
 
Eigenspace Updating for Non-Stationary Process and Its Application to Face 

Recognition 
 

Xiaoming Liu1     Tsuhan Chen1∗      Susan M. Thornton 2 
 

1 Department of Electrical and Computer Engineering                       2 Sonic Foundry, Inc. 
             Carnegie Mellon University                                   12300 Perry Highway 
       5000 Forbes Ave.   Pittsburgh, PA 15213                                      Wexford, PA 15090 

           xiaoming@andrew.cmu.edu    tsuhan@cmu.edu                          sthornton@sonicfoundry.com 
 
 
 
Abstract 
In this paper, we introduce a novel approach to modeling non-stationary random processes. Given a set of training samples sequen-
tially, we can iteratively update an eigenspace to manifest the current statistics provided by each new sample.  The updated eigenspace 
is derived more from recent samples and less from older samples, controlled by a number of decay parameters.  Extensive study has 
been performed on how to choose these decay parameters.  Other existing eigenspace updating algorithms can be regarded as special 
cases of our algorithm.  We show the effectiveness of the proposed algorithm with both synthetic data and practical applications for 
face recognition. Significant improvements have been observed in recognizing face images with different variations, such as pose, 
expression and illumination variations.  We also expect the proposed algorithm to have other applications in active recognition and 
modeling. 
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1 Introduction ∗  
 
The principal component analysis (PCA) [1] has attracted 
much attention among image analysis researchers. The basic 
idea is to represent images or image features in a transformed 
space where the individual features are uncorrelated. The or-
thonormal basis functions for this space, called the eigenspace, 
are the eigenvectors of the covariance matrix of the images or 
image features. PCA gives the optimal representation of the 
images or image features in terms of the mean square error.  
 
PCA has been used extensively by researchers in many fields, 
such as data compression [2], feature extraction [3], and object 
recognition [4]. One of the successful applications of PCA is 
introduced in [5] and later made popular by Turk and Pentland 
[6]. They projected a face image into an eigenspace that is 

trained from all the images of multiple subjects, and per-
formed face recognition in this eigenspace.   

                                                 
∗  Corresponding author. Tsuhan Chen, Department of Electri-
cal and Computer Engineering, Carnegie Mellon University, 
5000 Forbes Ave.   Pittsburgh, PA 15213-3890, U.S.A. Tel.: + 
1-412-268-7536, fax: + 1-412-268-3890. 

 
There are mainly two kinds of approaches to training the ei-
genspace in the literature. The first approach is to compute the 
eigenvectors given a set of training samples simultaneously, 
which we refer to as batch training. In this approach, PCA can 
be computationally intensive when it is applied to the image 
domain. The power method [7] is one approach to efficiently 
determining the dominant eigenvectors. Instead of determining 
all the eigenvectors, the power method obtains only the domi-
nant eigenvectors, i.e., eigenvectors associated with the largest 
eigenvalues. Researchers have explored how to perform PCA 
more efficiently. Turk and Pentland [6] proposed to calculate 
the eigenvectors of an inner-product matrix instead of a co-
variance matrix, which is efficient in the case that the number 
of training samples is less than the dimension of the feature 
space. The second approach is to iteratively re-calculate the 
existing eigenvectors by taking the training samples one by 
one, which is called eigenspace updating, proposed for its 
computational efficient compared to the batch training ap-
proach [8]. A few other researchers have proposed different 
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eigenspace updating methods [9][10][11], and suggested some 
interesting applications, such as salient view selections [11].  
 
PCA is originally created to model multidimensional random 
variables. When extended to modeling random processes, tra-
ditional PCA works well as long as the random process under 
consideration is stationary. For non-stationary random proc-
esses, PCA needs to be adapted to model the time-varying 
statistics. To some extent, existing eigenspace updating meth-
ods [8][9][10][11] already accomplish this implicitly, because 
they all try to compute eigenvectors iteratively as samples 
come in one by one.  In this paper, we propose a new eigen-
space updating method to consider non-stationary random 
processes explicitly by modifying these methods in the litera-
ture. In particular, our method puts more weights on recent 
samples than on older samples by using certain decay parame-
ters, while traditional methods consider all samples equally 
and hence cannot effectively represent the most recent statis-
tics of the data. Effectively these decay parameters function as 
forgetting factors for older samples. We have also studied how 
to choose the decay parameters to model the time-varying 
statistics in the least mean squares sense.  
 
For decades human face recognition has been an active topic 
in the field of object recognition. A general statement of this 
problem can be formulated as follows: given still or video 
images of a scene, identify one or more persons in the scene 
using a stored database of faces [13]. There are mainly two 
kinds of face recognition systems: the feature matching-based 
approach and the template matching-based approach. In the 
latter, applying PCA to obtain a face model (also known as the 
eigenface approach [6]) plays a fundamental role. It has good 
performance for the case of frontal face recognition with rea-
sonable constraints on illumination, expression variations, etc. 
However, in practical applications, when large variations, 
which may be due to aging, changes in expressions and poses, 
and variations caused by illumination, etc., appear in the test 
face images, the traditional PCA algorithm degrades quickly 
in performance. Although some methods in the literature work 
well for the specific variations being studied, their perform-
ance degrades rapidly when other variations are present [14]. 
In order to approach this general problem, we propose an up-
dating-during-recognition scheme, which tries to make the 
recognition system more intelligent by learning the variations 
over time using the test images. In this paper, we utilize our 
eigenspace updating method to learn the time-varying statis-
tics of the face images and eventually enhance the recognition 
performance. We use the individual PCA approach [15][16], 
instead of the universal PCA approach [6], as a baseline of our 
face recognition system. 
 

1.1  Previous works 
 
The eigenspace updating has a number of advantages. First, 
using the updating algorithm, we can determine the eigenvec-

tors more efficiently than the batch training approach [8]. Sec-
ond, the updating algorithm allows the construction of the 
eigenspace via a procedure that uses less storage, so it renders 
feasible some previous inaccessible problems, such as the 
training of a huge image data set [10]. Third, the availability 
of the training data may be constrained in some applications, 
such as online training [11]. In that case, we have to iteratively 
perform PCA instead of waiting for all the training data to be 
available.  
 
Murakami and Kumar [8] proposed the first eigenspace updat-
ing algorithm. They iteratively generated the covariance ma-
trix or the inner-product matrix and calculated the eigenvec-
tors whenever there is a new training sample. Chandrasekaran 
et al. [11] proposed an eigenspace updating algorithm by per-
forming the Singular Value Decomposition (SVD) on the data 
matrix, instead of the covariance matrix. They showed the 
effectiveness of their algorithm in the 3D object representation 
from 2D images, which is useful in active recognition and 
exploration. Levy and Lindenbaum [9] also proposed an SVD-
based eigenspace updating method by using QR decomposi-
tion to reduce computation and memory demand. They also 
pointed out the option of using forgetting factors for an image 
sequence. However, these three methods have limitations 
when used for classification because they assume that the sam-
ples have zero mean. Hall et al. [10] addressed this issue and 
proposed an eigenspace updating method where the mean is 
updated based on existing samples, and removed before PCA 
is performed on the covariance matrix. They showed that for 
classification, better performance could be obtained by their 
approach compared to those in [8][11]. Hall et al. [12] also 
proposed an algorithm to efficiently merge and split ei-
genspace models. All of these existing eigenspace updating 
methods, original designed to model the statistics of random 
vectors, also work for stationary random processes. They, 
however, cannot handle non-stationary processes to represent 
the time-varying statistics effectively, which is what our pro-
posed algorithm tries to address. 
 
Some researchers have tried to utilize the information pro-
vided by the new data when the system is being used to en-
hance the performance of face detection and tracking 
[17][18][19][20]. For example, Kurita et al. [17] iteratively 
updated the prior probabilities of the face location in the pre-
vious frames, which can guide and speed up the face detection 
on the current frame. Edwards et al. [18] described a method 
of updating the first order global estimation of the identity, 
which was integrated with an optimal tracking scheme. Wu et 
al. [19] proposed to build a subspace representation via the 
Gram-Schmidt orthogonalization procedure for the purpose of 
video compression. Weng et al. [20] proposed to incremen-
tally derive discriminating features from training video se-
quences. Compared to these prior works, our work extends the 
idea of updating to face recognition and results in an updating-
during-recognition scheme. 
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In many applications, PCA is applied directly to the image 
domain, such as face recognition. Suppose the face image has 
a size of 32 by 32, then the covariance matrix of an image set 

1.2  Paper outline 
 
In Section 2, we introduce our eigenspace updating algo-
rithms. Two algorithms aimed at different application scenar-
ios are presented in detail. When PCA is applied to a high-
dimensional image domain, we use the algorithm based on 
updating an inner-product matrix. Otherwise, an algorithm 
based on updating a covariance matrix can be used. 
 
In our eigenspace updating method, the decay parameters play 
a key role on how well the time-varying statistics can be mod-
eled. Thus in Section 3, we theoretically and experimentally 
show how to choose the decay parameters based on the knowl-
edge of model statistics.  
 
In Section 4, we address the issue of iteratively updating the 
individual eigenspace for face recognition. Given one test im-
age, we can use it to update the eigenspace when we have high 
confidence for its recognition result. Also we propose to use a 
twin-subspace scheme to alleviate some limitations and en-
hance the face recognition performance. 
 
Experimental results using eigenspace updating methods are 
presented in Section 5. We conduct experiments on face data-
bases containing different variations, such as poses, expres-
sions and illuminations. We show that better performance can 
be obtained in these applications by using our eigenspace up-
dating method.  
 
In Section 6, we discuss the related issues for our work, such 
as the video-based recognition and the high order statistical 
model for face sequences. We provide conclusions in Section 
7. Also in the appendix we compare our mean estimation algo-
rithm with the Kalman filter [21]. 
 
2 Eigenspace updating with decay 

2.1 Updating based on the covariance ma-
trix 

 
Suppose there is a random process { }, where n is the time 
index,  is a column vector in a d -dimensional space, of 
which we want to find the eigenspace. Each sample will be 
available sequentially over time. If this random process is sta-
tionary, we can estimate its mean by the following equation: 
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If { } is a non-stationary random process, which implies 
that it has a time-varying mean m , we propose to estimate 
the mean at time  as: 
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where mα  is the decay parameter. It controls how much the 
previous samples contribute to the estimation of the current 
mean. Since mα  is in the range of 0 to 1, we have: 
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Using (2) in (1), the resulting equation can be simplified to: 

      m nmnmn xm )1(ˆˆ
1 αα −+= −                          (3) 

 
This equation reveals that based on the current sample and the 
previously estimated mean, we can obtain the new estimated 
mean in a recursive manner. How to choose mα  mainly de-
pends on the knowledge of the random process. Note that mα  
controls how fast we want to forget about the old samples.  
Therefore, if the statistics of the random process change fast, 
we choose a small mα . If the statistics change slowly, a large 

mα  may perform better. In the next section, we will introduce 
how to choose these decay parameters based on the statistical 
knowledge of the samples. 
 
After the mean of the random process has been estimated, we 
can estimate the covariance matrix, , at each time  by: nĈ n
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where vα  is also a decay parameter, which is chosen based on 
how fast the covariance of a random process is changing. Now 
we can rewrite C  in a similar manner as : n

ˆ
nm̂

                          (4) T
nnnnvnvn )ˆ)(ˆ)(1(ˆˆ

1 mxmxCC −−−+= − αα
 
Since we obtain C  at time , we can perform PCA for C  
and obtain the corresponding eigenvectors. We keep N  ei-
genvectors corresponding to the N  largest eigenvalues. In the 
recursive updating process, we only need to store the mean 
vector  and the covariance matrix C . All the previous 
training samples can be discarded. 

n
ˆ n n

ˆ

nm̂ n
ˆ

 

2.2 Updating based on the inner-product 
matrix 

 

  



would be 1024 by 1024. It is very inefficient to store and up-
date it using the algorithm introduced in Section 2.1. To solve 
this problem, we propose an updating algorithm based on the 
inner-product matrix. 
 
Suppose at time n , we already have performed PCA for the 
random process at time n . Thus we have eigenvectors, 

, and eigenvalues, , of the covariance matrix, C . 
We can write: 
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where eigenvalues, , have been sorted in the decreasing 
order and the superscript (  indicates the order of eigenval-
ues. By retaining only the first Q  eigenvectors (with the larg-

est eiegnvalues), we can approximate C  as                       

           (5) 
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The criteria for choosing Q  vary, and depend on practical 
applications. We have tried three methods: (a) Fix Q  to be a 
constant value; (b) Set a minimum threshold, and keep the first 

 eigenvectors whose eigenvalues are larger than this thresh-
old; (c) Keep the eigenvectors corresponding to the largest 
eigenvalues, such that a specific fraction of energy in the ei-
genvalue spectrum is retained. These methods result in differ-
ent computational complexity for the updating algorithm. 

Q

 
Now we can use (3) to estimate the mean at time n . By sub-
stituting 1

ˆ
−nC (4) with (5), we obtain    
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An equivalent formulation as above is that 
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Based on the B  matrix, an inner-product matrix can be for-
mulated as 

n
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Furthermore, A  can be described by the following equations: n
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Since the matrix A  is usually a small matrix with the size of 
 by , we can determine its eigenvectors ψ  by a 

direct method, which satisfies 
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By pre-multiplying (8) with , we obtain the eigenvectors of 

matrix  as follows: 
nB

nĈ

where the term 2
1

)( −i
nλ  is to make the resulting eigenvector to 

be a unit vector. Now we summarize the iterative updating 
algorithm outlined in this section: 
 
Initialization: 

1. Given the first two samples x , , estimate the 
mean, , by (3), and construct the matrix  

0 1x

1m

[ ])ˆ()ˆ( 11101 mxmxB −−= vα  
2. Based on (8) and (9), we can get the eigenvector, , 

and the eigenvalue, 
1φ

1λ . 
Iterative updating: 

1. Get a new sample . nx
2. Estimate the mean, m , at time  by (3), and get the 

 matrix from (6). 
n

ˆ n

nB
3. Form the matrix A  by (7) and calculate its eigen-

vectors, , and eigenvalues, 
n

nψ nλ , by a direct 
method. 

4. Sort the eigenvalues nλ , and retain Q  corresponding 
eigenvectors. 

5. Obtain the eigenvectors, φ , at time  by (9). n n
 
We have mentioned three methods of choosing Q . If we use 
the second and the third methods, Q  will increase as more and 
more training samples arrive till it reaches the intrinsic dimen-
sionality of previous training samples. Due to the approxima-
tion in (5), among the Q  eigenvectors, typically the first few 
eigenvectors are more precise than the others. Therefore, in 
practice if we need N  eigenvectors for building an eigen-
space, we would keep Q  to be a number larger than . N
 

2.3 An example with synthetic data 
 
In this section, we want to show that our updating algorithm 
can better model the statistics of a non-stationary random 
process, than the traditional eigenspace updating algorithms 
without decay parameters. 
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We generate 720 samples with a 2-dimensional Gaussian dis-
tribution, whose mean is zero and variances in the horizontal 
and vertical direction are 1 and 7 respectively. If we associate 
each sample with a time index, we can obtain a random proc-
ess. For each random variable in this random process, we in-
crementally rotate it by a certain degree in the 2-dimensional 
space, and move its mean along the line, yx = . The first ran-
dom variable rotates 0 degree, the last one rotates 90 degree, 
and all the others rotate in between. In other words, the syn-
thetic data have the following statistics:   
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One example of this synthetic data is shown in Figure 1. We 
can see that the cluster of data keeps rotating and moving 
away from the origin over time. 
 
We use the algorithm introduced in Section 2.1 to update the 
eigenspace, and show the estimation results of the mean com-
pared to the ground truth in Figure 2. The traditional updating 
algorithm without decay parameters is also applied on the 
same data. We can see from Figure 2 that its estimation is 
much worse than our estimation. When the eigenspace is up-
dated by a new random variable, we calculate the orientation 
of the first eigenvector with respect to the horizontal coordi-
nate. Ideally the orientation should change from 90 degree to 0 
degree according to the time coordinate. As shown in Figure 
3, our algorithm can successfully estimate the statistic of the 
time-varying random process. However, if we apply the tradi-
tional method without decay parameters on the same data, the 
resulting orientation is around 45 degree because it considers 
all the previous samples equally. The traditional method works 
well in the beginning as it removes the mean as well. How-
ever, it quickly becomes worse because neither the mean nor 
the variance updating uses the decay parameters. 
 

 
Figure 1 A synthetic random process. 

 

 
Figure 2 Estimation of the mean for a random process. 

 

 
Figure 3 Estimation of the variance for a random process.  
 
3 Choosing the decay parameters 
 
In the proposed eigenspace updating algorithm, we need to 
specify the decay parameters for both the mean estimation and 
the variance estimation. In practice, for a recognition system, 
there is usually a cross validation data available before the 
testing stage of the system. Thus based on the cross validation 
data, the optimal decay parameters specific to the application 
could be obtained by exhaustive search within the valid range, 
0 and 1. If there is no cross validation data available, how do 
we determine decay parameters? We will answer it in this sec-
tion. 
 
Motivated by the Kalman filter, we model the time-varying 
mean and variance as autoregressive (AR) random processes 
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with certain parameters. Now the problem becomes, based on 
the models and the parameters, how do we find the optimal 
decay parameters without exhaustive search? We will address 
the mean estimation and the variance estimation separately. 

 

3.1 Decay for mean estimation 
 
Consider the model in Figure 4, where the sample, x , is a 
scalar and generated by an AR(1) random process plus a white 
noise, v .  

n

n

                                                 (10)  nnn vmx +=
where the observation noise, v , has zero mean and the vari-
ance of 

n

r . The AR(1) process is generated by the following 
equation: 
          m nnn wm += −1ρ                        (11) 
where the white noise, , has zero mean and the variance of 

. Based on the above two equations, we can see that  and 
 have the same mean. Given , we can estimate its mean 

at each time instant by estimating the mean of m  at that time 
instance, which is denoted as . 
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Figure 4 AR(1) model for observed samples 

 
We consider that the mean is estimated via:  
                                  m nmnmn xm βα += −1ˆˆ                        (12) 
where mα  and mβ  can take on any values between 0 and 1. 
Note that (12) is basically the same as (3) without the con-
straint that mm αβ −=1 . Removing this constraint allows us a 
more comprehensive study for choosing the decay. 
 
Now the problem becomes to find the optimal mα  and mβ , 
which can make the m as close to m  as possible. Let us de-
rive it by minimizing the estimation error, . 
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In order to have an explicit formulation for p , we let h  be 
zero, i.e., 
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we obtain the optimal value for mβ : 
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Based on (14), the optimal value for mα  is the following: 
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We can see that as ρ  increases, both mα  and mβ  increase. 
However, mα  increases faster than mβ  since there is one more 
term of ρ  in the denominator of mβ . This means that as the 
random process changes more and more slowly, i.e., ρ  gets 
larger and larger, the previous estimate, m , should contrib-
ute more and more to the current estimate.  

1ˆ −n

 
In order to show the effectiveness of our choice of decay pa-
rameters, we perform an experiment based on synthetic data. 
First, we synthesize a set of random processes using the AR(1) 
process in (10) and (11). By taking these processes as observa-
tion samples and assuming we know the parameters in the 
AR(1) process, i.e., ρ , r and , we can perform exhaustive 
search to find the optimal decay parameters which can gener-
ate the minimum estimation error. Also by using of (17) and 
(18), we calculate the decay parameters for our estimate. From 
Figure 5, we can see that our decay parameters are very close 
to the optimal decay resulting from exhaustive search.  

q

 
All the above derivation works in the scalar case. When the 
sample, , is a vector, we can obtain the same results if we 
assume each element of X  is independent. In the appendix, 
we will compare the estimation performance between our es-
timate and other estimates, such as the Kalman filter and ex-
haustive search, in terms of estimation errors. 

nX

n
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ρρ  

ρρ  
Figure 5 Optimal decay parameters vs. our estimated de-

cay parameters (top: r/q=3; bottom: r/q=1) 
 

3.2 Decay for variance estimation 
 
Similar to the mean estimation, we study the case when the 
observation, , is in the scalar form and it can be modeled as: nx

            nnn vcx =                                         (19) 
 
Here the white noise, v , has zero mean and variance of one. 
Thus  becomes the variance of x , and we assume c  is 
generated from an AR(1) random process using (11). 

n

nc n n

 
Now the problem becomes given an observation sequence, , 
estimate its variance, c , based on the parameter of the AR 
process,

nx

n

ρ , and the variance of the white noise , . Similar 
to our previous section, in our estimate, we use two parame-
ters, 

nw q

vα  and vβ , to combine the information from the previ-
ous estimate, , and the current sample, .  1ˆ −nc nx

                                          (20) 2
1ˆˆ nvnvn xcc βα += −

 
In order to find the optimal vα  and vβ , we can derive it by 
minimizing the estimation error. However, it turns out we 
need to make a very strict constraint in the derivation in order 
to obtain an explicit result. Experimentally, we found that the 
estimation performance of the derived result under this strict 
constraint is not satisfying. Thus we want to solve this prob-
lem by an empirical method. 
 
Basically two parameters will affect the selection of decay 
parameters. The first one ρ , the parameter of the AR process, 
defines how fast the variance c  changes over time. Since in 
most applications the variance does not change too fast, we 
study the case where 

n

ρ  is between 0.6 and 1. The second one 
, the variance of the white noise w , defines how much 

variability the variance itself will have over time. The larger 
, the larger range the variance will vibrate. In our experi-

ments, we change these two parameters, and observe the cor-
responding effect on the optimal decay parameters.  

q

nw

n

 
By fixing the above two parameters, we can synthesize the 
ground truth c  and observation samples, . The optimal 
decay parameters in the sense of minimal estimation error are 
obtained by exhaustive search. Now changing the 

n nx

ρ  to be 
other values, synthesizing data and performing estimation 
many times, we found the optimal vα  and vβ  actually change 
very little, which means they are basically unaffected by ρ . 
For a fixed q , by tuning different ρ , we can obtain both the 
mean and variance of the optimal vα  and vβ . By varying q  
from 25 to 10000, we can obtain four curves according to the 
above four statistics. We show the results in Figure 6, where 
the horizontal axis represents the square root of q . From this 
figure, we can see that even though the square root of  varies 
over a large range, the optimal decay parameters do not 
change significantly. The same experiment can be performed 
by fixing q  and varying 

q

ρ . We plot the resulting optimal 
decay parameters according to different ρ  in Figure 7. Thus a 
good choice of our estimate is to choose the mean of optimal 
decay parameters as the value of vα  and vβ , where vα =0.85 
and vβ =0.13; 
 
We now conduct an experiment to compare the estimation 
performance of different approaches. In Figure 8, we show the 
estimation performance of four approaches according to dif-
ferent ρ . The first one is exhaustive search by constraining 
that vα  and vβ  sum to one. The second one is also exhaustive 
search, but both the optimal vα  and vβ  are searched in the 
range of 0 and 1. The third one is the sample variance, which 
is calculated from all the samples with equally weighting. The 
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last one is our estimate where two fixed decay parameters are 
used. From this figure, we can see that vα  and vβ  summing 
to one is not a bad constraint since the performance is only 
slightly worse than the unconstrained case. Also, when ρ  is 
large, which indicates the variance changes slowly, our esti-
mate works much better than the sample variance. But when 
the variance changes too fast, sample variance turns out to be 
better than ours because it is harder to estimate the variance 
for each time instance. Actually in practical applications, the 
variance tends to change slowly, where ρ  is closer to 1. Simi-
lar to the mean estimate, when the samples are in the form of 
vectors, we can obtain the same results by extending our esti-
mate to the vector form. 

q

 

q
 

Figure 6 Optimal decay parameters for the different stan-
dard deviation of the white noise. 

 

ρρ
 

Figure 7 Optimal decay parameters for different ρ  
 

ρρ  
Figure 8 Results of the variance estimation 

 

4 Face recognition based on updating 
individual PCA 

 

When applied to face recognition, the proposed eigenspace 
updating algorithm results in an updating-during-recognition 
scheme.  That is, the eigenspace for each subject is updated by 
test images while each of them being recognized.  There are 
two reasons for doing this. First, in many applications it is not 
feasible to capture many training images for each subject con-
taining enough variations for statistical modeling of that sub-
ject. Usually only a few images under the normal condition are 
available for training. Thus, it would be better if more and 
more images of that subject are used to update its model dur-
ing the testing stage. Secondly, people change their appear-
ance over time. Even if there are many images available for 
training, the system may not recognize faces when a subject 
changes the appearance due to aging, expression, pose, and 
illumination changes. A recognition system that is able to 
learn the changing appearance of the subject and adapt to it 
can achieve better performance.  
 
In using our updating method for face recognition, we assume 
the test images are from a face sequence and there is continu-
ity between consecutive frames. In the next subsection, we 
introduce the scheme based on updating a single eigenspace 
model for each subject. Since this approach may suffer from 
slow learning, in Section 4.2 we also propose a twin-subspace 
scheme to alleviating this problem. 
 

4.1 Single subspace updating scheme 
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Given a set of face images from K subjects for training, each 
subject has one individual eigenspace trained from his/her 
own images. When a test image arrives, it is projected into 
each individual eigenspace and assigned to the one that gives 
the minimal residue, which is defined by the difference be-
tween the test image and its projection in the eigenspace.  
 
Now we need to decide whether to update the eigenspace 
model of the recognized subject, using the test image. First, by 
comparing the minimal residue with a pre-defined threshold, 
we can see whether the current model can represent the test 
image well. If it does, we do not perform updating since this 
test image does not bring enough new statistical information 
for the model. Second, we calculate the confidence measure as 
the difference between the residue of the second candidate and 
the residue of the top candidate. Then the confidence measure 
is compared with another pre-defined threshold. If the confi-
dence measure is larger than the threshold, this test image is 
utilized to update the assigned eigenspace using our updating 
method. Basically the larger the confidence measure, the more 
confidence we have about the current recognition result. Thus 
as time goes on, the eigenspace will adapt to the most recent 
statistics of the subject’s appearance, and be able to recognize 
more “new looking” images from that subject.  
 
One risk in this approach is that sometimes the eigenspace 
model is not updated by the test images with new appearance 
because of not-high-enough confidence measures, while in the 
same time the test images keep showing new appearances. In 
this case, it is likely that the test images will not be correctly 
recognized because they show different appearance as the cur-
rent model, which only represents out-of-date appearances. 
This is the problem with slow learning, i.e., the model does 
not learn fast enough in order to recognize the test images with 
new appearances. To alleviate this problem, we introduce the 
twin-subspace updating scheme in the next subsection.   
 

4.2 Twin-subspace updating scheme 
 
In this scheme, we train two subspaces, the static model and 
the dynamic model, for each subject. The static model is 
trained from the original training images of that subject, and 
the dynamic model is updated from the test images during the 
testing stage.  
 
When one test image arrives, we calculate its residue to both 
subspaces for each subject. Then the smaller residue is consid-
ered as the distance between the test image and that subject. 
Eventually the test image is recognized as the subject with the 
minimal distance. The same as the previous section, we also 
make the decision of updating based on two thresholds. The 
first threshold filters out the test image without enough varia-
tions with respect to the current model. The second threshold 
is compared with the confidence measure, which is the differ-

ence between the top candidate and the second candidate in 
terms of distance. Test images with low confidence in its rec-
ognition result are rejected from being used for updating. In 
this scheme, only the dynamic model is updated by the test 
images, and the static model will never be changed once it is 
trained from the original training images. As illustrated in 
Figure 9, each one of the K subjects has two models, the static 
one, , and the dynamic one, . The residues r  
are calculated as the distances between the test sample and 
each model. In this case Subject 2 is the recognition result 
because it has the minimal distance r . Suppose Subject k is 
the second candidate. The confidence measure r  is 
then utilized to decide whether this test sample will be used to 
update the dynamic model of Subject 2, . 
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Figure 9 Testing of the twin-subspace updating scheme 

 
The main reason we propose this updating scheme is to cap-
ture different aspects of facial appearance. That is, the static 
model is used to capture the subject’s more intrinsic appear-
ance based on training images, while the dynamic model is 
used to capture the time-varying statistics of the appearance. 
The second reason is to deal with the slow learning problem. 
Because there are two models for each subject during testing, 
even the test image might not match well with the dynamic 
model because of the slow learning in the dynamic model, it is 
still possible that the static model will match with the test im-
age and let the test image update the current dynamic model. 
Thus the dynamic model can learn the time-varying statistics 
and benefit future recognition. 
 
In practice, many factors decide whether we should use the 
single subspace scheme or the twin-subspace scheme. For 
example, we should use the single subspace scheme when 
there is small amount of variations in the test images. Also, 
when we need to deal with the recurrent type of variations, 
such as pose, expression, illumination, and facial hair varia-
tions, we should use the twin-subspace scheme. While for 

  9 



non-recurrent type of variation, such as aging, the single sub-
space scheme would be more proper because only the most 
recent statistics, which are captured by the dynamic model, are 
useful for future recognition. 
 

5  Experimental results 
 
We conduct experiments on face data sets that contain differ-
ent variations, such as poses, illuminations and expressions. 
We will show that for all these variations, our algorithm can 
achieve much better performance than methods without updat-
ing, because we can model variations in a subject’s appear-
ance over time and thus improve the recognition performance. 
The methods we compare with are the individual PCA method 
without updating, and traditional eigenspace updating without 
decay.  
 
In practical applications of face recognition, the human face 
usually undergoes different kinds of variations, most of which 
come from the pose, expression, illumination and the combi-
nation of them. In order to show the effectiveness of our algo-
rithm in dealing with these variations, experiments are con-
ducted on data sets with these three types of variations. 
 

5.1 Pose data set 
 
We collect a face database with 20 subjects. Each subject has 
10 training images. The test images for each subject come 
from a video sequence, where the subject continuously shows 
different poses. Both the test and training images are of 32 by 
32 grayscale images. There are 210 test images within one 
sequence for each subject. In Figure 10, we show sample face 
images from six subjects in this data set, where the images in 
the same row belong to the same subject. A lot of pose varia-
tions can be observed from this data set. Also notice the regis-
tration error in some images.  This is a very challenging data 
set for face recognition. 
 
We show the experimental results in Figure 11. The horizontal 
axis shows the index of the test images, and the vertical axis 
shows the recognition error rate based on the number of test 
images so far. We perform experiments on different random 
orders of the test sequence, and show the average of them in 
the figure. Three algorithms have been tested on this data set. 
The first one is the individual PCA method, which works 
worst because there is no updating involving during the testing 
stage. The second is our updating method with dynamically 
estimated decay parameters, which has better performance 
than the individual PCA method. The third one is our twin-
subspace method. It has significant improvement compared to 
the other two methods since it models the statistics more com-
prehensively for the changing appearance over time.  

 
In the previous experiment, we do not use eigenvectors in con-
structing the eigenspace for each training subject. So basically 
only the mean is used for recognition. Because the number of 
eigenvectors will affect the recognition performance, we also 
perform experiments with different numbers of eigenvectors. 
Table 1 shows the recognition error rates with respect to dif-
ferent numbers of eigenvectors used in constructing the indi-
vidual eigenspace. Among these three methods, our twin-
subspace method has the best performance and the individual 
PCA works the worst. From this experiment we can see that a 
proper updating method will work better than a non-updating 
method in face recognition. Also the twin-subspace method is 
a promising approach to dealing with large variations, such as 
poses in this data set. 
 

 
 

Figure 10 Sample images of face sequences showing differ-
ent poses 
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Figure 11 Experimental results on the pose data set.  
 
Table 1 Recognition error rate with different numbers of 

eigenvectors 
Number of eigenvectors 0 2 4 6 
Individual PCA method 27.88% 19.62% 16.43% 14.76%
Our method with dynamic 
decay  18.57% 10.67% 8.49% 6.87% 

Our twin-subspace method 5.77% 4.83% 4.15% 3.98% 
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5.2 Expression data set 
 
We collect another face database with 30 subjects. Each sub-
ject has 5 training images and 70 test images. Each image is of 
the size of 32 by 32 pixels. The test images for each subject 
come from a video sequence, where the subject shows varying 
expressions. The sample images from six subjects are shown 
in Figure 12. We use the same test scheme as the pose data set. 
The result is shown in Figure 13. We try both using fixed de-
cay parameters and tuning the decay parameters dynamically 
according to the changing statistics over time. Here we use the 
AR(1) random process as the model for face sequences.  In all 
three methods we only update the mean and do not use any 
eigenvectors. 
 
From this experiment we see that updating methods with de-
cay parameters have better performance than the updating 
method without decay. Also dynamically tuning decay pa-
rameters during the testing stage enhances the modeling of 
time-varying statistics and hence improves the recognition 
performance. 
 

 
 

Figure 12 Sample images from the expression data set. 
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Figure 13 Experimental results on the expression data set. 
 

5.3 PIE database 
 
In this experiment, we use a subset of the CMU PIE database 
[25], which has 7 subjects. Each subject has 24 images, which 
have the size of 64 by 64 pixels, showing the same expression 
and pose while under continuous varying illuminations. We 
use 3 images for training and the remaining 21 images for 
testing. One eigenvector is used for building eigenspace for 
each subject. Part of the test images from one subject are 
shown in Figure 14. The experimental result shown in Figure 
15 also indicates that our approach can achieve better per-
formance compared to others.  
 

 
 

Figure 14 Images of one subject from PIE database. 
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Figure 15 Experimental results on the PIE database. 
 
6 Discussions 

6.1 Frame-based and video-based recog-
nition  

 
While in Section 5 we treat each test image independently and 
perform a frame-based recognition, we can also do a video-
based recognition in the following two applications scenarios. 
One is that we recognize the human from the video sequence 
in an online fashion and do not know when the subject will 
leave or another subject will come in. In this case, we need to 
know the recognition results up to the current frame immedi-
ately. Many online recognition and verification systems of 
human faces belong to this case. We call this scenario as 
online video. The other is that we could offline process the 
video content, such as indexing of the meeting records or ana-
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lyzing surveillance videos, where we are interested in the rec-
ognition results after all the frames of one sequence have been 
captured. This is called offline video. We illustrate these sce-
narios in Figure 16. 
 
For the online video, by using a face-tracking program [24], 
we can keep tracking human faces and crop the face region for 
recognition. With the face tracking, we also know whether the 
current frame and the previous frames belong to the same sub-
ject. An intuitive idea is to use majority voting to see which 
subject is mostly recognized among all the previous frames. 
Then a decision will be made on whether using the current 
frame to update the eigenspace. For the case of the offline 
video, we can still use the updating based on the majority vot-
ing in processing frames one by one. However, as shown in 
the third row of Figure 16, once a sequence has done with the 
recognition, we can use all the frames in this sequence to up-
date the eigenspace of the most recognized subject, while this 
is not feasible in the online video case because it needs to 
store all the previous frames in one sequence.  We have also 
performed experiments for both the online video and the off-
line video cases, and the result shows that for the same data-
base, the recognition performance can be significantly im-
proved by using the video-based recognition.  
 

Frame-based

0

1

K-1

Online video

Offline video

Frame 1 Frame j

Recognized as Subject 1, update
the eigenspace of Subject 1

Recognized as Subject 1, update
using the whole sequence

Recognized as Subject 1, update
the eigenspace of Subject 1

 

Figure 16 Three application scenarios. 
 

6.2 AR(k) process for decay estimation 
 
In Section 3, we solve the problem of determining decay pa-
rameters given the parameters of AR(1) process. However, in 
face recognition application, given a face sequence, how can 
we apply the theory in Section 3 on it, i.e., how can we deter-
mine whether a face sequence can be approximated by AR(1) 
or high order AR process; how do we estimate the parameters 
for an AR process? 
 
The answer to the above questions involves two steps before 
applying our updating algorithm on the face sequence. One is 

model selection. The other is model fitting. Model selection 
determines  in an AR(k) process. Model fitting estimates the 
parameters in a specific AR(k) process. There are many exist-
ing techniques to solve these two problems in the signal proc-
essing literature [26]. For example, model selection can be 
done by finding k  where the synthesized AR(k) is similar to 
the original signal in terms of statistics. Table 2 shows the 
corresponding model parameters by assuming five face se-
quences as AR(k) random processes with k equals to 1 or 2. 
We found for most face sequences with expression variations, 
AR(1) is a good statistical model, while for face sequences 
showing pose variations, some of them might need AR(2) to 
model them. 

k

 
Table 2 Model parameters for real face sequences 

Face        
sequences 

Expres-
sion 1 

Expres-
sion 2 

Expres-
sion 3 

Pose 1 Pose 2 

ρ  in AR(1) 0.9998 0.9998 0.9998 0.9975 0.9998 

1ρ  in AR(2) 0.9997 0.9997 0.9502 0.9982 0.9347 

2ρ  in AR(2) 0.1084 -0.0209 -0.0158 0.3283 0.5659 
 
In Section 3, we assume that the observation samples come 
from the noised version of the AR(1) random process. How-
ever, what happen if the samples are actually intrinsic high 
order AR process, for example, AR(2) random process? In this 
case, how do we derive the relation between the model pa-
rameters, qr,,, 21 ρρ , and the decay parameters, mα , mβ ?  
 
First of all, we can separate an AR(2) random process into two 
AR(1)-like random processes as follows: 
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This is also illustrated in Figure 17. Now if we compare two 
AR(1)-like random processes with the AR(1) random process 
in Figure 4, we can see that u  plays the similar role as w  in 
Figure 4. Thus given an AR(2) random process, we can calcu-
late the variance of u  and treat it as q . Then by using 

,

n n

n

q r and 2  in (17) and (18), we can obtain the decay 
parameters. Similarly for an AR(k) random process, we can 
separate it into two parts: an AR(k-1) random process and an 
AR(1)-like random process, where the former contributes the 
noise signal for the latter. 

 p

 
One difference in solving decay parameters for AR(1) and 
AR(2) is that, u  is not a white noise while  being a white 
noise is one assumption in deriving (17) and (18). However, if 

 is not a white noise, there will be a small no-zeros terms in 
the right side of the objective function, (13). Thus the solution 

n nw

nw
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provided in (17) and (18) will become sub-optimal for the 
AR(2) case. We have performed simulation on estimating the 
mean of an AR(2) random process, and we found the estima-
tion error of our estimate is very close to the one from exhaus-
tive search. 
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Figure 17 AR(2) model for observed samples 
  
7 Conclusions and future works 
 
In this paper, we introduce a novel approach to updating the 
eigenspace for non-stationary random processes. Given a new 
training sample, we iteratively update the eigenspace to mani-
fest the current statistics provided by the new sample. The 
updated eigenspace is based more on the recent samples and 
less on the older samples. Extensive study has been performed 
on how to choose the decay parameters for our updating 
method. We show the effectiveness of our algorithm using 
both synthetic data and practical applications for face recogni-
tion. The experimental results indicate that the random proc-
esses in many practical applications are essentially non-
stationary, which results in significantly improved perform-
ance by our updating method compared to other methods in 
the literature. 
 
As a modeling tool, our eigenspace updating method can also 
be applied to other applications, for example, the detection of 
signal changing [22][23] and video coding.  We have already 
applied it to the shot boundary detection [27] and the detection 
of facial expression changes. It is able to model the most re-
cent statistics over time, and thus any change in signals can be 
detected from the residue between the new signal and the ei-
genspace. 
 
In face recognition, many approaches have been proposed to 
deal with different variations. While each approach works well 
for the specific variation being studied, performance degrades 
rapidly when other variations are present. In practice, the test 
images usually undergo the mixture of variations, such as ex-
pressions, poses and illuminations. Trying to use a static 
model to cover all these variations is difficult.  Using the pro-

posed updating method is one solution. Instead of trying to 
model all variations at once, we try to dynamically model only 
the most recent variations. 
 
There are many interesting directions to be explored further. 
For example, in our updating method, the eigenvector expan-
sion is truncated as in (5), which results in an approximate 
representation for the covariance matrix. Can we have a better 
estimation for the covariance by adding a diagonal term that 
accounts for the discarded residue? Also, as the eigenspace 
only provides a subspace representation for a data set, it lacks 
a probabilistic measure for the samples in the data set. Can we 
borrow the idea of probabilistic PCA [28] and update the ei-
genspace in a probabilistic framework, i.e., the resulting ei-
genspace can have a probabilistic interpretation for each sam-
ple? Further, while applying updating methods for classifica-
tion, a good scheme to decide when to perform updating is 
very critical and requires more study. Finally, how to take 
advantage of the temporal information and perform the video-
based recognition is also an interesting topic worth further 
study. In additional to updating the inner-product matrix or the 
covariance matrix, we can also extend our non-stationary up-
dating algorithms, in particular the choice of decay parame-
ters, to SVD-based eigenspace updating methods. 
  

Appendix 
 
In the Kalman filter, there are five iterative steps to perform 
the estimation. They can be described by the following five 
equations: 
                                m                        (21) 1ˆˆ −
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By extending (23) with (21), we get: 
                           (25) nnnnn xkmkm +−= −1ˆ)1(ˆ ρ
 
If we compare the above equation with our estimate (12), we 
can find that k  corresponds to n mβ , and )1( nk−ρ  corre-
sponds to mα  in our estimate. By combining (22) and (24), the 
convergent formula of  when  goes infinity can be found. 
Since  only depends on , q , and 

np n

nk 1−np r , eventually we can 
obtain the convergent formulation for , which is exactly the 
same as 

nk

mβ  in (17). Hence )nk1−(ρ  has the same formula-
tion as mα  in (18). From this, we can see that our estimate 
turns out to be the convergent form of the Kalman filter. 
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We conduct the following experiment to show the estimation 
performance. Given different random processes synthesized 
by tuning different ρ  in the AR(1) process, we can estimate 
the model parameters first. Then we can utilize the model pa-
rameters to derive the decay parameters for our updating 
method. For the AR(1) random process, we estimate model 
parameters as following: 

)()))((()()( knnknknnnknnxx mmEvmvmExxEkR ++++ =++==  
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mm
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Basically by calculating R , , up to , we can 
estimate ,

)0(xx )1(xxR )(kRxx

q r and ρ  based on the above two equations. Since 
there are estimation errors in estimating these model parame-
ters, we are interested in how our estimate performs based on 
these estimated model parameters.  
 
Then these model parameters are fed into both the Kalman 
filter and our estimate to estimate the mean of the random 
process. Since we have the ground truth of the mean, we can 
also perform exhaustive search for the decay parameters as 
well. In Figure 18, we show the estimate errors of three differ-
ent estimates and also the variance between the given observa-
tions and the ground truth. We can see that for different 
choices of ρ , our estimate performs better than the Kalman 
filter, especially in the region with large ρ .  
 

ρρ  
Figure 18 Mean estimation based on estimated model pa-

rameters. 
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