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Abstract
In this paper, we present a novel scheme for face authentication. To deal with variations, such as facial expressions and registration
errors, with which traditional intensity-based methods do not perform well, we propose the eigenflow approach. In this approach, the
optical flow and the optical flow residue between a test image and an image in the training set are first computed. The optical flow is
then fitted to a model that is pre-trained by applying principal component analysis (PCA) to optical flows resulting from facial expres-
sions and registration errors for the subject. The eigenflow residue, optimally combined with the optical flow residue using linear dis-
criminant analysis (LDA), determines the authenticity of the test image. An individual modeling method and a common modeling
method are described. We also present a method to optimally choose the threshold for each subject for a multiple-subject authentica-
tion system. Experimental results show that the proposed scheme outperforms the traditional methods in the presence of facial expres-
sion variations and registration errors.
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1 Introduction ∗

For decades human face recognition has drawn considerable interest and attention from many researchers [1]. A general statement of
this problem can be formulated as follows. Given still or video images of a scene, identify one or more persons in the scene using a
stored database of faces [2]. A system that performs face recognition will have many applications such as nonintrusive identification
and authentication for credit cards usage, nonintrusive access control to buildings, and identification for law enforcement.

Face authentication [3] is a research field related to face recognition. The difference between face recognition and face authentication
is that, in the former, the system has to determine the identity of the subject, while in the latter, the system needs to verify the claimed
identity of the subject. Usually similar algorithms can be used for both recognition and authentication. However, there are some major
differences between these two cases. For example, the recognition application is usually computationally intensive compared to the
authentication application. Also, performance evaluation methods are different, which we will elaborate on later. Face recognition and
authentication are challenging as the human face can always undergo significant variations in appearance because of changes in facial
expressions, poses, scales, shifts, and lighting conditions.

In this paper, we propose a new approach to performing face authentication that is tolerant to facial expression variations and registra-
tion errors. Optical flow is used to capture face appearance motion when there are variations in facial expressions. For example, the
optical flow between the neutral and happy expressions of one subject tells us how this subject smiles. After we apply principal com-
ponent analysis (PCA) to these optical flows, we obtain an eigenspace spanned by its eigenvectors. This eigenspace models all possi-
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ble expression variations. We call this the eigenflow approach in this paper. Similarly, optical flow and eigenflow can also be used to
model other variations, such as registration errors, including shifts, scales, and rotations.

Given a test image, the optical flow and the optical flow residue between a test image and an image in the training set are computed.
The optical flow is fitted to the eigenflow model. The eigenflow residue is optimally combined with the optical flow residue using
linear discriminant analysis (LDA), and the result is used to determine the authenticity of the test image.

The advantage of this proposed approach is in its tolerance to expression variations and registration errors. Because the traditional
PCA approach does not deal well with registration errors [4], it requires that all the training and test images to be precisely registered,
sometimes manually. Our eigenflow-based approach, however, is tolerant to such registration errors; even face images subjected to
significant registration errors can be authenticated correctly.

1.1 Previous work

Comprehensive surveys of human and machine recognition techniques can be found in [2][5][6]. There are mainly two kinds of face
recognition systems: one is based on the feature matching; the other is based on the template matching. In the latter, applying PCA in
the pixel domain (also known as the eigenface approach [7]) plays a fundamental role. It has the advantage of fast computation, stable
performance for the case of frontal face recognition with reasonable constraints on illumination, expression variations, etc. Turk and
Pentland [7] used the whole training image set to train one eigenspace, which combines the intra- and inter- subject variations into a
single model. In this paper, we propose classification metrics based on the individual eigenspaces, because they can model the intra-
variations and inter- variations separately, which is much more appropriate for classification.

The eigenface approach has been revised to dealing with face image variability [8]. However, both the original PCA and their revised
versions are intensity-based methods. Therefore, they cannot model variations such as shifts, rotations, scales, expressions or lighting
variations.

Optical flow methods are generally used for motion analysis. Using two or more consecutive frames of an image sequence, a 2-
dimensional vector field, called the optical flow, is computed to estimate the most likely displacement of image pixels from one frame
to another. Some researchers have used optical flow in the analysis of human expressions for the purpose of expression recognition
[9][10]. Also Kruizinga and Petkov [11] proposed to utilize optical flows in person identification. However, they only considered the
optical flow residue as the criterion of classification, while we propose to make use of the eigenflow residue, which appears to exhibit
better classification ability than the former.

Essentially optical flow can provide us the visual motion information about face images. Moghaddam et al. also proposed modeling
visual motion in [12]. They determined pixel difference between images, and utilized the Bayesian approach to modeling the pixel
difference for all the subjects. In our case, first the optical flow is used to obtain the motion field between images and then PCA is
applied to model facial motion for individual subjects.

Based on our approach, we perform experiments on different face databases. Better performance has been obtained compared to the
traditional PCA approach, especially when the test face has expression variations and registration errors.

1.2 Paper outline

In Section 2, we propose an improved solution for face authentication compared to the traditional PCA approach. Since an individual
eigenspace models the intra-subject variations well, the distance to this space can be thought as one measurement of the inter-subject
variations. Both the traditional and our individual PCA approach will be presented in detail.

In Section 3, we present the individual eigenflow-based approach in detail. One eigenflow space is trained using optical flows between
all the images of one subject. Two residues, the eigenflow residue and the optical flow residue, are combined by LDA for authentica-
tion.

In practical authentication applications, it is possible that the subject may not provide training images containing expression varia-
tions. How can face images exhibiting expression variations still be authenticated based on the neutral training faces? We discuss this
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problem in Section 4 and suggest a solution--A common eigenflow space is trained before it is delivered to any specific applications.
This space describes all the possible expression variations that might appear in any subjects.

In Section 5, we introduce a new approach to optimizing and evaluating the authentication performance for multiple subjects. Differ-
ent thresholds are customized for each subject. Then multiple Receiver Operating Characteristic (ROC) curves from different subjects
are combined into one curve, which optimizes the performance of the whole system.

Experiments based on different face data sets are presented in Section 6. Every experiment has its own training and test data set, and
illustrates the usage of our new approach. Finally in Section 7, we provide our conclusions.

2 Universal and Individual Approaches to PCA

Turk and Pentland [7] introduced the eigenface approach to performing face recognition. To construct an eigenspace, face images
from all training subjects are used. We call the resulting eigenspace a universal eigenspace because it represents the appearance varia-
tions among all the subjects. Within this space, the face images of a single subject typically cluster around a certain region. For face
authentication, we may be able to improve the performance by using eigenspaces tuned to each individual. In this section, we first
describe the algorithm based on the universal eigenspace. Then in Section 2.2 we introduce a new approach, the individual PCA ap-
proach.

2.1 Universal PCA approach

Suppose there are M training face images for each of the K subjects. Let each face image ),( yxI be a 2-dimensional N-by-N array of

pixel values. An image may also be represented (after scanning) as a vector of dimension N 2 , where one image corresponds to one

point in the N 2 -dimensional image space. Let’s denote each face image of the training set as f ij , a 12 ×N vector, where i and j de-

note the subject index and the face image index respectively, and 10 −≤≤ Ki , 10 −≤≤ Mj . The average face vector g is defined

by
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The difference between each training face and the average is denoted by the vector gfs −= ijij . These difference vectors form a

MKN ×2 matrix, ],...,,[ 1,10100 −−= MKsssA . We apply PCA to these difference vectors by finding a set of Q orthonormal eigenvectors,

nu , corresponding to the largest eigenvalues of matrix TAA , i.e.,

nnn
T uuAA λ= n=0,1,…, 1−Q (2)

where λ 0 , λ1 ,…, λ 1−Q are nonnegative and in a decreasing order. However, the matrix TAA is N 2 by N 2 , and determining N 2

eigenvectors can be computationally intensive. Usually the number of training faces, KM × , is much smaller than N 2 . So we first

determine the eigenvectors, '
nu , of a MKMK × matrix AAT i.e.,

''
nnn

T uAuA λ= (3)

Pre-multiplying (3) by A and comparing to (2), we can see that 2/1' −= nnn λAuu . These eigenvectors form an orthonormal basis set of

a new feature space, called the eigenspace. Essentially it is a subspace representation of all the faces. Thus, we can transform each face
image, f ij , from the image space to the eigenspace as follows:

)( gfu −= ij
T
nnw n=0,1,…, 1−Q (4)
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Since each face image can be described as a vector T
Qij www ],...,,[ 110 −=p in the eigenspace, the Mahalanobis distance [13] can be

used to perform face authentication. After all training faces, f ij , are projected into the eigenspace, the mean vector and the covariance

matrix corresponding to each training subject are determined via ijp .
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The training faces of K subjects in the eigenspace represent K classes, with im and iC describing the mean vector and the covariance

matrix of Class i, respectively.

The above estimation of the mean and the covariance matrix is carried out in the training stage. During the test stage of this authenti-
cation system, suppose one face, f , is presented to the system, and is claimed to be Subject i. First, f is projected to the i-th eigen-
space as in (4) to obtain the projected vector p . Then the following Mahalanobis distance is used to measure the distance between the

test face f and the i-th class.

)()( 1
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T
id mpCmp −−= − (7)

Finally by comparing d with a pre-selected threshold, the test face, f , can be accepted as from Subject i or rejected as from imposters.
The advantage of using the Mahalanobis distance is that it takes into account the class covariance in determining the distance to that
class.

The eigenvector determination is computationally expensive, especially when the number of training images is large. The power
method [14] is one approach to efficiently determining the dominant eigenvectors. Instead of determining all the eigenvectors, the
power method obtains only the dominant eigenvectors, i.e., eigenvectors associated with the largest eigenvalues. We also used an ei-
genspace update algorithm [15] with the benefit of incrementally updating the eigenvectors based on the new training image.

2.2 Individual PCA approach

For the universal eigenspace, it represents not only the personal identity, the inter- variations between different training subjects, but
also the intra- variations of each subject, such as due to expression changes, illumination variability, age, etc. However, what we need
for the authentication is robustness to expressions and illumination variations within a single subject. This observation suggests one
potential metric for face authentication. The residue of a test vector to that vector’s individual eigenspace, (i.e., the squared norm of
the difference between a test vector and its representation in the eigenspace) is a good measure for authentication.

Throughout the rest of this paper, we will focus for clarity on one specified subject. So for a data set of K subjects, the same approach
can be repeated K times. In the individual PCA approach, one eigenspace is constructed for each training subject. As the following
equation indicates, the average face will be different for each subject.
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Now each face differs from the average by gfs iijij −= . Also ],...,,[ 1,1,0, −= Miiii sssA is different for each subject. By using of the

same algorithm as the last section, we can train an individual eigenspace for each subject.

Given a test image f with its claimed identity, it is projected to the eigenspace of the claimed subject as follows:
( )i

T
ninw gfu −= , if f claims to be Subject i (9)

where ni,u is the eigenvector of the eigenspace. From the projected vector, the face image can be reconstructed from:
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by keeping only the eigenvectors corresponding to the Q largest eigenvalues. Since the eigenspace is only an idealized representation
for one subject, it cannot represent all manifestations of that subject’s face perfectly, i.e., there will be a residue (i.e., the squared error)
between the face image and its reconstructed version. Such residue can be seen clearly in Figure 1. The face in the first row is a sam-
ple face to be authenticated. We show in the second row the reconstructed faces in five individual eigenspaces (corresponding to five
different subjects). It is clear that the left-most image in the second row is the most similar to the test image. The residue images be-
tween the test face and its corresponding reconstructed images for the five subjects are shown in the third row. We can see that the
residue image has low intensity only when the sample face is projected to its own space. Thus, the low energy in the residue image can
be a good criterion to authenticate faces.

The residue is defined as the squared distance between the mean-adjusted test input image igfs −= and the reconstructed image ŝ ,

i.e.,
2

ŝs −=e (11)

This is similar to the residue defined in the subspace method [16]. There is one method to speed up the computation of this residue.
Instead of first determining the reconstructed image ŝ and then using (11), we can use the following to determine e:
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In the next section, we will extend PCA from the pixel domain to the optical flow domain, and the residue will be called the eigenflow
residue.

3 Individual Eigenflow-Based Face Authentication

The traditional PCA approach is not as robust as needed to expression variations, shift, rotation, and scale changes. Because PCA is an
intensity-based approach, its authentication performance will degrade quickly when the appearance of a subject’s face changes signifi-
cantly, which occurs in the presence of expression changes and registration errors. In this section, we propose a new method based on
optical flow to deal with such variations in face images.

3.1 Optical flow for face images

Essentially optical flow [17] is an approximation of the velocity field. It characterizes approximately the motion of each pixel between
two images.

If two face images, which show different expressions of the same subject, are fed into the optical flow algorithm, the resultant motion
field will emphasize the regions of facial features, such as eyes and the mouth. This is illustrated in Figure 2. The left half of the figure
shows two face images from the same subject, but with different expressions. The resulting optical flow is shown below these figures.
By using the first image and the optical flow, we can construct a predicted image that is close to the second image. This is similar to
video coding where we can use the previous frame with motion vectors to form a prediction frame that is close the current frame. The
third figure in the top row is the difference between the prediction obtained via the optical flow and the second image. We call it an
optical flow residue image. For the same subject, this residue image would have low energy because the motion of most pixels can be
well modeled by the optical flow. The second set shows the same figure except that the two input images are from two different sub-
jects. Obviously, the optical flow looks more irregular in this case. Also the residue image of motion compensation has more “error”.
These two clues can help discriminating these two cases, which is the task of face authentication.

The same idea can be applied to images with registration errors. Because the traditional PCA approach is unacceptably sensitive to
registration errors, even small shifts in input images can make the system performance degrade significantly. However, face images
are usually difficult to register precisely, especially in a live authentication system. Therefore, we want to use the optical flow to build
a system that is tolerant to different kinds of registration errors. In Figure 3, the second image in the left column is an up-shifted ver-
sion of the first image. The optical flow shown below captures most of its motion around facial features, and also the residue image
has relatively small intensity. The right column shows images of different subjects leading to an optical flow that appears to be ran-
dom, and the residue image has larger intensity.
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3.2 Eigenflows

Since the optical flow provides a useful pattern for classifying personal identity, we propose to use PCA to model this pattern.

Given two face images, there are some recommended preprocessing steps prior to the optical flow determination. Since some regions
of face images will always contain the background, it is better to crop the image before the optical flow computation. We also consider
down-sampling the optical flow in order to clean up the noise motion vector and speed up the PCA process.

Following the approach described in Section 2.2, optical flow vectors are regarded as sample vectors for training. Suppose that in the
training data set, there are a few images with different expressions for each subject, such as five images shown in Figure 4. Using
these images, twenty optical flow images (corresponding to twenty pairs) can be obtained through the process in Figure 13. The three
principal eigenflows of twenty optical flow images are shown in Figure 5. Obviously large motion can be observed in the region of
facial features, such as mouth corners, eyebrows and nasolabial furrows. So all the expression variations occurring in a single subject
can be represented by a space spanned by these eigenflows. In contrast, the optical flow between this subject and other subjects cannot
be represented well by this space, which results in a large residue. We call this the eigenflow residue. Similar to Section 2.2, different
subjects would result in a relatively large eigenflow residue. Thus, the eigenflow residue can be a useful feature for authentication.

Similarly eigenflows can be used to model the optical flow caused by image registration errors. In our approach, we can either synthe-
size images with registration errors from one well-registered image, or collect images with errors in the live application. By perturbing
the face cropping operation (to be explained in Section 6.1), we synthesize images with registration errors. Some of the synthesized
images are shown in Figure 6. We can see that different kinds of registration errors, such as shifts, rotations, scales, appear in this set.
Eigenflows based on them are shown in Figure 7. Again the motion vectors in eigenflows indicate the actual motion patterns appear-
ing in the training set. Comparing Figure 7 with Figure 5, we see that most motion in the former is inside the face region, such as
mouth corners and eyebrows, while in the latter, the global motion is more dominant, for example, shifting to the left-up and right-up
corner.

3.3 Linear Discriminant Analysis (LDA)

LDA is used to derive low-dimension features from a high-dimensional feature space. Essentially LDA is a feature space transforma-
tion and can be applied to two or more classes.

In face authentication, we need a good feature space, using which the subject can be clearly discriminated from imposters. So face
authentication is equivalent to a 2-class classification problem, while one class being the self class, the other being the imposter class.
When a test image comes in, we need to classify it into one of these two classes.

From the above description, both the eigenflow residue and the optical flow residue have the ability to discriminate between two
classes. We can combine the discrimination ability of these two residues using LDA. Each optical flow image can be represented as
one point in a 2-dimensional feature space where one axis represents the eigenflow residue and the other represents the optical flow
residue. One such space for a subject is shown in Figure 8. Now we utilize the LDA [13] approach to finding an optimal 1-
dimensional feature space, which can separate these two classes.

First, all the training optical flow images from Subject 0 are projected to this space, and they are regarded as the self class. Also we
project the optical flow between Subject 0 and other 1−K subjects to the eigenflow space of Subject 0, and regard them as the impos-
ter class. Now the mean and the covariance of these two classes can be estimated using (5) and (6).

LDA is carried out via the scatter matrix analysis. For a 2-class problem, the within- and between-class scatter matrices wS , bS are

computed as follows:
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where sm , im , sC , iC are the mean vectors, the covariance matrices of the self class, and the imposter class respectively. Here wS is

the within-class scatter matrix showing the average covariance matrix of sample points of two classes in the 2-dimensional space.
Similarly bS is the between-class scatter matrix, representing the scatter of two classes.

One measurement for quantifying the discriminatory power is the ratio of the determinant of the between-class scatter matrix to the
within-class scatter matrix [19]:

||

||
)(

wSw
wSw

w
w

T
b

T

J = (15)

This is called the fisher ratio, which can be maximized by solving the generalized eigenvalue problem [20]:

wwb λwSwS = (16)

Since the rank of bS is equal to 1 and wS is invertible, the projection vector that maximizes J(w) can be shown to be the following

[13].
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Once we determine the vector w , each sample in the original feature space can be transformed to a 1-dimensional space, using which
authentication can be carried out. From Figure 8, it is clear that the eigenflow residue has a better discrimination ability for these two
classes compared to the optical flow residue.

We have already shown the case of combining two sources of residue information using LDA. We also tried to combine information
from two more features, such as the Mahalanobis distance based on the universal eigenspace (introduced in Section 2.1), and the
residue in the individual eigenspace (introduced in Section 2.2). However, we found that adding those features does not improve the
performance significantly. Therefore, we did not use them in authentication.

4 Common Eigenflow-Based Face Authentication

In the approaches described above, all the training images should exhibit expression variations if the test images are expected to have
such variations. Suppose there are only neutral faces available for the training data set, but we still wish to have a face authentication
system tolerant to expression variations. The traditional PCA approach will not work well in this case because of the significant ap-
pearance differences between faces with expressions and neutral faces. To deal with this difficulty, we propose the common eigenflow-
based approach.

We observe that people exhibit similar facial motions for various expressions. Although individual details may vary slightly in
changing expressions, the facial movements should be similar. For example, when people smile, usually the mouth opens wider and
the cheek moves up. Based on this observation, the common eigenflow space is used to model possible expression variations
occurring in all subjects. Then any expression changes within one subject can be well represented by this space, which should lead to a
relatively small eigenflow residue. Also any expression changes between different subjects cannot be modeled by it, i.e., the eigenflow
residue will be relatively larger. This is the key point in accepting or rejecting the identity claim. In this approach, there are two
training stages: the eigenflow training and the LDA weights training.

Now let’s discuss how to train this common eigenflow space in the first stage. First we collect images with five kinds of expressions
for many subjects. Then for each subject, optical flows can be determined between any two expressions of that subject. Using all these
intra-subject optical flows, a common eigenflow space can be trained via PCA. The first three eigenflows are shown in Figure 9.

Another thing that should be accomplished in the training stage is the training of LDA weights. In the test stage, LDA weights are
used to combine the eigenflow residue and the optical flow residue. One choice is to train the LDA weights using the neutral training
faces. However, because those training images are all neutral, the weights obtained from LDA training may not be suitable for the
expression changes in the test set. To solve this problem, we propose an approach called common weights.
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In the eigenflow training stage, for each subject we will get a 2-class plot in the feature space, such as in Figure 8. Now in the training
stage of common weights, we can plot the 2-class plots from all subjects together. Thus, one space is formed as in Figure 10. The dif-
ference between Figure 8 and Figure 10 is that Figure 8 shows the 2-class distribution for one specific subject, while Figure 10 shows
the 2-class distribution from all subjects. Applying LDA to this new space, common weights can be obtained. These common weights
tell us how much each residue can contribute to the final measurement.

Now given any test image that claims to be Subject i, first the optical flow between the test image and the neutral training face of Sub-
ject i is calculated, then two residues are obtained, finally by using the common weights these residues can be combined into one
value, which is used for authentication.

5 Evaluation of Authentication for Multiple Users

One way to evaluate the performance of the authentication system is to plot the False Accept Rate (FAR) versus the False Reject Rate
(FRR). If a subject claim to be himself, we call it a client claim. If a subject claims to be someone else, it is an imposter claim. FAR is
the ratio of the false accepted number to the number of the imposter claims; FRR is the ratio of false rejected number to the number of
client claims. Different pairs of FAR and FRR values can be computed by setting different threshold T. Therefore, we can create a plot
of FRR versus FAR with T being an implicit parameter. Such a plot is called the Receiver Operating Characteristic (ROC) curve. It
represents the performance of an authentication system. An ROC curve closer to the axes indicates better performance.

In the traditional face authentication system, usually there is only one threshold for all the subjects. However, we can customize
thresholds for each subject. In this case, each subject will have its own individual ROC curve. Now the question is how we combine
the multiple individual ROC curves into one curve, which characterizes the performance of the whole authentication system.

Given K ROCs, one for each subject, we can combine them into one ROC using the following algorithm. We describe each ROC by
sampling False Accept points in the FAR coordinate. The sample point starts from FAR equal to 0, increases by d each time, and we
do this n times. So iFR and iFA can uniquely determine the i-th ROC curve. Since we want to find a set of thresholds to make the

combined ROC close to the origin as much as possible, let us define the problem first.

Problem Statement:
Given K ROCs, each with n+1 sample points on the curve
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In order to find ])[][min( jFAjFR ii ×+ λ , let us suppose that there is a point moving on the ROC curve. The value of

])[][( jFAjFR ii ×+λ is always changing when the point is moving. Only when the point reaches another line with a slope of λ ,

])[][( jFAjFR ii ×+ λ is minimized because all the other points on this ROC curve are to its up-right. So ])[][min( jFAjFR ii ×+ λ is the

same as finding one line, which has a slope of λ and is tangent to the i-th ROC curve. By finding each of this line in K ROC curves,
we get K pair of FAR and FRR, then average them and we get the corresponding FAR and FRR pair in the combined ROC curve. This
algorithm can also be illustrated by Figure 11. So essentially by tuning different λ , we can get combined ROC curve. Actually this
kind of combining curves method also has applications in many other fields, such as the rate-distortion techniques for video coding
[21].

We have carried out two experiments, both of which have the same experimental configuration except using different threshold meth-
ods. Here we collect a face data set, which has 13 subjects. Each one has 5 neutral training faces, 70 test images with different expres-
sions. And we use the universal PCA approach in the authentication. From Figure 14, we can see that better performance can be ob-
tained by combining individual thresholds. This means that in an authentication system with multiple users, instead of choosing a
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fixed threshold, we should adjust each subject’s threshold according to its own ROC curve. By doing this, improvement can be seen in
the performance of the whole authentication system.

6 Experiment Results

Experiments and evaluations are important parts of any face authentication system. In addition to using publicly available face data
sets, we collected different face sets specified for each experiment. Also in order to isolate the effects of facial expression variations
and registration errors, we assume that all the training and test images are captured under the same lighting condition.

6.1 The experimental setup

Before discussing the experiment results, we present some details about our algorithm. First, the face region needs to be cropped from
the whole video frame. It can be automatically accomplished by a cropping operation based on the locations of two eyes, which are
obtained from an eye-tracking algorithm [18]. As shown in Figure 12, the cropping operation consists of the following steps. Firstly
one line connects two eye locations, which is called eyes line AB. In the middle of AB, we draw another line called center line MC. It
is perpendicular to AB and has half of the length. Then the end of the center line, C, is used as the center of the face region to be
cropped. The cropped region is a square parallel to the eyes line and the center line, and its size is two times the length of the eyes line.

Given any two training images, we generate the optical flow as shown in Figure 13. First the background regions below the cheeks in
the face image are removed because the background affects the optical flow calculation, and thus interferes with the authentication. As
seen from Figure 13 (b), zero is filled into the two triangle regions in the lower part of the face square. Next, we determine the optical
flow using the Lucas-Kanade algorithm [22]. Third the optical flow is down sampled to be half of its original size in order to speed up
the PCA training and to clean up the noisy motion vectors. Finally within this smaller-size optical flow, the background and four side
boundaries are removed because usually the boundary does not result in accurate motion estimation in the optical flow algorithm. Now
the down-sampled optical flow image can be scanned into a vector, whose dimension is much lower than the unsampled one. For ex-
ample, if the original image dimension is 64×64 , the optical flow vector used for training is only 1620, about 20% of the unsampled
one. For the down sampling in two dimensions, there are several methods, such as low pass filtering and median filtering. From the
experiment, we found that applying the low pass filter (with the coefficients of ¼, ¼, ¼, ¼) to the horizontal and vertical motion vec-
tor separately yields good performance.

6.2 Individual PCA vs. universal PCA

We collected a training set including 17 subjects, with 51 face images for each subject. Each image has been registered based on the
locations of the eyes, and has the same size of 64 by 64 pixels. By using the leave-one-out method [23], 50 faces of each subject can
be utilized for training and one image for testing. Then we replace the test image with one of the training images, and repeat the train-
ing and test process. Thus, we can get 1751× client claims and 161751 ×× imposter claims.

Based on this experiment configuration, we implemented the universal PCA approach and the individual PCA approach introduced in
Section 2. Another task in comparing these two methods is to select the number of eigenvectors to be used. In both implementations,
we select the number of eigenvectors such that, the corresponding eigenvalues can capture a fixed percentage of total energy. The two
ROC curves are shown in Figure 15. From it we can see that the individual PCA method provides a better performance.

6.3 Individual eigenflow approach vs. PCA approaches

From the previous experiment, we have already seen that the individual PCA works better than the traditional PCA approach for au-
thentication. When we perform experiments involving our eigenflow-based approach, we compare its performance with both individ-
ual and universal PCA approaches. In this experiment, we want to show how the new eigenflow-based approach works when both
training images and test images have facial expression variations and registration errors. Three cases are concerned: only expression
variations, only registration errors, or both.
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6.3.1 Expression variations

The first data set has only expression variations. 13 subjects are included in this set. Each has 5 images for training, and 70 images for
testing. The reason we use more test images than training images is that we want to get a smother ROC curve. Also, only a few images
may be available for training in a practical setup. Each of the five training images represents different expressions, such as neutral,
happy, angry, sad, and surprise. All of these images are well registered by the locations of the eyes. Here we implement three
algorithms: the individual PCA approach, the universal PCA approach, and the individual eigenflow approach. From the result shown
in Figure 16, we can see that for most part of the curve, our approach yields better performance. Also the improvement is significant
compared to the universal PCA approach.

6.3.2 Registration errors

The second data set has registration variations for each subject. To synthesize the registration variations, we perturb the eye tracking
results to some extent while cropping the face region. Given one well-registered face image, we can synthesize 625 images by
cropping face regions based on 25 points around the left eye location, and 25 points around the right eye location. These images are
used for training one subject. The same method is used to generate the 625 test images except there is larger offset while selecting the
eyes’ neighbor points, which means test images have larger registration errors than training images. So all these synthesized training
images can represent different kinds of registration errors. Based on this set, the eigenflow-based approach has shown much better
performance than the PCA approach.

Actually our approach can also work on the data set, which contains real registration errors resulted from imprecise tracking of eye
locations in practical applications [18]. We collect 81 training images and 624 test images with real registration errors for one subject.
Also we have the same number of images with synthesized registration errors for the same subject. After we perform individual eigen-
flow approach for this subject, from Figure 18 we observe that a similar or even better authentication performance can be obtained in
the case of real registration errors.

6.3.3 Expression variations and registration errors

The third data set has both expression variations and registration errors. First, for each of the 13 subjects, 5 images with different ex-
pressions are obtained to be the reference images. Then, for each reference image, 624 images can be synthesized to include all kinds
of registration errors. Thus, 3125 images are collected for each subject. We also generate 3120 test images for each subject using the
same approach. However, there are two differences. First, all the test images have different expressions compared to the reference
images. Second, the test images have larger registration errors than the training images.

Since in this experiment, we have much more test images than in the previous two experiments, the denominator in computing FAR
and FRR is much larger. That is why a much smoother ROC curve can be observed from Figure 19.

6.4 Common eigenflow approach vs. PCA approaches

As described in Section 4, a lot of data should be collected for training a common eigenflow space. In the meantime, the common
weights are also obtained, which indicate how much contribution each residue can provide to the final measurement.

After that, we collected another data set, which has 13 subjects. Each one has 5 neutral training faces, and 70 test images with differ-
ent expression variations. Then based on the common eigenflow approach, each test image can yield two residue values, which are
combined into one measurement by using the common weights. Finally, we see that the common eigenflow-based approach has better
performance than the individual PCA approach. Also it is much better than the universal PCA approach.

In another experiment, the common eigenflow space is trained on a data set, which contains both facial expression variations and reg-
istration errors. After that, we collect a test data set with 13 subjects. Each has 3120 test images, which are all different in expressions
and registration errors. Using this test set, we evaluate the three approaches based on the same training set with 5 neutral images for
every subject, and show the results in Figure 21. We can see that the common eigenflow approach has much better performance than
the other two. Actually this figure shows the case that will be seen most often in practical applications.
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6.5 Face recognition based on the individual PCA

We have shown that the individual PCA outperforms the universal PCA for face authentication. We believe that this it also true for
face recognition. In order to show this, we compare results on two public databases: one is the FERET database [24], the other is the
ORL database [25]. As stated before, authentication requires only one process for one specific subject, whereas for recognition, the
same process is repeated for every subject. Thus, every authentication approach can also be used for recognition.

We extract a subset, which has 21 subjects, from the FERET database. Each subject has 10 images. For both the individual PCA and
the universal PCA approach, we use the first 5 images for training, and the remaining 5 images for testing. We found the error rate of
the individual PCA is about 12%, but the error rate of the universal PCA is 20%. In the ORL database, there are 40 subjects, each with
10 images. We use the same test scheme as the FERET data set. The error rate of the individual PCA is about 5%. However, the error
rate of the universal PCA is 12%. From these experiments, we can see that the individual PCA can achieve significant improvement in
face recognition compared to the universal PCA.

7 Conclusions and Discussions

In this paper, we introduced the eigenflow as a novel approach for face authentication tolerant to expression variations and registration
errors. Being an intensity-based approach, the eigenface method is very sensitive to expression variations and registration errors. To
solve this problem, we propose to use optical flow to determine the visual motion between pairs of face images. Then PCA is applied
to these optical flows to produce eigenvectors, called eigenflows. These eigenflows can represent the variations appearing in training
images. Based on the individual eigenflow space, two kinds of residues, the eigenflow residue and the optical flow residue, are com-
bined into the authentication measurement with LDA. We showed that, in general, individual PCA is more suitable for classification
compared to universal PCA. We also proposed an approach to optimizing and evaluating the system performance of an individual
space-based approach for multiple subjects. Different face data sets are collected for experiments. In all these cases, we have seen that
the eigenflow-based approach exhibits better performance than the traditional PCA method.

Although we applied our algorithm to face authentication, it can be used for face recognition as well. Essentially face recognition can
be accomplished by applying authentication to the unknown image with respect to each subject in the data set and then choosing the
one with the smallest difference. Also both the performance of authentication and the performance of recognition rely on the discrimi-
nation of personal identity, which is well modeled in our approach.

From the experiments, we found that the optical flow algorithm we used did not work very well in the case of abrupt motion or large
registration errors, which could also be seen from the residue image. Even with this difficulty, the eigenflow space still models the
dominant variations and shows good discrimination in the authentication performance. In the future, we will seek better optical flow
algorithms. With a better optical flow algorithm, both residues, the eigenflow residue and the optical flow residue, can be improved in
the sense of discriminative ability.

The basic idea proposed in our approach is that by explicitly modeling the “difference” between face images under different varia-
tions, better classification performance could be achieved. Our method can also been extended to model other variations that appear in
faces, such as illuminants and poses.
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Figure 1 One sample face, five reconstructed faces and five residue images.
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Figure 2 Applying optical flow on images with different expressions.

Figure 3 Applying optical flow on images with registration errors.
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Figure 4 Five expression images used for training eigenflows.

Figure 5 The first three eigenflows trained from expression images of one subject. Some prominent movements of facial fea-
tures, such as mouth corners, eyebrows, nasolabial furrows, can be seen from them.

Figure 6 Synthesized training images with registration errors.

Figure 7 The first three eigenflows trained from synthetic images of one subject. Some prominent motions, such as shifts, rota-
tions, scales, can be seen from them.
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Figure 8 The two residues shown in the feature space of one subject.

Figure 9 Common eigenflows trained from optical flows between all expression variations of intra-subject.
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Figure 10 The two classes of all subjects are plotted in one space. Common weights can be obtained by applying LDA to this
space.
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Figure 11 Combining two ROC curves into one.
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Figure 12 A face cropping operation.
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Figure 13 Four steps of getting a training optical flow: (a) Original image (b) Removing the backgrounds (c) Getting optical
Flow (d) Down-sampling optical flows and removing boundaries.
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old methods.

Figure 15 Performance comparison between the individual
PCA and universal PCA approach.
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Receiver Operating Characteristic:
Expression data set
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Receiver Operating Characteristic:
Registration error data set
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Figure 16 Experiment results on the data set with expression
variations.

Figure 17 Experiment results on the data set with registration
errors.
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Figure 18 Authentication for one subject in case of synthe-
sized and real registration errors.

Figure 19 Experiment results on the data set containing both
expression variations and registration errors.
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Receiver Operating Characteristic:
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Receiver Operating Characteristic:
Neutral - Expression and Registration

0

5

10

15

20

25

30

0 5 10 15 20 25 30
FAR(%)

F
R

R
(%

)

Common Eigenflow Approach
Individual PCA Approach
Universal PCA Approach

Figure 20 Experiment results on the neutral training set and
the test set with expression variations.

Figure 21 Experiment results on the neutral training set and
the test set with both facial expression variations and regis-

tration errors.

Figure 22 The set of 10 images from one subject in the ORL database. Considerable variations can be seen in this set.

Training Data Test Data Approach( Section )
Neutral Neutral Individual PCA (2.2)
Neutral Registration errors Individual eigenflow (3)
Neutral Expression variations Common eigenflow (4)
Neutral Expression variations & registration errors Common eigenflow (4)

Expression Expression variations Individual eigenflow (3)
Expression Expression variations & registration errors Individual eigenflow (3)

Table 1. Application cases and our approaches, the number following the approach name in the third column is the section
number in this paper.


