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Abstract

In this paper, we present a scheme for face authentication
in the presence of variations. To deal with variations,
such as facial expressions and registration errors, with
which traditional appearance-based methods do not
perform well, we propose the eigenflow approach. In this
approach, the optical flow and the optical flow residue
between a test image and a training image are computed
first. The optical flow is then fitted to a model that is pre-
trained by applying principal component analysis (PCA)
to optical flows resulting from variations caused by facial
expressions and registration errors. The eigenflow
residue, optimally combined with the optical flow residue
using linear discriminant analysis (LDA), determines the
authenticity of the test image. Experimental results show
that the proposed scheme outperforms the traditional
methods in the presence of expression variations and
registration errors. The approach can be extended to
model lighting and pose variations as well.

1. Introduction

For decades human face recognition has drawn
considerable interest and attention from many researchers
[1]. A general statement of this problem can be
formulated as follows. Given still or video images of a
scene, identify one or more persons in the scene using a
stored database of faces [2].

Face authentication [3] is a research field related to
face recognition. The difference between face recognition
and face authentication is that, in the former, the system
has to determine the identity of the subject, while in the
latter, the system needs to verify the claimed identity of
the user. Usually similar algorithms can be used for both
recognition and authentication.

A comprehensive survey of human and machine
recognition techniques can be found in [2][4]. There are
mainly two kinds of face recognition systems: one is
based on feature matching; the other is based on template
matching. In the latter, applying principal component
analysis (PCA) in the pixel domain (also known as the

eigenface approach [5]) plays a fundamental role. Some
researchers have noted that applying PCA to image pixels
directly is very sensitive to shift, rotation, scale,
expression or lighting variations [6], because the
eigenface method is basically an appearance-based
approach. Several papers propose revised eigenface
approaches to dealing with face image variations [7].

In this paper, we propose a general approach to
performing face authentication by modeling variations,
such as facial expression variations and registration errors.
Optical flow is used to capture these variations. For
example, the optical flow between the neutral and happy
expressions of one subject tells us how this subject smiles.
We propose to apply PCA to optical flows, and obtain an
eigenspace spanned by its eigenvectors, which we call
eigenflows. This eigenspace models all possible
expression variations. Optical flow and eigenflow can also
be used to model other variations, such as registration
errors, including shift, scaling, and rotation. As a general
framework, we can also model the illuminant variations
by computing the features for images under different
lighting conditions, and performing PCA on these
features.

Optical flow methods are generally used for motion
analysis. Some researchers have used optical flow in the
analysis of human expression for the purpose of
expression recognition [8]. Also Kruizinga and Petkov [9]
proposed to utilize optical flow in person identification.
However, they only considered the optical flow residue as
the measurement of classification without considering the
statistics of the optical flow itself. We model the statistics
of the optical flow using PCA, which exhibits more
classification ability.

Moghaddam et al. also proposed modeling visual
motion in [1]. They determined pixel difference between
images, and utilized the Bayesian approach to model the
pixel difference for all the subjects. In our case, we model
the motion directly. First the optical flow is used to obtain
motion field between images and then PCA is applied to
model facial motion for the subject.

This paper is organized as follows. In Section 2, we
introduce the individual eigenspace, the basic framework
of our classification method. In Section 3, we present the



eigenflow based approach. Experiments based on different
sets are presented in Section 4. We conclude in Section 5.

2. The individual eigenspace

Turk and Pentland [5] introduced the eigenface
approach to performing face recognition. While
constructing an eigenspace, face images from all training
subjects are used. We call the resulting eigenspace a
universal eigenspace. We can see that this eigenspace
represents not only the personal identity, the inter-
variation between different training subjects, but also the
intra- variation of each subject, such as due to expression
changes, illumination variability, age, etc. However, what
we need for the authentication is robustness to expression
and illumination variations within a single subject. This
observation suggests one potential metric for face
authentication: the residue of a test image to a subject’s
individual eigenspace, i.e., the difference between a test
image and its projection to the eigenspace. We proposed
the individual eigenspace method in [11], which we
outline as follows.

Throughout the rest of this paper, we will focus on
authentication of one specific subject as opposed to all
other subjects in the database. Suppose there are K
subjects and M training images. In the individual
eigenspace approach, one eigenspace is constructed for
each training subject. The average face of Subject i is:

∑
−

=
=

1

0

1 M

j
iji M

fg

Now each face differs from the average by the vector
gfs iijij −= . Based on ],...,,[ 1,1,0, −= Miiii sssA , we can

derive the eigenvectors of Subject i and denote them as

ni,u . Given a test image f , it is projected to the

eigenspace of Subject i as follows:
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The face image f can be reconstructed by:
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where Q is the number of eigenvectors in the eigenspace.
The residue is defined as the squared distance between the
mean-adjusted test input image igfs −= and

reconstructed image ŝ , i.e.,
2

ŝs −=e

based on which we can authenticate the test image f .
Note that the above analysis can be applied to optical

flows as well. In other words, f ij and f can represent

training optical flows and the test optimal flow,
respectively, rather than images of pixel values. In this
case, ni,u represents the eigenflow of Subject i, and the

residue e becomes the eigenflow residue. We will
explain these in more detail in the following section.

3. Individual eigenflow based face authentication

The traditional eigenface approach is not as robust as
needed to expression variations and to shift, rotation, and
scale changes. Because eigenface is an appearance-based
approach, its authentication performance degrades quickly
when the appearance of a subject’s face changes
significantly, which occurs in the presence of expression
changes and registration errors. In this section, we
propose our approach based on optical flow to deal with
such variations in face images.

3.1 Optical flow for face images

Optical flow [12] is an approximation of the velocity
field. It characterizes approximately the motion of each
pixel between two images. If two face images, which
show different expressions of the same subject, are fed
into the optical flow algorithm, the resultant motion field
will emphasize the regions of facial features, such as eyes
and mouth. This is illustrated in Figure 1. On the left, two
face images from the same subject, but with different
expressions, are shown. The resulting optical flow is
shown below them. Also, by using the first image and the
optical flow, we can construct a predicted image for the
second image. The difference between the predicted
image and the second image is shown as the third image in
Figure 1. We call it the optical flow residue image. For
the same subject, this residue image would have low
energy because the motion of most pixels can be modeled
well by the optical flow. On the right of Figure 1, the two
input images are from two different subjects. The
resulting optical flow looks more irregular. Also the
residue image has more energy. These two clues can help
discriminating these two cases, which is the goal of
authentication.

The same idea can be applied to images with
registration errors. Because the traditional eigenface
approach is sensitive to registration errors, even small
shifts in input images can make the system performance
degrade significantly. We propose to use the optical flow
to build a system that is tolerance to registration errors.
Figure 2 shows one example. On the left, the second
image is an up-shifted version of the first image. The
optical flow shown below captures most of its motion
around facial features, and also the residue image has
small energy. On the right, it shows images of different
subjects leading to an optical flow that appears to be more
irregular, and the residue image has larger energy.



3.2 The training of eigenflow Optical flow provides a useful pattern for classifying
personal identity. To capture the pattern, we propose to
use PCA to model the statistics of the optical flow.

Figure 1. Application of optical flow to cases of different expressions

Figure 2. Application of optical flow to two cases of different registration.

Figure 3. Five expression images used for training eigenflows.



Figure 4. The first three eigenflows trained from expression images of one subject. Some prominent
movement of facial features, such as mouth corner, eyebrow, nasolabial furrow, can be seen.

Figure 5. Training images with synthesized registration errors.

Figure 6. The first three eigenflows trained from synthetic images of one subject. Some prominent
motions, such as shifts, rotations, scales, can be seen.

Following the traditional PCA approach, we treat
optical flow vectors as sample vectors. Suppose that in the
training dataset, there are a number of images with
different expressions for each subject, such as the five
images shown in Figure 3. Using these images, twenty
optical flows (corresponding to twenty pairs) can be
obtained. After applying PCA to the optical flows, the
three principal eigenflows are shown in Figure 4.
Obviously large motion can be observed in the region of
facial features, such as mouth corner, eyebrow, and
nasolabial furrow. So all the expression variations
occurring in a single subject can be represented by a space
spanned by these eigenflows. In contrast, the optical flow
between this subject and other subjects cannot be
represented well by these eigenflows. That is, the
eigenflow residue will be large.

Similarly eigenflows can be used to model the optical
flow caused by image registration errors as shown in
Figure 5. We can see different kinds of registration errors,
such as shifts, rotations, and scales. The resulting

eigenflows are shown in Figure 6. Again the eigenflows
model well the motion caused by registration errors.

In the testing stage, both the optical flow residue and the
eigenflow residue will be used for authentication, where
the optical flow residue is computed in determining
optical flow between the testing image and training
images, and the eigenflow residue is obtained in
projecting the optical flow into the eigenflow space.
Finally LDA [13] combines these two residues and obtain
the final measurement for authentication.

4. Experiment results

Before discussing the results, we present some details
about our algorithm. Given any two training images, we
generate the optical flow using the follow procedure. First
the background regions below the cheek in the face image
are removed because the background seems to affect the
optical flow calculation, and thus interferes with
authentication. Zero is filled into the two triangle regions



in the lower part of the face square. Next, we determine
the optical flow using the Lucas-Kanade algorithm [14].
Third, the optical flow is down sampled to be half its
original size in order to speed up the PCA training and to
clean up the noisy motion vectors. Finally within this
smaller-size optical flow, the background and four side
boundaries are removed because usually the boundary
does not result in accurate motion estimation in the optical
flow algorithm.

The first data set has only expression variations. Thirty
subjects are included in this set. Each subject has 5
images for training, and 70 images for testing. The reason
we use more test images than training images is that we
want to get a smother Receiver Operating Characteristic
(ROC) curve. Also, only a few images may be available
for training in a practical setup. Each of the five training
images represents different expressions, such as neutral,
happy, angry, sad, and surprise. All of these images are
well registered by the location of the eyes. Some of the
images are shown in Figure 7. Here we implement three
algorithms: the universal PCA approach, the individual
PCA approach, and the proposed eigenflow approach. As
shown in Figure 8, we can see that the eigenflow approach
yields the best performance. The improvement is
significant compared to the universal PCA approach.

The second data set contains registration errors. Given
one well-registered face image, we synthesize 25 images
by shifting the location of each eye into five positions: one
pixel above, one pixel below, one pixel left, one pixel
right, and its original position. These images are used for
training the eigenflows of the subject. The same method is
used to generate the 81 test images except there is larger
offset while shifting, which means test images have larger
registration errors than training images. Again, the
eigenflow-based approach has shown much better
performance than the PCA approaches, as shown in
Figure 9.

The third data set has both expression variations and
registration errors. First, for each one of the 30 subjects, 5
expression images are obtained to be the reference
images. Then, for each reference image, 5 images are
synthesized to include registration errors. Thus, 25
training images are available for each subject. We also
generate 56 test images for each subject using the same
approach. The experiment results in Figure 10 also show
that the better performance has been obtained in the
eigenflow approach compared to the other two methods.

5. Conclusions

In this paper, we presented a scheme for face
authentication in the presence of variations. To deal with
variations, such as facial expressions and registration

errors, with which traditional appearance-based methods
do not perform well, we proposed the eigenflow approach,
which models the variations by applying PCA to the
optical flows caused by the variations. Experimental
results showed that the proposed scheme outperforms the
traditional methods in the presence of facial variations.

The advantage of the eigenflow approach is its
tolerance to different kinds of variations, such as
expression variations and registration errors, because all
these variations have been modeled by PCA. As a general
framework, the eigenflow method can also been extended
to model other variations that appear in faces, such as
illumination and pose changes.

References

[1]. T. Kanade. Picture processing system by computer
complex and recognition of human faces. Department
of Information Science. Kyoto University.
November, 1973.

[2]. R. Chellappa, C.L. Wilson, S. Sirohey, Human and
machine recognition of faces: a survey. Proceedings
of the IEEE, 83 (5) (1995) 705–741.

[3]. C.L. Kotropoulos, A. Tefas, I. Pitas, Frontal Face
Authentication Using Discriminating Grids with
Morphological Feature Vectors. IEEE Transactions
on Multimedia. 2 (1) (2000) 14-26.

[4]. R. Brunelli, T. Poggio, Face Recognition: Features
versus Templates. IEEE Transaction on Pattern
Analysis and Machine Intelligence. 15 (10) (1993)
1042-1052.

[5]. M. Turk, A. Pentland, Eigenfaces for Recognition.
Journal of Cognitive Neuroscience. 3 (1) (1991) 71-
86.

[6]. P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman,
Eiegnfaces vs. Fisherfaces: Recognition Using Class
Specific Linear Projection. IEEE Transaction on
Pattern Analysis and Machine Intelligence. 19 (7)
(1997) 711-720.

[7]. A. Pentland, B. Moghaddam, T. Starner, View-Based
and Modular Eigenspaces for Face Recognition.
Technical report 245, MIT Media Lab Vismod, 1993.

[8]. Y. Yacoob, L.S. Davis, Recognizing Human Facial
Expressions From Long Image Sequences Using
Optical Flow. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 18 (6) (1996) 632-646.

[9]. P. Kruizinga, N. Petkov, Optical flow applied to
person identification. Proceeding of the 1994
EUROSIM Conference on Massively Parallel
Processing Applications and Development, Delft, The
Netherlands, 21-23 June 1994, Elsevier, Amsterdam,
871-878.



[10].B. Moghaddam, T. Jebara, A. Pentland. Bayesian face
Recognition. Pattern Recognition. 33 (2000) 1771-
1782.

[11].Xiaoming Liu, Tsuhan Chen and B.V.K. Vijaya
Kumar, Face Authentication for Multiple Subjects
Using Eigenflow. To appear in Pattern Recognition,
special issue on Biometric, 2002.

[12].C.L. Fennema, W.B. Thompson, Velocity
determination in scenes containing several moving

objects. Computer Graphics and Image Processing, 9
(1979) 301-315.

[13].R.O. Duda, P.E. Hart, D.G. Stork, Pattern
classification, Second edition. John Wiley & Sons.
Inc., New York, 2001.

[14].B.D. Lucas, T. Kanade, An iterative image registration
technique with an application to stereo vision. Proc.
DARPA IU Workshop, 121-130.

Figure 7. Sample images from our database.
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Figure 8. The experiment results on the expression
database.
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Figure 9. Experiment results on the data set with
registration errors.
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Figure 10. Experiment results on the data set with
both expression variations and registration errors.


