
PERSONAL AUTHENTICATION BASED ON GENERALIZED 
SYMMETRIC MAX MINIMAL DISTANCE IN SUBSPACE 

 

Wende Zhang and Tsuhan Chen 
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA 

{wendez, tsuhan}@andrew.cmu.edu 
 

ABSTRACT 
 
We introduce an improved classification algorithm based on the 
concept of Symmetric Maximized Minimal distance in Subspace 
(SMMS). Given the training data of authentic samples and 
imposter samples in the feature space, our previous approach, 
SMMS, tried to identify a subspace in which all the authentic 
samples were projected onto the origin and all the imposter 
samples were far away from the origin.  The optimality of the 
subspace was determined by maximizing the minimal distance 
between the origin and the imposter samples in the 
subspace.  The Generalized SMMS relaxes the constraint of 
fitting all the authentic samples to the origin in the subspace to 
achieve the optimality and considers the optimal direction of the 
linear support-vector machines (SVM) as a feasible solution in 
our optimization procedure to guarantee that our result is no 
worse than the linear SVM. We present a procedure to achieve 
such optimality and to identify the subspace and the decision 
boundary.  Once the subspace is trained, the verification 
procedure is simple since we only need to project the test sample 
onto the subspace and compare it against the decision 
boundary.  Using face authentication as an example, we show 
that the proposed algorithm outperforms the linear classifier 
based on SMMS and SVM. The proposed algorithm also applies 
to multimodal feature spaces.  The features can come from any 
modalities, such as face images, voices, fingerprints, etc. 
 
 

1. INTRODUCTION 
 
As the biometric applications become more popular, the 
biometric classification algorithms will be applied to hand-held 
devices. Due to the size and power constraints of these devices, 
the computational complexity of the verification procedure will 
be the main consideration for choosing the right algorithms. 

The subspace approach is suitable for biometric 
authentication applications on power-constrained devices 
because of its simplicity in the verification procedure. We only 
need to project the test sample, which can be the features from 
multi-modalities, such as face images, voices, fingerprints, etc, 
onto the subspace. Most subspace classification algorithms 
determine the subspace by optimizing certain global measures 
such as the mean squared error (MSE) or the variance ratio. For 
example, in principal component analysis (PCA) [1], the 
subspace is determined by minimizing the reconstruction errors 
of samples in the subspace using the MSE criterion. In Fisher’s 
linear discriminant analysis (LDA) [2], the subspace is defined 
by maximizing the ratio between the intra-class variance and the 
inter-class variance in the subspace. The applications of these 

algorithms can be found in [3][4][5] for biometric recognition 
and authentication. These algorithms based on global 
optimization provide good performance when the data 
distribution is close to Gaussian.  

Other classification algorithms determine their decision 
boundaries by supporting samples [6]. Supporting samples are 
typically training samples near the decision boundary. Support 
vector machines (SVM) [7][8][9][10][11] optimize the 
supporting samples by maximizing the gap between the authentic 
samples and the imposter samples regardless of the data 
distribution. This “maxmin” approach outperforms the global 
optimization approach, when the data distribution is not 
Gaussian as shown by several face authentication and 
recognition applications [12][13][14]. 

A linear SVM [9] maximizes the separation gap between 
the authentic samples (xi(authentic), hexagon pattern) and the 
imposter samples (yj(imposter), triangle pattern) as shown in Figure 
1. Alternatively, the optimal parameters (w, b) are optimized by    
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Figure 1. Linear SVM 

The computation requirement for verification is low since 
only one inner product between the input vector x and the 
projection vector w is needed. We use the following criterion to 
decide whether the input vector x is authentic or not.  

If thresholdbxf T ≤+= xw)( , sample authentic→x  

This is equivalent to projecting x onto a one-dimensional 
subspace and comparing the result with the threshold as shown 
in Figure 1. The threshold value can be simply set to zero or 
chosen from the Receiver Operating Characteristic (ROC) curve 
to meet the false accept rate (FAR) vs. false reject rate (FRR) 
requirement.  

A linear SVM may fail when the authentic samples 
(hexagon patterns) are surrounded by the imposter samples as 
shown in Figure 2. It is not possible to find a linear plane to 



separate the authentic samples from all imposter samples in this 
case. One way to solve this problem is to seek a separation plane 
by mapping the training samples to a higher dimensional space 
[9]. After mapping, the samples may be well separated. However, 
there are two potential problems in this approach. First, the 
advantage of simplicity is lost. When the samples are mapped to 
a higher dimensional space, we have to keep many support 
vectors to describe the separation boundary instead of only one 
projection vector w. In addition, the over fitting problem may be 
encountered, that is, the samples may be too few to train SVM in 
a high dimensional space. 

 
Figure 2. Samples not separable by 2 hyper-planes 

In our previous work--Symmetric Maximized Minimal 
distance in Subspace (SMMS) [15], the authentic samples are 
projected onto the origin of the subspace, and the imposter 
samples are surround the authentic samples, hence “symmetric”. 
The algorithm identifies the subspace and decision boundary by 
maximizing the minimal distance from imposter samples to the 
origin of the subspace.  SMMS additionally requires that all the 
authentic samples will be projected onto the origin of the 
subspace. Therefore, the optimal subspace of SMMS is a sub-
optimal solution to the problem of finding the max minimal 
distance between authentic and imposter samples in a subspace.  

In this paper, we propose a new approach called 
Generalized Symmetric Maximized Minimal distance in 
Subspace (G-SMMS) to perform classification. By allowing the 
authentic samples to scatter around the origin in the subspace, 
hence “generalized”, this algorithm tries to find a subspace in 
which the authentic samples are clustered together and the 
imposter samples are far away from the authentic samples. For 
example, in a one-dimensional subspace, the authentic samples 
are clustered around the origin in the subspace as shown in 
Figure 2. The following criterion is used to decide whether the 
input vector x is authentic or not.  

If thresholdbf T ≤+= xax)( , sample authentic→x       (1) 

The samples that are not linearly separable by a linear SVM 
can now be well separated by G-SMMS in Figure 2 without 
constraint on the authentic samples. 

The paper is organized as follows. In section 2, we 
introduce the proposed classification algorithm based on G-
SMMS. In Section 3, we describe the face database used in the 
experiment and compare the authentication performance of G-
SMMS with the linear SVM and SMMS algorithms. The 
conclusions are given in Section 4. 

 
2. GENERALIZED SYMMETRIC MAXIMIZED 

MINIMAL DISTANCE IN SUBSPACE (G-SMMS) 

We will introduce the one-dimensional G-SMMS algorithm in 
details and then extend the algorithm to higher dimensions.  

 

2.1 One-dimensional Generalized Symmetric Maximized 
Minimal distance in Subspace   (G-SMMS-1D) 

 
To train the G-SMMS classifier, given M authentic samples, xi, 
and N imposter samples, yj, we try to maximize the minimal 
distance between the authentic samples and the imposter 
samples.  
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overall dG-SMMS-1D to be optimal, but it is a reasonably and 
intuitively good choice. Then, we can optimize the minimal 
difference between the authentic samples and the imposter 
samples as shown below: 
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To solve the “maxmin” problem (3) directly is difficult, 
since it is a nonlinear programming problem. One way to 
approximate this is to convert it into a quadratic form as follows.  
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The way we solve (4) is by assigning a weight to each 
quadratic term properly to approximate the min and max 
operators in (4).  

We assign a weight sj(q) to each value Qj(a) =
2

j

T qa  and a 

weight si(p) to each value Pi(a) =
2

i

T pa . We constrain the sum of 

all the weights sj(q) and si(p) to be 1 separately.  
If we assign the non-zero weight to minimum value of Qj(a) 

and the zero weights to all the others, the minimum of Qj(a) will 
be equal to the weighted sum in equation (5).  
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Similarly, if we assign the non-zero weight to maximum 
value of Pi(a) and the zero weights to all the others, the 
maximum of Pi(a) will be equal to the weighted sum as follows.  
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To accomplish the above, the weights are adjusted 
iteratively to make the weighted mean mw(q) close to the 
minimum value of Qj(a) and the weighted mean mw(p) close to the 
maximum value of Pi(a). To achieve this point, the weights sj(q) 
are increased for small Qj(a), while the other weights sj(q) are 
decreased. The weights si(p) are increased for large Pi(a), while 
the other weights si(p) are decreased. Now given weights, we find 
the a by optimizing the following quadratic sum criterion  
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instead of the original criterion in (3). 
Since both a and weights are unknown, we try to solve them 

iteratively. First, we initialize weights for sj(q) and  si(p) equally. 
Given the updated weights, we try to solve a by optimizing (7). 
Then given the current projection direction a along which we 



project pi to P’i= j

T qa  or qj to Q’j= j

T qa , the weights are 

updated by comparing the distance between the corresponding 
P’i or Q’j and the origin. After the maximum number of 
iterations, we choose a that provides the maximum value of V(a) 
as indicated in (3) among all the iterations as the optimal 
solution for a. It is necessary to check with  because it specifies 
the optimal solution while iterations for search the solution. 

 

2.2 High-dimensional Generalized Symmetric Maximized 
Minimal distance in Subspace  (G-SMMS-MD) 
 

G-SMMS-1D can be extended to a higher-dimensional subspace. 
If we extend the subspace with orthonormal bases 
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the following criterion is used to decide whether the input 
vector, x, is authentic.  
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Here we try to maximize the minimal distance between the 
authentic samples and the imposter samples in a subspace as 
follows. 
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After the iteration, we will get the optimal solution 
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2.3 Using Linear SVM to improve G-SMMS-MD 
 
For some data, the authentic and the imposter samples are 
already well separated by using linear SVM. For such data, the 
optimization we apply in G-SMMS may not provide the best 
solution. However, the G-SMMS formulation does incorporate 
the linear SVM as a special case, as we will explain. 

If we perform the linear SVM on the data, we can get the 
max minimal distance dSVM between authentic and imposter 
samples along optimal projection direction w. If we project the 
data to an R-dimensional subspace, which contain the projection 
direction w, we can show that the max minimal distance dG-SMMS-

MD between authentic and imposter samples will be no smaller 
than the dSVM.  

 
Figure 3. Linear SVM and G-SMMS-1D 

For G-SMMS-1D, we let the unit projection 
vector wwa /= , the origin in the original space 
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the c is such a big coefficient that let the all the projected 
samples along the direction a have the negative values as shown 
in Figure 3. In this case, the minimal distance between authentic 
and imposter samples is the same for the Linear SVM and G-
SMMS-1D. 

For G-SMMS-MD, we let the first unit projection vector 
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paqa  in the null space of a1. And b2,b3,…,bM are 

determined by )(
i
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nn
meanb xa−= . In this case, the dG-SMMS-MD is 

similar to the dSVM  with the big positive number c. If c goes to 
the positive infinitive, it will push the center o’ of the hyper-
circle in R-dimensional subspace far away from the samples 
along the direction a1, then the curves through the authentic and 
imposter samples in the Figure 4 will become two parallel lines 
and orthogonal to a1. Now dG-SMMS-MD = dSVM . 

We will also consider the special SVM related solution here 
to evaluate our criterion function (9). So the final optimal dG-

SMMS-MD will be no smaller than the dSVM. The final solution will 
be the subspace <an, bn> corresponding to the max minimal 
distance between authentic and imposter samples.  

 
Figure 4. Linear SVM and G-SMMS-MD (M>2) 

 
3. EXPERIMENT 

 
We test our algorithm on a pose variation subset of the PIE face 
database [16] with 68 subjects. This is a very challenging 
database for face authentication because there are lots of pose 
variations and many subjects. We use 5 images for training and 4 
images for testing for each subject. All the images are 6464 ×  
grayscale cropped images. In Figure 5, the training and test face 
images from 3 subjects in this database are shown in different 
rows.  

 
Figure 5. Sample training (a) images and test (b) 

images from PIE database 
We use all the training images (5*68) to construct a PCA 

subspace. We do the experiment on first 100 PCA coefficients 
with 1D-7D subspaces for the proposed G-SMMS-MD as shown 
in Figure 6. We compare the resulting equal error rate (EER) on 
average with a total of 68 subjects among the SMMS, G-SMMS-



MD and the linear SVM as shown in Table 1 and Figure 6. The 
EER of the linear SVM is 17.54%, while any of the result from 
G-SMMS-MD is no worse than the linear SVM. Furthermore, 
the performance of G-SMMS-MD is much better than SMMS-
MD as shown in Table 1.  

The G-SMMS-1D performs the same as the linear SVM in 
this database because the data is already separable for each 
subject by the linear SVM and the G-SMMS-1D cannot find 
another subspace which provides a bigger gap between authentic 
and imposter samples.  

 
Figure 6. The comparison between the G-SMMS-MD 

and the Linear SVM on PIE database  

 EER Storage 
unit 

Verification 
time unit 

SVM-linear 17.5% 1 1 
SMMS-1D 36% 1 1 

G-SMMS-1D 17.5% 1 1 
SMMS-3D 27% 3 3 

G-SMMS-3D 16.7% 3 3 

Table 1. The comparison among SMMS, G-SMMS and 
SVM on PIE database 

When we increase the dimensions of G-SMMS, we lose the 
simplicity, too. However, compared with other high dimensional 
SVM algorithms such as the SVM-polynomial (degree=2) [9], 
the G-SMMS-7D is still simpler and better as shown in Figure 6. 
The SVM-polynomial (degree=2) requires 40-50 support vectors 
for each subject in this database. 

 EER Storage 
unit 

Verification 
time unit 

G-SMMS-7D 14.8% 7 7 
SVM-polynomial 

(degree=2) 16.2% 40-50 40-50 

Table 2. The comparison between G-SMMS-7D and 
SVM-polynomial (degree=2) 

 
4. CONCLUSIONS 

 
In this paper, we propose a new algorithm based on the concept 
of Generalized Symmetric Maximized Minimal distance in 
Subspace (G-SMMS).  Using face authentication as an example, 
we show that the proposed algorithm is simple in the verification 
stage and outperforms the linear SVM and SMMS on the PIE 
face database. The proposed algorithm also applies to 
multimodal feature spaces.  The features can come from any 
modalities, such as face images, voices, fingerprints, etc. This 
paper shows that the subspace classification with symmetric 
maximizing minimal criterion is a promising way to enhance the 
performance of subspace-based authentication algorithms. Along 

this direction, our future work is to introduce some slack 
variables [9] similar to SVM to improve the performance. 
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