) 

We assume that if patches Sj and sl have the same orientation, the depth d of patch Sj 

is modeled by a contaminated Gaussian distribution with the mean  and variance .  

We define  to be: 

ld̂ 2
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ε
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where  is the Gaussian distribution, and ),;( 2σmeanxN ε  and c are small constants (e.g. 

).  We estimate the variance  using color similarity, neighboring measure and 

patch s

1010 − 2
lσ

l’s geometry maximum likelihood as defined below:  

1. The color similarity of the patches lj ,∆ , which  measures the color difference 

between patches Sj and sl. 

2. The neighboring measure , which is the percentage of the patch Sljb , j’s border 

between patches Sj and sl. 

 22 



 

3. The geometry maximum likelihood for patch sl: , which represents the 

accuracy of  the maximum likelihood estimates for patch s

)ˆ,ˆ( lll odP

l’s geometry. 

2
lσ  is defined to be: 

),0;()ˆ,ˆ( 2
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2
2

∆∆
=

σ
σ

ljljlll
l NbodP

v                                       (7) 

where v and  are constants (2
∆σ 8=v  and  in our experiment).  Therefore, if 

patch S

302 =∆σ

j and its neighboring patch sl have similar colors, and patch Sj’s depth and 

orientation are consistent with its neighbor’s depth and orientation maximum likelihood 

estimates, we expect  to be large. ),( odn j

3.5.2 Patch-Based Consistency Constraint for Stationary Scene 

The spatial consistency coefficient  ensures that the patch S),(, odc kj j’s depth and 

orientation estimates are consistent with the depth and orientation estimates at the 

viewpoint k.  We compute  based on spatial consistency, visibility, and patch 

S

),(, odc kj

j’s initial geometry likelihood: 

1. Spatial consistency without occlusion.  We first project patch Sj with the depth d 

and orientation o onto a neighboring image.  We then calculate patch Sj’s projecting 

distributions  based on the geometry distribution at the projected viewpoint k to 

estimate the spatial consistency without occlusion. 

),(, odbt
kj
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num
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jj Sx

t
xkr
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t
kj ∑

∈

=                                     (8) 

where r(k,x) is the patch index at the viewpoint k, on which the corresponding pixel of the 

pixel position x on patch Sj is.  And  is the number of the pixels on patch S
jSnum j.  If the 
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projected region’s depth and orientation maximum likelihood estimates are consistent 

with patch Sj’s estimates, we expect to be large when patch S),(, odbt
kj j is visible at the 

viewpoint k (Frame 2) as shown in Figure 14.  

 

Figure 14. Yellow patch is visible in Frame 2 of a stationary scene. 

2. Visibility.  Due to the possible occlusions, a patch might not have the 

corresponding pixels at another viewpoint as shown in Figure 15.  We estimate the 

overall visibility likelihood vj,k, that the patch is visible, as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

','
,, )','(,0.1min

od

t
kjkj odbv                                     (9) 

 

Figure 15. Red patch is occluded in Frame 2 of a stationary scene. 
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If the patch Sj is visible at the viewpoint k (Frame 2) as shown in Figure 14, we can 

find its corresponding region when we search the space of the depth d and orientation o.  

The ground-truth solution and its neighboring solutions offer large  values.   If 

the patch S

)','(, odbt
kj

j is occluded at the viewpoint k (Frame 2) as shown in Figure 15, we can not 

find its corresponding region when we search the space of the depth d and orientation o.  

No solution provides large  value.  Therefore, we use v)','(, odbt
kj j,k as a robust and 

computational-efficient measure of patch’s visibility.   

We also estimate the specific visible likelihood vcj,k(d,o) that given the depth d and 

orientation o, patch Sj is visible at the viewpoint k.   

)ˆ(),(1),( ),(),(, ddhodP
num

odvc xkr
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t
xkr

S
kj

jj

−= ∑
∈

, where h(x) is the Heaviside step function 

and  is the maximum likelihood depth estimate of patch . ),(
ˆ

xkrd ),( xkrs

This suggests that if patch Sj is visible at the viewpoint k, its estimated depth should 

not be under the surface of the estimated depth map at the viewpoint k as shown in Figure 

15. 

3. Initial geometry likelihood .  ),(0 odPj

Now, we combine the visible and occluded cases.  If the patch is visible,  is 

calculated from the visible consistency likelihood . Otherwise, its 

occluded consistency likelihood is , where the uniform prior 

),(, odc kj

),(),( 0
, odPodb j

t
kj

0
, )),(1( Podvc kj−

)()(
10

osizedsize
P =  .  size(d) and size(o) are the sizes of the depth and orientation 

hypothesis spaces.  Therefore, 
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3.6 Pixel-Based Depth Smoothing for Stationary Scene 

The maximum likelihood estimates of each patch’s depth d  and orientation  based 

on  determine the initial depth map and the orientation map for each pixel 

x.   

ˆ ô
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ll =                                     (11) 

We further refine the depth map  iteratively between images [18].  For each 

pixel x at the current viewpoint, we find its corresponding pixel y at the neighboring 

viewpoint k.   If the corresponding pixel’s depth  is similar to pixel x’s depth 

, the pixel x’s depth  is replaced by the average of  and .  The 

iterative updating equation is  

)(xd t
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where  is the indicator variable (0,1), testing input similarity 

with the threshold parameter λ

d
t
k

t
kd ydxd λδ <−= |)()(|,

d, and N is the number of the neighboring images.  After 

smoothing the depth maps across different viewpoints, we apply a 3x3 average filter to 

further smooth the results. 

 

3.7 Experimental Results 

We first showed the experimental results of the prior-based orientation estimation 

based on a single image.   
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        We trained the SVM-based orientation estimator with 6670 labeled patches, 

extracted from 48 color images at 320x240 pixels.  The images for training the 

orientation estimator were shown in Figure 16.   

 

Figure 16. Images for training the orientation estimator 

We inferred the orientation distribution of each image patch using the orientation 

estimator.  In Figure 17, we showed the classification results of the orientation estimator 

on a sample image with the maximum likelihood estimates represented by the shaded 

colors: red (horizontal), green (vertical), and blue (frontal). It achieved the classification 

accuracy: 85% of the patches correctly labeled. 

     
                  (a) Sample image           (b) Classification results 

Figure 17. Prior-based orientation estimation results 

 27 



 

We also compared our simple orientation estimator with Hoiem’s orientation 

estimator [54] using their online database [60].  We trained and tested our orientation 

estimator on their training data in Figure 18 and testing data in Figure 19, respectively.  

On a test set of 62 novel images, Hoiem reported that 87% of the pixels were correctly 

labeled into ground, vertical, or sky.  We achieved the accuracy of 85% of the pixels 

correctly labeled, while our simple algorithm ran more than 3 times faster than Hoiem’s 

algorithm as shown in Table 1. 

 

Figure 18. Images for training the orientation estimator in Hoiem’s database  

 28 



 

 

Figure 19. Images for testing the orientation estimator in Hoiem’s database  

Table 1. Performance comparison of orientation estimators 

 Our algorithm Hoiem’s algorithm 

Classification Accuracy 85% 87% 

Time/Frame 1.8 sec 7.6 sec 

 

Next, we showed the experimental results of the prior-based geometry reconstruction 

of stationary scenes.    

We ran experiments on multiple synthetic images of a stationary street simulated by 

POV-ray [61].  As illustrated in Figure 20, six images were captured by a backward 

moving camera at 320x240 pixels with the known intrinsic and extrinsic camera 

calibration parameters as the input image sequence.   
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Figure 20. Input images of a stationary street  

Each image was segmented into small patches, and patch’s prior orientation 

probabilities were inferred based on patch’s appearance and location.  We applied the 

prior-based geometry reconstruction algorithm on these input images to reconstruct the 

depth map at each viewpoint as shown in Figure 21.    

 

Figure 21. Prior-based geometry reconstruction.  The depth is represented by a color map.   

We compared the results of the proposed prior-based algorithm with the estimated 

prior distribution  and the results without using any prior, which were the oriented 

plane-sweeping algorithm [17] and our smoothed version of the oriented plane-sweeping 

algorithm with the neighboring patch smoothness constraint and the spatial consistency 

constraint for geometry reconstruction.   

)(oPj
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Figure 22. Depth map comparison of different algorithms for stationary scene 

reconstruction. 

We compared the resulting depth maps at the first frame’s viewpoint as shown in 

Figure 22.  The dynamic range of depth map is assumed to be 200.  Compared with the 

ground-truth depth map, the prior-based method provided the reconstructed depth map 

with 7/200=3.5% error per pixel on average, which is better than the traditional 

approaches.  The oriented plane sweeping algorithm offered 14.4/200=7.2% 

reconstruction error per pixel.  The smoothed oriented plane-sweeping algorithm with the 

smoothness constraint and the consistency constraint achieved better and smoother result 

(with 8.4/200=4.1% error per pixel) than the oriented plane-sweeping algorithm.   The 

algorithms without prior knowledge had the difficulty in reconstructing the depth of 

school bus and ground areas as shown in Figure 22. 

We also showed the experimental results in a real garden scene.  A forward moving 

camera captured seven input images at 320x240 pixels as shown in Figure 23.  We 

calibrated the camera’s intrinsic parameters (camera’s focal length and optical center) 

with checker board patterns offline and the extrinsic parameters (the translation vector 

and the rotation matrix) with markers on the ground using Zhang’s method [62].  
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Figure 23. Input images of a stationary garden with a forward moving camera 

We applied the prior-based geometry reconstruction algorithm on these input images 

to reconstruct the depth map and orientation map at each viewpoint.   We compared the 

results of the proposed prior-based algorithm with the estimated prior distribution  

and the results without using any prior, which were the oriented plane-sweeping 

algorithm [17] and our smoothed version of the oriented plane-sweeping algorithm for 

geometry reconstruction.  The prior-based method provided better orientation estimation 

than the traditional approaches, especially in the textureless areas (ground and sky) in 

Figure 24.  Although the smoothed oriented plane-sweeping algorithm had better and 

smoother results than the oriented plane-sweeping algorithm, it was still difficult to find 

the correct depth and orientation in the textureless areas without any prior knowledge.  

Therefore, the prior-based method had better estimated depth maps than the uniform prior 

approaches in Figure 25. 

)(oPj
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Figure 24. Orientation map comparison on a stationary garden scene 

 

Figure 25. Depth map comparison on a stationary garden scene
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4. Prior-Based Geometry and Motion Reconstruction of a Dynamic 

Scene 

 

In this chapter, we describe the prior-based geometry and motion reconstruction of a 

dynamic scene using a calibrated moving camera.   We first provide an overview of the 

prior learning method and the prior-based geometry and motion reconstruction of 

dynamic scenes, then introduce each component in detail, and finally show the 

experimental results with the comparison of the reconstruction quality between the 

algorithms with and without prior information.  

 

4.1 Overview 

As shown in Figure 26, for prior learning, we first segment the training images into 

patches.  We then train the orientation estimator and the motion direction estimator using 

the labeled patches.   

For the prior-based geometry and motion reconstruction, input images are first 

segmented into patches Sj.  We then infer each patch’s orientation distribution  and 

motion direction distribution  based on image patch’s appearance and location 

using the orientation estimator and the motion direction estimator, respectively.  The 

motion magnitude distribution  is heuristic and application-dependent.  

Meanwhile, we calculate the color consistency of every patch in multiple images at the 

assumed depth d with a given orientation o and motion vector m to estimate the 

)(oPj

)( dirj mP

)( magj mP
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conditional probability , where ),|( modPj ],[ magdir mm=m .   The initial likelihood of 

patch’s geometry and motion  is approximated by the product of the 

probabilities ,  and , and the conditional probability .  

A coarse patch-based smoothing algorithm is then applied to refine the initial geometry 

and motion likelihood  between its neighboring patches and between its 

corresponding regions at multiple times/viewpoints iteratively.  The maximum likelihood 

estimates of patch’s depth d , orientation  and motion vector m , based on the resulting 

,  determine the initial depth map , the orientation map, and the initial 

motion map  at each pixel position x.  The initial depth map  and the initial 

motion map  are further smoothed iteratively per pixel between images to have the 

refined depth map  and the refined motion map .  Next we will explain each 

of these steps in more detail. 

),,(0 modPj
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Figure 26. Prior learning and prior-based geometry and motion reconstruction 
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4.2 Prior Estimation 

Prior estimation contains two stages:  learning and inference.  In the prior learning 

stage, we first extract the features from the segmented patches, and then train the 

estimators using the patch features and the label information provided.   

For the training of the motion direction estimator as shown in Figure 27, we require 

patch’s motion direction label information (stationary, forward, backward or left/right) to 

be provided.   We train the motion direction estimator using the same approach to train 

the orientation estimator discussed in Section 3.3.    

 

Figure 27. Training of the motion direction estimator 

In the inference stage, we calculate the prior distributions of patch’s orientation and 

motion direction.  We first extract patch Sj’s features, and then determine its orientation 

distribution  and motion direction distribution  using the orientation 

estimator and motion direction estimator, respectively.  The SVM-based motion direction 

estimator also provides the probabilities of all possible labels as shown in Figure 28.   

)(oPj )( dirj mP
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Figure 28. Patch’s motion direction distribution inference  

The prior distribution  is approximated by a heuristic distribution 

 with a pre-determined value a in our experiment. 

)( magj mP

)exp()( magmagj mamP ⋅−∝

 

4.3 Initial Motion and Geometry Estimation of Dynamic Scene 

The initial distribution of patch geometry and motion  is evaluated by the 

product of the prior probabilities , , , and the conditional 

probability  of  patch’s depth d given the orientation o and motion m, where 

.  

),,(0 modPj

)(oPj )( dirj mP )( magj mP

),|( modPj

],[ magdir mm=m

),(),|(),,(0 mmm oPodPodP jjj = ,                                (13) 

where , since we assume that 

orientation o, motion direction , and motion magnitude  are statistically 

independent of each other. 

)()()(),,(),( 00
magjdirjjmagdirjj mPmPoPmmoPoP ≈=m

dirm magm

The conditional probability  is determined based on color consistency 

between images using our extended plane-sweeping algorithm with the given orientation 

and motion.  We assume that scene patches follow a constant motion in a short time 

period.  Patch S

),|( modPj

j’s depth with the given orientation and motion is evaluated by its color 
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consistency in multiple images at the current viewpoint (Camera 2) as illustrated in 

Figure 29.  (In our scenario, the camera would be moving towards the scene, which is 

different from the illustration.)  We compare the RGB color difference between every 

pixel in patch Sj at the current viewpoint and its corresponding pixels with motion shift at 

the other times/viewpoints k, k = 1...N, (in Camera 1 and Camera 3) to measure the color 

consistency  defined in Section 3.4. )( jdiff Se

 

Figure 29.Extended plane-sweeping algorithm with orientation and motion hypotheses 

The conditional likelihood  is determined by the color consistency 

measures :    
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4.4 Patch-Based Smoothing for Dynamic Scene 

We refine patch’s initial geometry and motion distribution  between its 

neighboring patches and between its corresponding regions at multiple times/viewpoints 

iteratively, which is similar to [18], with the extension of smoothing for additional 

orientation and motion estimation.  We enforce a smoothness constraint that the 

),,(0 modPj
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neighboring patches (Sj and sl  in Frame 1) with similar colors (blue) should have similar 

depths (d ≈ di), orientation (o = vertical), and motion vectors (m) as shown in Figure 30.  

We also ensure scene’s geometry and motion consistency constraint between images.   

We assume that scene patches follow a constant motion in a short time period.  If we 

project a patch Sj with its ground-truth depth d, orientation o, and motion vector m into a 

neighboring image, the projected region (in Frame 2) should have the similar depth, 

orientation and motion if not occluded.   

 

Figure 30. Patch-based smoothing for dynamic scenes 

The likelihood distribution of patch’s geometry and motion  is updated 

iteratively with three constraints. 
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where  enforces patch’s geometry smoothness constraint,  and  enforces 

patch’s motion smoothness constraint.   ensures patch’s consistency 

constraint in each projected region at multiple times/viewpoints, k = 1…, N.  The details 

are given below. 

),( odn j )(mjn

),,(, modc kj

4.4.1 Patch-Based Smoothness Constraint for Dynamic Scene 
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The smoothness constraints enforce that neighboring patches with similar colors 

should have similar depths, orientation and motion.  We estimate  and  

using a similar approach to estimate  introduced in Section 3.5.1.  Let s

)(mjn ),( odn j

),( odn j l denote 

one of patch Sj’s neighboring patches in Figure 30.  ,  and  are the maximum 

likelihood estimates of its depth, orientation, and motion based on , 

respectively.   
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We define  the same approach as in Section 3.5.1, but with a new variance 

 as follows: 
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, and  is the geometry and 

motion maximum likelihood for patch s
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l. 

The motion smoothness coefficient  enforces that the neighboring patches with 

similar colors should have similar motion.  We assume that patch S

)(mjn

j’s motion vector m is 

also modeled by a contaminated Gaussian distribution with mean  and variance lm̂ lΣ . 

Therefore, we define  as follows: )(mjn

∏ +Σ=
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If patch Sj and its neighboring patch sl have similar colors, and patch Sj’s motion is 

consistent with its neighbor’s motion maximum likelihood estimate, we expect  to 

be large. 

)(mjn

4.4.2 Patch-Based Consistency Constraint for Dynamic Scene 

The spatial consistency coefficient  ensures that the patch S),,(, modc kj j’s depth, 

orientation and motion estimates are consistent with the depth, orientation and motion 

estimates at time/viewpoint k.  We compute  based on spatial consistency, 

visibility, and patch S

),,(, modc kj

j’s initial geometry and motion likelihood, which contains the 

additional motion consideration compared to the ones discussed in 3.5.2: 

1. Spatial consistency without occlusion.  We first project patch Sj with the depth d, 

orientation o and motion vector m onto a neighboring image.  We then calculate patch 

Sj’s projecting distribution  based on the geometry and motion distribution at 

the projected time/viewpoint k to estimate the spatial consistency without occlusion. 
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where r(k,x) is the patch index at the time/viewpoint k, on which the corresponding pixel 

of the pixel position x on patch Sj is.  And  is the number of the pixels on patch S
jSnum j.  

If the projected region’s depth, orientation and motion maximum likelihood estimates are 

consistent with patch Sj’s estimates, we expect to be large when patch S),,(, modbt
kj j is 

visible at the time/viewpoint k (Frame 2) as shown in Figure 30.  
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2. Visibility.  Due to the possible occlusions, a patch might not have the 

corresponding pixels at another time/viewpoint as shown in Figure 31.  We estimate the 

overall visibility likelihood vj,k, that the patch is visible, as follows: 
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Figure 31. Red patch is occluded in Frame 2 of a dynamic scene. 

If the patch Sj is visible at the time/viewpoint k (Frame 2), we can find its 

corresponding region when we search the space of the depth d, orientation o, and motion 

m as shown in Figure 30.  The ground-truth solution and its neighboring solutions offer 

large  values.   If the patch S)',','(, modbt
kj j is occluded at the time/viewpoint k (Frame 

2), we can not find its corresponding region when we search the space of depth d, 

orientation o, and motion m as shown in Figure 31.  No solution provides large 

 value.  Therefore, we use v)',','(, modbt
kj j,k as a robust and computational-efficient 

measure of patch’s visibility.   

We also estimate the specific visible likelihood vcj,k(d,o,m) that given the depth d, 

orientation o and motion m, patch Sj is visible at the time/viewpoint k as follows:   
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where h(x) is the Heaviside step function.   is the maximum likelihood depth 

estimate of patch , and  is the depth of the patch S

),(
ˆ

xkrd

),( xkrs +d j at the time/viewpoint k with 

motion shift. 

This suggests that if patch Sj is visible at the time/viewpoint k, its estimated depth 

should not be under the surface of the depth map estimated at the time/viewpoint k as 

shown in Figure 31. 

3. Initial patch Sj’s geometry and motion likelihood .  It is estimated in 

Section 4.3. 

),,(0 modPj

Now, we combine the visible and occluded cases.  If the patch is visible,  

is calculated from the visible consistency likelihood . Otherwise, 

its occluded consistency likelihood is , with the uniform prior 
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orientation and motion hypothesis spaces, respectively.  Therefore, 
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4.5 Pixel-Based Geometry and Motion Smoothing for Dynamic Scene 
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The maximum likelihood estimates of each patch’s depth d , motion m  and 

orientation o  based on  determine the initial depth map ,  the initial 

motion map , and the orientation map for each pixel position x.   
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We further refine the depth map  and motion map  iteratively between 

images, which is an extension of [18] with motion smoothing.  For each pixel x at the 

current time/viewpoint, we find its corresponding pixel y at the neighboring 

time/viewpoint k with the constant motion assumption.   If the corresponding pixel’s 

depth  is similar to pixel x’s depth , the pixel x’s depth  is replaced by 

the average of  and .  If the corresponding pixel’s motion  is similar to 

pixel x’s motion , the pixel x’s motion  is replaced by the average of 

 and .  The iterative updating equations are  
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where )  ( ,, kdkdk and δδµ = , and , .   d
t
k

t
kd ydxd λδ <−= |)()(|, mm mm λδ <−= |)()(|, yx t

k
t

k

δ  is the indicator variable (0,1) testing input similarity with the threshold parameter λ, 

and N is the number of neighboring images.  After smoothing the depth map across 

different times/viewpoints, we apply a 3x3 average filter to further smooth the results. 
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4.6 Experimental Results 

We first showed the experimental results of the prior-based motion direction 

estimation based on a single image.   

        We trained the SVM-based motion direction estimator with 12249 labeled patches, 

extracted from 79 color images with the resolution of 320x240 pixel2.  The images for 

training the motion direction estimator were shown in Figure 32.   

 

Figure 32. Images for training the motion direction estimator 

We inferred the motion direction distribution of each image patch using the motion 

direction estimator.  In Figure 33, we showed the classification results of the motion 

direction estimator on a sample image with the maximum likelihood estimates 

represented by the shaded colors: red (forward), green (backward), yellow (left/right) and 
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blue (stationary).  It provided the classification accuracy: 88% of the patches correctly 

labeled. 

 
      (a) Sample image         (b) Classification results 

Figure 33. Prior-based motion direction estimation results 

Next, we showed the experimental results of the prior-based geometry and motion 

reconstruction of dynamic scenes.    

We ran experiments on multiple synthetic images of a dynamic street simulated by 

POV-ray [61].  As illustrated in Figure 34, six images were captured by a forward 

moving camera with the known intrinsic and extrinsic camera calibration parameters as 

the input image sequence.  Only the yellow school bus in the scene was moving towards 

right.   

 

Figure 34. Input images of a dynamic street  

Each image was segmented into small patches, and patch’s orientation and motion 

direction distributions were inferred based on patch’s appearance and location. We 

applied the prior-based geometry and motion reconstruction algorithm on these input 

images to reconstruct depth map and motion map at each time instance as illustrated in 

Figure 3. 
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We compared the results of the proposed prior-based algorithm with the estimated 

prior distributions (  and ) and the results of previous work without using 

any prior, which is effectively our algorithm with uniform prior distributions (

)(oPj )( dirj mP

oj coP =)(  

and ) for geometry and motion reconstruction.   mdirj cmP =)(

 

Figure 35. Depth map and motion map comparison of different algorithms  

for dynamic scene reconstruction. 

We compared their resulting depth maps and motion maps at the first frame’s 

viewpoint as shown in Figure 35.  The dynamic range of depth map is assumed to be 200.  

The dynamic range of motion map is assumed to be 1.5.  Compared with the ground-truth 

depth map, the prior-based method provided the reconstructed depth map with 

6.1/200=3.1% error per pixel on average, while the approach without prior offered 

13.1/200=6.6% reconstruction error per pixel.  Compared with the ground-truth motion 
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map, the prior-based method provided the reconstructed motion map with 

0.0084/1.5=0.56% error per pixel on average, while the approach without prior offered 

0.050/1.5=3.3% reconstruction error per pixel.  Therefore, the prior-based method 

provided better depth map and motion map than the traditional approach without prior 

knowledge, especially in the textureless (e.g. ground) areas.  

We also showed the experimental results of the prior-based geometry and motion 

reconstruction of an indoor lab scene.  A forward moving camera captured 7 input images 

as shown in Figure 36.  Only the grey vehicle in the scene was moving towards left.   

 

Figure 36. Input images of a dynamic lab scene 

We calibrated the camera’s intrinsic parameters (camera’s focal length and optical 

center) with checker board patterns offline and the extrinsic parameters (the translation 

vector and the rotation matrix) with markers on the ground using Zhang’s method [62].  

We applied the prior-based geometry and motion reconstruction algorithm on these input 

images to reconstruct depth map, motion map and orientation map at each time instance. 
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Figure 37. Orientation map comparison on a lab scene 

We compared the results of the proposed prior-based algorithm with the estimated 

prior distributions (  and ) and the results of previous work with uniform 

prior distributions (  and 

)(oPj )( dirj mP

oj coP =)( mdirj cmP =)( ) for geometry and motion reconstruction.  

The prior-based method provided better orientation maps than the traditional approach 

without prior knowledge, especially in the ground areas in Figure 37.  

 

Figure 38. Motion map comparison on a lab scene 
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Figure 39. Depth map comparison on a lab scene 

In Figure 38, we showed the comparison of resulting motion maps.  The prior-based 

method also offered a better motion vector estimation, since it identified the grey 

vehicle’s correct motion (median speed towards left).   The method without prior 

knowledge provided wrong motion at the ground and faraway background areas, since 

the ground was textureless, and it was difficult to tell whether the faraway scene was 

stationary or moving slightly without any prior information.  Therefore, the prior-based 

method had better reconstructed depth maps than the traditional approach in Figure 39. 

 

Figure 40. Input images of a parking lot  

Finally, we showed experimental results of the prior-based geometry and motion 

reconstruction of a parking lot scene.  A forward moving camera captured 6 images in an 

outdoor parking lot in Pittsburgh, PA with a white car as shown in Figure 40. Only the 

white car was moving towards right.  We compared the results of our proposed prior-

based algorithm with the estimated prior distributions (  and ) and results )(oPj )( dirj mP
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with uniform prior distributions ( oj coP =)(  and mdirj cmP =)( ) for geometry and motion 

reconstruction.  The prior-based method provided better orientation maps than the 

traditional approach, especially in the ground (textureless) areas.  However, it failed to 

identify all the vertical structures as shown in Figure 41.  

 

Figure 41. Orientation map comparison on a parking lot scene 

 

Figure 42. Motion map comparison on a parking lot scene 

In Figure 42, we showed the comparison of resulting motion maps.  The prior-based 

method also offered better motion maps, since it recovered the white car’s correct motion 

(median speed towards right).   The method without prior knowledge indicated wrong 
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motion at the ground and sky areas, since the ground was textureless, and it was difficult 

to tell whether the motion of the sky without any prior information.  Therefore, the prior-

based method had better estimated depth maps than the traditional approach in Figure 43. 

 

Figure 43. Depth map comparison on a parking lot scene 

To have a better visualization of our results, we rendered scene at the time 1 at 

multiple viewpoints as shown in Figure 44. 

 

 

Figure 44. Rendering scene at multiple viewpoints 
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5. Conclusions and Future Work 

 

In this thesis, we proposed a probabilistic framework for reconstructing scene 

geometry and object motion utilizing prior knowledge of a class of scenes, for example, 

scenes captured by a calibrated camera mounted on a vehicle driving through city streets.  

Traditional approaches try to match the points, lines or patches in multiple images to 

reconstruct scene geometry and object motion.  Our framework also takes advantage of 

each image patch’s appearance and location to infer its orientation and motion direction 

using statistical learning.   

We proposed the prior-based geometry reconstruction method for stationary scene 

and the prior-based geometry and motion reconstruction method for dynamic scene.  We 

showed that the prior-based reconstruction methods outperformed traditional 

reconstruction methods with synthetic data and real data for both stationary scenes as 

shown in Table 2 and dynamic scenes as shown in Table 3, especially in the textureless 

areas for geometry estimation and faraway areas for motion estimation. 

In future, we will further improve the learning performance of prior knowledge by 

having more training samples and better learning algorithms.  We will also include 

rotation into the motion modeling and estimation. 

Table 2.  The performance comparison of algorithms for stationary scene reconstruction 

Synthetic Data With Prior
Without Prior (Oriented 

plane sweeping) 

Without Prior (Smoothed 

oriented plane sweeping)

Depth Map 

Reconstruction Error 
3.5% 7.2% 4.1% 
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Table 3.  The performance comparison of algorithms for dynamic scene reconstruction 

Synthetic Data With Prior Without Prior  

Depth Map Reconstruction Error 3.1% 6.6% 

Motion Map Reconstruction Error 0.56% 3.3% 
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Appendix A. Video-Based Rendering Using Feature Point Evolution 

A.1 Previous Work 

In this section, we provide an overview of some previous work of the feature point 

evolution method.  We first present the time-series analysis techniques: Kalman filter and 

particle filter, and then introduce the perspective camera model. 

Kalman Filter  

Kalman filtering [40] is proposed by R.E. Kalman describing a recursive solution to 

the linear filtering problem.  A discrete-time process { } is governed by a linear 

stochastic difference equation as the state equation, while the observation  is 

connected with the state  by a linear measurement equation.  

kx

ky

kx

State:                                kkkkk F quxx ++=+1                                           (26) 

Measurement:                       kkkk H rxy +=                                                       (27) 

where , and .  is an offset term to the state . ),0(~ kk QNq ),0(~ kk RNr ku kx

The modeling errors  in the state process and  in the measurement process are 

assumed to be the Gaussian noises with zero mean.  The initial state  also follows the 

Gaussian distribution with the mean 

kq kr

0x

0x  and the variance .  { }, { } and  are 

assumed to be statistically independent of each other.  

0P kq kr 0x

With the initial condition, the estimation of  can be summarized by the following 

prediction and correction iteratively based on the observation .  A detail discussion 

can be found in [40]. 

kx

ky

Initialization: 
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where  is the prediction of , given , and  is the prediction of , 

given . 

−
+1ˆ kx 1+kx k,...,, yyy 21 1ˆ +kx 1+kx

121 ,...,, +kyyy

If the measurement equation (27) is non-linear, we can linearize it using the Taylor 

expansion to satisfy the linear measurement assumption of the Kalman filter as follows: 

 kkkkkkkkkkk Hff rxxxxrxy ~)ˆ)(ˆ()ˆ()( +−+=+= −−−            (34) 

where  is the Jacobian matrix of the partial derivatives of the function  with respect 

to .  The random variable 

kH kf

kx kr~  is the linearized measurement error, which is the sum of 

the measurement error  and the linearization error of .  Now we can apply the 

Kalman filtering approach to estimate , as long as  

kr kf

kx kr~  is assumed to have the Gaussian 

distribution with zero mean.  The estimation process is similar to the estimation process 

of the Kalman filtering, but .  Such a linearization approach is a 

special case of the extended Kalman filtering approach [41]. 

)ˆ( 1111
−

++++ −= kkkk f xye
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Particle Filter 

If the modeling errors  in the state equation (35) and  in the measurement 

equation (36) are non-additive or non-Gaussian in the dynamic system, the sequential 

Monte Carlo approaches are proposed to analysis and make inference about the dynamic 

system.   

kq kr

State:             ),(1 kkkk g qxx =+  ↔                            (35) )|( 1 kkp xx +

Measurement:           ↔                               (36) ),( kkkk f rxy = )|( kkp xy

where and  follow their distribution  and  respectively.  { }, { } 

and initial condition  (with its distribution ) are assumed to be statistically 

independent of each other. 

kq kr )( kp q )( kp r kq kr

0x )( 0xp

The sequential importance sampling algorithm [64] is the basis for most sequential 

Monte Carlo filters.  It is also known as particle filtering [65], condensation algorithm 

[66], and survival of the fittest [67].  The main idea of particle filtering is to represent the 

posterior distribution of the states  by a set of random samples  with their 

corresponding weights  as follows.  

)|( :1:0 kkp yx i
k:0x

i
kw

)()|( :0:0:1:0
i

kk
i

i
kkk wp xxyx −≈ ∑ δ                                     (37) 

where  is the set of all states, and },...,1,0,{:0 kjjk == xx },...,2,1,{:1 kjjk == yy  is the set 

of all observations up to time k. )(⋅δ is the Dirac delta function.  The sum of the weights 

is normalized to be 1.  As the number of samples increases, the estimated posterior 

distribution represented by the samples will converge to its functional description.  The 

posterior density distribution  can be approximated as  )|( :1kkp yx
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If the samples  were drawn from an importance density , the weights 

could be derived as follows: 
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under the assumption that ),|(),|( 1:11:0 kkkkkk qq yxxyxx −− = .  The choice of importance 

density function  is a critical design issue for successful particle filter.  

One possible choice of importance density function  is the distribution 

.  The equation (40) turns out to be . 

),|( 1 kkkq yxx −

),|( 1 kkkq yxx −
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With its initial condition, the estimation of  can be summarized by the following 

importance sampling and re-sampling procedures iteratively based on the observation 

.  A detail discussion can be found in [42]. 

kx

ky

Initialization: 

For i=1,…,N, draw  from , and set . i
0x )( 0xp Nwi /10 =

Importance sampling: 

For i=1,…,N, draw  from  as prediction, and assign the particle 

weight according to (40) as correction. 

i
kx ),|( 1 k

i
kkq yxx −

Normalize the weights so that 1=∑
i

i
kw . 

Re-sampling: 
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Generate a new set  from an approximate discrete representation of 

 with the new weights .  The purpose of the re-

sampling is to eliminate the particles with small weights and to concentrate on the 

particles with large weights. 

N
i

i
k 1
*}{ =x

)()|( :1
i
kk
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i
kkk wp xxyx −≈ ∑ δ Nwi

k /1* =

Compared with the Kalman filtering, particle filtering has the advantage to deal with 

the dynamic system with the nonlinear or non-Gaussian noises in the modeling.  

Meanwhile, we have to estimate the noise distribution with high order statistics. 

Therefore, we might have less reliable estimates, since the estimated noise distribution is 

less reliable due to its complexity in the particle filter modeling.  

Our proposed feature evolution process can be considered in high level as an 

extension to particle filtering for scene modeling as shown in Table 4.  The main idea of 

the feature point evolution process is to represent the geometry and motion of the scene 

by a set of feature points with their corresponding positions and motions.  While the 

feature points still follow the state equation (35) and measurement equation (36) in the 

dynamic system, we have n measurements  at each time instance. nk ,y

Table 4. Problem formulation comparison 

 Particle filter Feature point evolution 

Representation 

State’s posterior pdf is 

described by a set of samples 

and their corresponding  

weights (scalar) 

The scene geometry and motion is 

described by a set of feature points 

and their corresponding positions 

and motions (vector) 

Number of 

measurements 
1 at each time instance n at each time instance 

Correspondence Given in measurement Not given in measurement 
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Since the correspondence between  and  is not given, sometimes even does 

not exist, we first need to identify the reliable feature points, which have high probability 

to find the correct correspondence in the neighboring frames.  We then identify the 

correspondence between the reliable feature points as the measurements and  

(m < n) based on image texture.  In contrast to using the deterministic sample values in 

particle filter, we model the feature points probabilistically in the feature point evolution.  

nk ,y nk ,1−y

mk ,y mk ,1−y

Given the correspondence between the reliable feature points, we model each feature 

point using the Kalman filtering or particle filtering based on the observation .  The 

detail feature point evolution process will be discussed later.  

mk ,y

 

Perspective Camera Model 

 

Figure 45. Perspective camera model 
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To understand the perspective camera model [68], we project a point in 3D space to 

an image plane using the perspective camera model.  As shown in Figure 45, there are 

three coordinates in the perspective camera model: the world coordinate (3D), the 

normalized view coordinate (3D), and the image coordinate (2D).  The origin and the z 

axis of the normalized view coordinate are the camera position and the camera viewing 

direction respectively.  

First, the coordinate transformation equation (41) converts a point’s representation 

 in the world coordinate to its representation  in the normalized view 

coordinate with the rotation matrix  and the translation vector .  

worldp viewp

viewR viewt

viewworldviewview R tpp +=                                            (41) 

Then, we project the point  onto the normalized image plane at the point , 

which is the plane of z = 1 in the normalized view coordinate as shown in Figure 45.  

viewp viewy
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Finally, since the image plane is at z=fc (camera focal length) in the normalized view 

coordinate, we calculate the projected point  on the image plane with the 

given camera center (cc

)( 2,1, viewview II

1, cc2).  In fact, we use the horizontal focal length fc1 and the 

vertical focal length fc2 in the real applications to offset the aspect ratio distortion as 

follows. 
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A.2 Modeling Evolution Scenes 
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In this section, we first introduce our novel tracking algorithm for the video-based 

rendering, and then present the reconstruction and rendering algorithm. 

 

 

Figure 46. Evolution flow chart.  The evolution of the features is modeled on top: images 

with sample feature points are marked.  The respective evolution of the states is modeled 

on bottom: the estimated 3D positions and 3D motions of the sample feature points are 

plotted.  INITIALIZATION, PREDICTION, and CORRECTION follow standard 

Kalman filtering while GENERATION and DESTRUCTION follow our proposed 

evolution framework.  

Evolution, the core contribution of this work, is a dynamic feature point extractor 

embedded in standard time-series analysis (see Figure 46).  As video progresses over 

time, certain tracked feature points (e.g., state Xt) will have noisy 2D image feature points 

Yt that become difficult to track while, conversely, new feature points will appear that are 

robust, and easy-to-track.  Hence, we only model each portion of the scene while it is 

easy to track.  In addition to proposing which feature points (and associated states) to 
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model at each time frame, we also propose a novel “state passing” mechanism that 

initializes the states of the newly generated feature points in each frame.  Evolution 

proceeds as follows, where Steps 1, 2, & 3 below correspond to the Extended Kalman 

filter (EKF)’s initialization, prediction, and correction and where Steps 4 & 5 below are 

the key contributions of this work: 

We first introduce the EKF modeling used in evolution.  Let {Xt} be the set of the 

states, which are 3D positions pt and 3D motions vt, and 2D image feature point set {Yt} 

be the observations.  By assuming a constant velocity model for each feature point, we 

have 

State equation: Xt+1 = Ft Xt + Qt, Qt ~ N(0, qt)                               (44) 

Observation equation:  Yt = ft(Xt) + Rt, Rt ~ N(0, rt)                                (45) 

where , , and f⎥
⎦
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Ft 0
t projects the feature points’ position pt to the current 

image plane with known intrinsic and extrinsic camera calibration parameters.  Qt and Rt 

represent the Gaussian noises in the modeling with variance qt and rt, respectively.  In the 

current implementation, the noise modeling qt and rt are time-independent.  

1. Initialization (time t = 0 only) 

 Find 2D feature point set {Y0} at time t = 0, using a Harris corner detector [69].   

 For each y0 ∈  Y0, initialize its state x0 ∈ {X0}:   

⎥
⎦

⎤
⎢
⎣

⎡
=

0

0
0 v

p
x                                                            (46) 

where 3D position p0 is calculated by assuming a constant depth, and 3D motion v0 is 

set to zero.   

2. Prediction 
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• For each xt ∈  Xt, predict  using the EKF modeling above.   −
+1tx

 For each yt ∈  Yt, find its corresponding position yt+1 in frame t+1 using the pyramid 

KLT tracker [70].   

3. Correction 

 For the predicted state −
+1tx ∈  X t+1, correct its value x t+1 using the EKF modeling. 

4. Generation 

 As in Step 1, find feature point set { }1
~ +tY  using a Harris corner detector.  These feature 

points are chosen independently of the predicted {Y t+1}. 

 For each of the new feature points { }11
~ ~

++ ∈ tt Yy , find its corresponding position ty~  in 

frame t using (reverse) pyramid KLT tracker.  Let { }1
~

+tX  be their (un-initialized) states. 

 Initialize each new state { }11
~~

++ ∈ tt Xx .  Let 1
~

+tx  be initialized using weights  on the 

nearby existing states 
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where ty~ , , and  are the observations of ty ty′ tx~ , , andtx tx′ , respectively; Thy is the 

threshold for defining a new state's neighbors in the 2D image; β is the weight on the 

prior state X0; ( ) )'('' −−= ttttt xfyxE  is the Kalman error of the state  at time t, and 

Age  is the number of frames that state 

tx′

( 1+′tx ) 1+′tx  has been in existence. 

5. Destruction 
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 Define  as the square patch centered at pixel ( )tt yP ′ ty ′  in time frame t.  Determine the 

optical flow matching error for each existing { }11 ++ ∈ tt Yy  and for each new feature 

point { }11
~~

++ ∈ tt Yy , respectively: 

( ) ( ) ( )1111 , ++++ −= ttttttt yPyPyyE                                          (49) 

( ) ( ) ( )ttttttt yPyPyyE ~~~,~
1111 −= ++++                                          (50) 

 Define HCt(yt) as the corner score returned by the Harris corner detector for feature 

point yt at time frame t. 

 Destroy any existing feature point yt+1 or new feature point 1
~

+ty that fails either of its 

respective tests: 

( ) Etttt ThyyEy <+++ 111 ,:                                                  (51) 

( ) HCtt Thy >++ 11HC                                                  (52) 

( ) Etttt ThyyEy <+++ 111
~,~:~                                                   (53) 

( ) HCtt Thy >++ 11
~HC                                                  (54) 

where ThE is the threshold for the optical flow matching error and ThHC  is the 

threshold for the corner score.  

 Let the sets of states and of feature points for the next iteration be: 

{ } { } { }111
~

+++ += ttt XXX                                                 (55) 

{ } { } { }111
~

+++ += ttt YYY                                                 (56) 

In summary, with evolution we detect additional new feature points in each frame.  

Instead of initializing the state of the newly generated feature point from scratch, we 

borrow information from its reliable neighbors.  Only the feature points with good 2D 

correspondences (large corner scores and low matching errors) can be passed on to the 
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next iteration.  Therefore, we allow those feature points with good 2D correspondence to 

continue in the future iterations where they would hopefully become more reliable and 

have a low Kalman error.  We also let a feature point die if it does not have good 2D 

correspondence across neighboring frames since we cannot accurately reconstruct its 3D 

point position anyways. 

 

A.3. Reconstruction and Rendering 

In this section, we describe the dynamic-scene reconstruction and rendering based on 

the estimated feature point states in detail.  

Once the tracking of the evolving points is complete, the underlying states can be 

used to construct depth maps.  First, as we are tracking the feature points using EKF, we 

utilize the Kalman error to remove those feature points which were poorly tracked.  The 

remaining, reliable states (3D positions and motions) are then used to build the time-

dependent 3D mesh (depth map) for rendering at the desired time instance.  Given the 

mesh and image textures, we are able to render the scenes at the desired time instance and 

viewpoint.   

We first present the interpolation of the feature point’s state information at a specific 

time instance.  We then give a detail description about how to render the scene at the 

desired time instance and viewpoint based on the texture interpolation. 

Feature Point’s State Interpolation   
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Figure 47. Position interpolation of the feature point at t’ from its positions and 

motions at t1, t2, and t3

Given one-to-one correspondence of a feature point at time , where i=1, 2, …, N, 

we determine its 3D position at the desired time t’ from its available 3D positions 

 and motions  as shown in Figure 47.  
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The interpolated 3D position  is simply the weighted average of the linear 

predicted positions based on its N available 3D positions and motions as follows.  
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where the interpolation weight  depends on the time difference between t’ and t)( it tw i. 

Since the linear interpolation function  is a weighted sum of the N linear 

predicted positions, we can prove that our proposed interpolation approach of the position 

 and motion  satisfies the following consistency conditions: 
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and for any two time  and , it jt
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where  and can be any time.  it jt

Dynamic-Scene Rendering 

We first determine the feature point locations and colors at the desired time instance 

based on the selected corresponding feature point set.  We then build the texture mesh 

and render the scene. 

1. Select feature points 

To render the scene at time t’ and viewpoint view’, we first identity the N neighboring 

images captured at time  and viewpoint as shown in Figure 48.  The neighboring 

captured images are identified based on the distance measurement in the view and time 

domain with the tradeoff parameters ,  and  as follows. 

it iview

ta locationa anglea

)ngle () ()(distance acameradiffalocationcameradiffatimediffa anglelocationt ++=      (61) 

 

Figure 48. Determining the neighboring images for rendering 

We then identify the feature point candidates on these selected images for rendering 

as shown in Figure 49.  We use the feature points for rendering, if the number of their 

 68 



 

corresponding feature points at different view points is more than M ( M ≤ N ).  To have 

one-to-one correspondence among the N neighboring captured images for interpolation 

later, we interpolate the states (3D position and motion) of those missing corresponding 

feature points from their existing corresponding feature points using the feature point 

state interpolation method.  

 

Figure 49. Feature point selection at t’  

2. Determine feature point’s location and color 

After identifying the one-to-one correspondence of the feature points in the N 

neighboring images, we determine the state information of the feature points at time t’ 

using the feature point state interpolation approach again.  

Each feature point color at the time t’ and the viewing direction θ’ is interpolated 

from the corresponding feature point colors at time  based on the viewing direction θit i as 

shown in Figure 50, where i=1, 2, …, N.  The proposed rendering method interpolates the 

color for each feature point at the time t’ and viewing direction θ’ as follows: 
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The color interpolation weights ),( iitw θ  depend on the differences in viewing 

directions and in time as follows.   
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where  is the weight based on the time difference, and )( it tw )( ivieww θ  is the weight based 

on the viewing direction difference.  Therefore, the feature point’s interpolated color at 

the time t’ is similar to its neighbor’s colors, if the feature point’s viewing direction θ’ 

and time t’ is similar to the neighbor’s viewing direction θi and time ti. 

 

Figure 50. Interpolation for a feature point’s color 

3. Render the scene texture mesh based on the feature points 

We project the feature points at the time t’ to the image with the smallest viewing-

direction-and-time distance (img(t2 ,view2) as shown in Figure 48).  We use Delaunay 

triangulation [71] to connect them to generate the triangle mesh as shown in Figure 51.  
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We render the texture of each triangle by interpolating the texture of the corresponding 

triangles in the images captured at the neighboring viewpoints and times. The color 

interpolation weights for a point inside a triangle are linearly interpolated from the 

corresponding weights of the feature points at the vertices of the triangle based on 

distance. 

 

Figure 51. Delaunay triangulation 

 

A.4. Experimental Results 

We show the experimental results of our video-based rendering with a single moving 

camera.   

 

Figure 52. Experiment setup of a moving car 
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Figure 53. Sample input images of a moving car 

       

(a) 3D points                (b) 3D mesh               (c) Rendered image 

Figure 54. Reconstruction of a dynamic scene 

    

(a) Frame 35            (b) Frame 55            (c) Frame 115           (d) Frame 155 

Figure 55. Proposed video-based rendering at the virtual viewpoint 

We first ran experiments on synthetic data.  A moving toy car was captured by an 

oscillating camera simulated by POV-ray [61].  The car moved with the speed of 0.04 

from left to right.  The camera oscillated between -0.2 to 0.2, and was 5 away from the 

car center vertically.  We rendered the scene activities at the virtual viewpoint x = 0.05 as 

shown in Figure 52.  As illustrated in Figure 53, a total of 160 images were captured at a 

low resolution of 320x240 pixels with the known intrinsic and extrinsic camera 

calibration parameters as the input image sequence.  As shown in Figure 54, we first 

reconstructed the feature points of the scene using our proposed feature point evolution 

algorithm.  Based on the reconstructed feature point’s positions and motions in space, we 
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then built the triangle mesh of the scene at the desired time.  Finally, we rendered the 

scene at a novel virtual viewpoint (see Figure 52) using the time-dependent meshes and 

textures from the captured images.  We showed that evolution had a good rendering 

quality in the experiment, for example, the car’s geometry and motion were well rendered 

as shown in Figure 55.  A video with both capturing, rendering, and the detail parameter 

settings can be downloaded at 

ftp://amp.ece.cmu.edu/Outbox/ICIP2006/SynMoveCar.zip.  

The rendering results in Figure 54 and in Figure 55 will be bad without the feature 

point evolution involved, since the object appearance relative to the camera changes 

dramatically between the first frame and the last frame as shown in Figure 53. 

We also performed experiments on real data of a stationary scene. A peanut can with 

a checker board was captured by a single moving camera with pre-calibrated intrinsic 

camera parameters. 

 

Figure 56.  Sample input images of a peanut can 
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As illustrated in Figure 56, 35 images were captured at a high resolution of 

2592x1944 pixels as the inputs.  The extrinsic camera calibration parameters were 

derived from the checker board pattern in the image.  Using 3D reconstruction results 

from stereo and from evolution, we rendered images at different viewpoints, as shown in 

Figure 57.  

 

Figure 57. Rendering results of the real scene.  Each row represents different viewpoint. 

The rendering quality in evolution is better compared to stereo, as illustrated by the ovals. 

Therefore, the rendering in evolution is better compared to the stereo technique 

because of the reliable 3D reconstruction; notice the difference in the rendering of the 

peanut can lid. 

 

A.5 Conclusions 
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We proposed a feature point evolution algorithm for dynamic scene reconstruction 

that exploits the characteristics of dynamic, evolving scenes.  As the feature points 

initially extracted at the beginning of a video are only stable for a limited amount of time, 

we only track them while they are stable.  Furthermore, as the video gets new 

perspectives on the scene, new, interesting feature points will appear and be tracked.  As 

these new feature points may be in the vicinity of existing feature points, the new feature 

points' states can be estimated using the refined estimates of the existing feature points' 

states.  The result is a model that is better constructed than using existing reconstruction 

techniques for rendering. 
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Appendix B. A Single Scale Leung-Malik (LM) Filter Bank 

A single scale LM filter bank is a multi-orientation filter bank with 15 filters.  It 

consists of first and second derivatives of Gaussians at 6 orientations with the base 

scale 2=σ  making a total of 12, 2 Laplacian of Gaussian (LOG) filters, and 1 

Gaussian.  The first and second derivative filters occur at the base scale with an 

elongation factor of 3 (i.e. σσ =x  and σσ 3=y ).  The Gaussians occur at the base scale, 

while the 2 LOG filters occur at σ  and σ3 .  The filter bank is illustrated in Figure 58. 

 

Figure 58.  LM filter bank with a mix of edge, bar and spot filters at multiple orientations 
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