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Abstract

Researchers have been working on human face recognition for decades. Face recognition is hard
due to different types of variations in face images, such as pose, illumination and expression,
among which pose variation is the hardest one to deal with. To improve face recognition, this
thesis presents an integrated approach to performing pose robust video-based face tracking and
recognition by using a face mosaic model. We approximate a human head with a 3D ellipsoid
model, where each face image is a projection of the 3D ellipsoid at a certain pose. In our
approach, both training and test images are projected back to the surface of the 3D ellipsoid,
according to their estimated poses, to form the texture maps. Thus the recognition can be
conducted by comparing texture maps instead of the original images, as done in traditional face
recognition. In addition, by representing the texture map as an array of local patches, we can
train a probabilistic model for comparing corresponding patches. With multiple training images
under different views, we are able to obtain a statistical mosaic model as well as a geometric
deviation model, which not only reduces the blurring effect in the mosaic model, but also serves
as an indication of how much the actual human faces geometry deviates from the 3D ellipsoid
model. Furthermore, we apply the face mosaic model to video-based face recognition. The
mosaic model is able to simultaneously track, register, and recognize human faces from video
sequences. Finally, we also apply the updating-during-recognition scheme in using the mosaic
model. This scheme allows the mosaic model to be updated during the test stage in order to

enhance the modeling and recognition over time.
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1. Introduction

For decades human face recognition has been an active topic in the field of object
recognition. A general statement of this problem can be formulated as follows: given till or
video images of a scene, identify one or more persons in the scene using a stored database of
faces [10]. A system that performs face recognition has many applications, such as nonintrusive
identification and authentication for credit card usage, nonintrusive access control to buildings,
and identification for law enforcement.

Comprehensive surveys of human and machine recognition techniques can be found in
[10][1][20][79]. A lot of algorithms were proposed to deal with the image-to-image, or image-
based, recognition where both the training and test sets consist of still face images. There are two
basic kinds of face recognition algorithms: one is based on the feature matching, such as Elastic
Graphic Matching [40]; the other is based on the template matching, such as the eigenface
approach [72], and Linear Discriminate Analysis (LDA) [2]. In the latter, the eigenface approach,
which applies Principal Component Analysis (PCA) in the pixel domain, plays a fundamental
role. It is widely considered as the baseline of many face recognition algorithms. It has the
advantage of fast computation, stable performance for the case of frontal face recognition with
constraints on illumination, expression variations, etc. However, with existing approaches, the
performance of face recognition systems in practice is affected by different types of variations,

for example, expression, illumination, and pose.
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At least two observations have been made from the previous extensive studies. First, face
recognition is to deal with variations. Researchers have studied how face recognition is affected
by different kinds of variations, such as expression [74][55][50], illumination [1], pose [78][58],
aging [41], and sunglasses [80]. Among these, pose variation is the hardest one to model and
therefore contributes most of the recognition error [20][61]. Because pose variation results not
only in shape variation, but also in appearance variation due to the changing relation between the
illumination source and the face. For example, as shown in Figure 1, one of the results from Face
Recognition Vendor Test (FRVT) 2002, the recognition rate of pose variation is much lower than
that of illumination variation. Second, face registration is the key of face recognition. This
observation is a direct consequence of the first one. In dealing with different variations, if we
could register face images into the canonical model, the recognition task would be simpler. In
traditional image-based face recognition, the face area is normally cropped before feeding it into
the recognition module. The importance of face registration has been overlooked in the literature.
However, in video-based face recognition, the face portion has to be registered from the video

frame before any recognition can take place.
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Figure 1 Experimental results of FRVT 2002 on the recognition rate of different variations.
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1.1 Our approaches

In this thesis, we propose an integrated approach to performing video-based pose robust
face tracking and recognition using a face mosaic model.

As motivated by the research on video mosaics [68] and fingerprint mosaicing [37], we
propose to model the facial appearance by constructing a mosaic model from multiple faces at
various poses. Traditionally, the pose variation is very difficult to model. We propose to use the
geometry of a face to improve the mosaicing result. By approximating a human head with a 3D
ellipsoid, each face image is the result of projecting the ellipsoid’s certain portion on the image
plane. Given a nhumber of face images under various poses, as shown in Figure 2, we map the
face portion of each frame onto the surface of the ellipsoid using the geometric mapping
algorithm. Unwrapping the surface of the ellipsoid will result in a texture map, which has a
and g coordinate system. In the mean time, instead of one single texture map, a statistical model
composed of a mean image and a number of eigen-images, is trained by using the unwrapped
texture maps.

In this thesis, we first present how to perform pose robust face recognition using
geometry-assisted probabilistic modeling. In our approach, al training and test images are
projected to the surface of a 3D ellipsoid by estimating the optimal pose and position
information, and represented as texture maps. The distance measure is calculated in the overlap
area between texture maps of the training and test images. Also by representing a texture map as
an array of local patches, it enables us to develop a probabilistic model for comparing
corresponding patches from a face database with pose variation. We study how the
discriminative power of corresponding patches varies for different poses. Eventually, we are able

to utilize the Bayesian framework to evaluate the distance measure of corresponding patches.
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Second, we combine multiple images with pose variation to build a statistical mosaic
model, which is used for face recognition. In our mosaic method, combining multiple images is
essentially combining multiple texture maps. Since the same facia feature, such as the mouth
corner, found in multiple maps might not correspond to the same coordinate on the single texture
map, the blurring effect would be observed when we combine multiple texture maps. To reduce
such blurring, one key idea in our approach is to alow a patch to move locally toward better
corresponding across multiple maps, use the flow representation for modeling the amount of
movement, and train the flow representation to form a geometric deviation model via PCA. The
benefit of this approach is that while we are obtaining a less-blurring facial appearance model
from multiple views, we aso form a geometric deviation model, which models how the actual
geometry of each individual subject deviates to the 3D ellipsoid model. It isimportant to use two
models: one for appearance variations and another for geometric deviation, especially when a
rough 3D ellipsoid model is used as the face geometry. We show that both the appearance and
the geometric model are useful for face recognition.

Third, since our face mosaic model is a simple statistical model combining both
appearance and geometric information, we apply it for performing face tracking and recognition
simultaneously. Given a test face sequence, we can track faces using the condensation method
[28] or the Levenberg-Marquardt algorithm [63], based on a face mosaic model. Both algorithms
are trying to estimate the optima mapping parameter in order to minimize the distance measure
between the test image and the model. Face tracking and recognition can be performed
simultaneously by using the condensation framework.

Fourth, due to alimited number of training images, usually we cannot train aface mosaic
model containing enough statistical information. To deal with this issue, we apply the updating-
during-recognition scheme [51] in video-based face recognition. That is, by taking more images

from atest sequence, which contains pose variation or expression that have not been seen, as the
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training data, our mosaic model can be enhanced and eventually results in a better recognition

system.

a

Figure 2 Generating a statistical face mosaic model from multipleimageswith different
poses.

In literature, a few papers propose techniques similar to face mosaicing [11][42]. Compared
to them, our method has a number of novelties. First is that instead of using the cylindrical
projection, we use the ellipsoidal projection, which works more naturally with the head motion in
both horizontal and vertical directions. Second is that while traditional mosaic algorithms usually
result in only one texture map image, our method generates one statistical model with both the
mean image and a number of eigen-images, which provides a more sophistical statistical model to
represent different types of variations, compared to using only one template image. Third, we
represent the mosaic as a set of patches and learn a probabilistic model for the similarity measure
between the corresponding patches of the mosaic model and the test image. Fourth, while
traditional mosaic algorithms assume a planar relation among multiple images, we use the
ellipsoid model together with the deviation modeling, which results in better matching among

multiple texture maps.
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Comparing to other approaches in pose robust face recognition, we can imagine there is one
dimension measuring how much the face recognition algorithm are relying on the geometric
information. The approach of modeling dynamic and using mapping functions are on the extreme
end of this dimension since they do not use any geometric information. While Blanz and Vetter's
work [5] is on another extreme end of this dimension because they use a very sophistical shape
model. Kanade and Yamada [32]’s work use a little geometric information because they register
the face based on three facial features. Comparing to them, our approach uses less geometric
information than Blanz and Vetter's work, but more than Kanade and Yamada's work.
Researchers always assume that the better modeling leads to the better recognition performance.
However, the price we have to pay for a more sophistical modeling is that the model fitting will
become too difficult. For example, in [5], both the training and test images are manually labeled
with 6 to 8 feature points. On the other hand, we believe that unlike the rendering applications in
computer graphics, we might not need a very sophistical geometric model for face recognition
applications. The benefit with a simpler geometric mode! is that the fitting will tend to be easier
and automatic, which is the goal of our approach. Although our approach uses more geometric
information than [32], which needs to track three feature points for any test images, we consider
our approach can fit the model more reliable since we use the appearance information of al face
portion to register the face according to the model. Compared to AAM [16][56], our mosaic
model can model much large pose variations because in AAM none of the meshes can be
occluded during the model fitting, which greatly constrains the possible pose variation.

Comparing to Zhou et. a.’s work [82], our approach uses a sophistical face mosaic model
which can take care of pose variation better than the traditional PCA model used in [82]. In
addition, we utilize the idea of statistical learning in updating the face mosaic model, which
greatly improves the face recognition, especially when there are very few training images to begin

with.
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1.2 Thesis structure

The remaining of the thesisis organized as follows.

Chapter 2 introduces the background of human face recognition. We survey the previous
work on three mgjor problems in face recognition: template based face recognition, pose robust
face recognition, and video based face recognition.

In Chapter 3, we introduce how to generate a texture map from a face image based on a
known mapping parameter. We present a method of learning a probabilistic model for comparing
corresponding patches from a face database with pose variation, and how to apply it for pose
robust face recognition. In the experiments, we show that the probabilistic model can improve the
pose robust face recognition. Comparing with the baseline algorithm, we observe a significant
improvement when performing experiments on the CMU PIE database.

Chapter 4 presents a method of combining multiple training images for training a statistical
mosaic model. A geometric deviation model is trained in order to have a better matching among
patches from multiple texture maps. We show an improvement of using the deviation model from
pose robust face recognition experiments.

Chapter 5 introduces the mosaic based face tracking and recognition from video sequences.
Given a face mosaic model and a test sequence, we introduce two methods of performing face
tracking: the condensation method and the Levenberg-Marquardt algorithm. We also present our
effort in collecting a face video database. Experimental results of both tracking and recognition
from video sequences are shown.

Chapter 6 presents how to apply an updating-during-recognition scheme in using the mosaic
model. Different methods of subspace updating are presented. We show that by using the
updating, pose robust face recognition can be greatly improved based on only one front training

image.
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Finally, Chapter 7 concludes this thesis and point out the contributions. Also we provide

interesting extensions for the work described in thisthesis.
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2. Background

Human face has been an interesting research topic for decades. Many promising topics
are explored based on the interaction between the face and the computer, such as face modeling
[81], face animation [42], face rending [6], face detection [77][66][38], and face recognition
[101[1][20][79].

Aswe mentioned before, comprehensive surveys of human and machine face recognition
techniques can be found in [10][1][20][79]. Thus, this chapter does not intend to give a detailed
survey of all previous work in the human face recognition. Rather, we would like to focus our
attention on three major problems in face recognition: template based face recognition, pose

robust face recognition, and video based face recognition.

2.1 Template based face recognition

Human face recognition has a long history in the vision community. The first major
attempt is made in Kanade's Ph.D thesis in 1973 [31], which tries to recognize faces via the
distribution of facial feature points. There are two basic kinds of face recognition algorithms: one
is based on the feature matching, such as Elastic Graphic Matching [40]; the other is based on the
template matching, such as the eigenface approach [72], Linear Discriminate Analysis (LDA)
[2]. The eigenface approach has the benefit of fast computation, easy implementation and good

performance in normal conditions. Since the birth of the eigenface approach, the template based
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approach has become more dominant than the feature based approach. In the later chapters, we
also use the eigenface approach as one of the baseline algorithms. The details of this algorithm
are presented in this section.

Suppose there are M training face images for each of the K subjects. Let each face image

I (x,y) bea2-dimensional N-by-N array of pixel values. An image may also be represented (after
scanning) as a vector of dimension N?, where each image corresponds to a single point in the
NZ2-dimensional image space. Let us denote each face image of the training set as f;;, a N* x1

vector, where i and j denote the subject index and the face image index respectively, and

0<i<K -1, 0<j<M -1. The average face vector g isdefined by

g:

The difference between each training face and the average is denoted by the vector

s, =f; —9g. These difference vectorsforma N? x MK matrix, A =[Sy,,Sy,,....S¢ 4 u4]- We apply

PCA to these difference vectors by finding a set of Q orthonorma eigenvectors, u, ,
corresponding to the largest eigenvalues of the matrix AAT ,i.e.,

AA'U_ =Au_, n=0,1,...,Q-1, (1)

n n n

where Ay, A,,..., Ao, are nonnegative and in a decreasing order. However, the matrix AA" is

N? by N?, and determining N® eigenvectors can be computationaly intensive. Usually the

number of training faces, M xK , is much smaller than N?. So we first determine the
eigenvectors, u, , of a MK x MK matrix ATA ,i.e,

ATAu =AU, 2

Pre-multiplying (2) by A and comparing to (1), we can see that u, =Au A "*. These

eigenvectors form an orthonormal basis set of a new feature space, called the eigenspace.
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Essentialy it is a subspace representation of all the faces. Thus, we can transform each face

image, f;;, from the image space to the eigenspace as follows:
A =uE(f”. -0) n=0,1,..., Q-1 3
Each face image can be described as a vector p;, =[w0,vvl,...,wQ_1]T in the eigenspace.

During the test stage of the recognition system, atest faceimage f is projected to the eigenspace,

as in (3), to obtain the projected vector p . Then the nearest neighbor classifier is used to
determine a subject whose p;; has the minimal distanceto p .

The eigenvector determination can be computationally expensive when the number of
training images is large. The power method [26] is one approach to efficiently determining the
dominant eigenvectors. Instead of determining all the eigenvectors, the power method obtains
only the dominant eigenvectors, i.e., the eigenvectors associated with the largest eigenvalues.

Essentially the eigenspace provides alow dimensional linear subspace for describing the
facial appearance. All recognition tasks are performed in this subspace instead of the original
pixel domain. However, the objective in the dimension reduction is to best represent the origina
data set in the mean squared sense, which might not be optimal in terms of classification. This
observation leads to one direction of improving the role of PCA in face recognition: to treat
classification as the criterion of constructing a subspace.

Fisherface [2] and its subsequent work [12][77] are one attempt along this direction.
They basically combine PCA and LDA to generate a subspace that is optimal in terms of linear
classification. Another attempt is to use kernel methods together with PCA [47][35] or LDA [48]
to learn a subspace.

The second direction of extending PCA is to apply PCA on feature domains other than
pixels. For example, we can apply PCA on the optical flow between two images, which resultsin
an expression robust face recognition system [50]. Chung et. a. [15] apply PCA on the Gabor

filter responses, and the new algorithm works better for illumination and pose variation.
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2.2 Pose robust face recognition

As we mentioned before, among the variations that have been extensively studied, pose
variation isthe hardest. Let us review the previous work in dealing with the pose variation in face
recognition.

There are different types of approaches for pose robust/invariant face recognition. The
first type of approach is to learn the dynamics/trajectories from images with continuous pose
variation. And then such trajectories can be used for recognizing faces from image sequences
[43][3][52]. The trajectory is represented by either a curve or a surface. Notice this is also one
typical approach in the literature of video-based face recognition. One drawback with these
approaches is that certain application scenario, where the subject shows consistent motion in
both training and test video sequences, has to be assumed, in order to make the dynamic to be
meaningful. This assumption is not true in general, but might be true for specific tasks, which
limits the popularity of this type of approaches.

The second type of approach isto treat the whole face image under a certain pose as one
sample in a high dimension space, and learn the relation between a front pose image and non-
front pose images by constructing a mapping function between them. Given a test image with an
arbitrary pose, a recognition-by-synthesis approach can be applied. That is, we can either
transform this test image into the front view [43], or transform each of the training images into
the same pose as the test image [58], based on the learned mapping function. One potential
problem with this type of approaches is that it is not clear whether the relation among multiple
pose images could be approximated as a simple function, such as a linear transformation [43].
The eigen light-field method [23] can also be classified as this type of approach.

Since aface image is pretty complex and different parts of the face might transformin a
different manner under varying poses, researchers start to look at faces as a set of parts/patches

[54][32]. Kanade and Yamada [32] conduct a systematic analysis on how the discriminative
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power of different parts on human faces changes according to different poses, and such analysis
leads to a probabilistic approach to pose invariant face recognition. In this thesis, we propose to
use the patch representation for texture maps. There are at least three benefits of using the patch
representation instead of the original texture maps. First, the patches representation enables use
to build a probabilistic model for the similarity between corresponding patches. Thus each patch
could be treated differently according to its discriminative power. Second benefit is that the
variation of the facial patch is simpler and thus more likely to be modeled with a certain function
or a probabilistic model. Third, when multiple texture maps are combined together, the patches
are allowed to move locally in order to have a better corresponding among multiple texture maps,
which compensates the not-perfect assumption on the 3D ellipsoid geometry of the human head.
Since we are dealing with pose variation, which is aresult of the human head' s geometry
projected differently, naturally researchers would rely on the geometric information to aid the
pose invariant face recognition. If we imagine there is a dimension indicating how much
geometric information is used for recognition, we can place many algorithms along this
dimension. Many algorithms, such as the ones in the first and second type of approaches, do not
use any geometric information. Others do make use of geometric information by assuming a
particular head model. For example, a cylinder head model iswidely used in face tracking [9][7].
However, the cylinder model does not act naturally for head nod. Thus we propose a spherical
head model to enhancing the modeling [53]. In this thesis, we will use a 3D €llipsoid as the head
model based on the consideration that the human head does have different width, height, and
depth. Blanz and Vetter's approach [5] is in the extreme end of this dimension since they use
perfect 3D geometric information of human heads. Based on alarge set of face images, they train
two subspace models for facial texture and shape respectively. Given atest image under any pose
and lighting, they can fit the image with two models by tuning the coefficients in the models.

Finally, the model coefficients are used for recognition.
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Researchers aso take care of pose variation via face registration. One common way in
face registration is to detect the facial features, such as eyes, mouth, etc, and apply transforms
based on the corresponding facial features in images under different poses [3]. Active
Appearance Models (AAM) [16][56] has been used for face tracking and recognition, where the
face is modeled by a triangulated mesh structure. Once the mesh could be fitted to a face image,
this face image is registered with a canonical model. Of course, [5] is also a sophistical approach

of registering face images.

2.3 Video-based face recognition

To improve face recognition, recently the researchers start to look at video-based face
recognition [44][18][82][51], where the test images are video sequences containing faces. Recent
psychophysical results show that a human makes use of facia motion information for face
recognition [70]. Video-based face recognition has several advantages over image-based face
recognition. First, the geometric information can be explored given continuous video sequences
showing different poses of human faces, which helps to handle pose variation. Second, the
motion information of faces can be utilized to facilitate the recognition task. For example, the
subject-dependent dynamic characteristics can help face recognition [52]. Third, given the fact
that in video sequences most of face variations are present in a continuous fashion, video-based
recognition allows the learning or updating of the subject’s model over time. For example, we
propose an updating-during-recognition scheme, where the current and past frames in a video
sequence can be used to update the subject’s models to improve recognition results for future
frames [51]. Furthermore, most practical face recognition systems actually take video sequences
under certain scenario as the input. Thus, it is very natura to take advantage of the video
information from the input, instead of just selecting certain frames and performing image-based

recognition.
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There are not much previous approaches can be considered as video-based recognition
yet. Most of the previous video-based algorithms simply apply image-based recognition to each
frame, and average the frame based scores to obtain the final similarity between the sequence and
the model. We still consider this type of approaches as image-based recognition.

One type of video-based recognition is to model the dynamics in video segquences
[43][3][52], where face tracking and recognition are two separate steps. Normally face
recognition is performed after the tracking is finished, which still ignores the face registration
issue. Recently, another trend in video-based face recognition is to simultaneously perform face
tracking and recognition given a test sequence. For example, Zhou et. al. [82] apply the
condensation method for video-based face recognition. In their case, since a simple PCA model
is used in modeling facial appearance, the tracking performance in dealing with pose variation

will be affected.
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3. Face Recognition Using Geometry-Assisted

Probabilistic Modeling

As we mentioned before, the most difficulty variation for face recognition is pose
variation. The difficulty is that the intra-subject variations are as large as, or even larger than the
inter-subject variations when pose variation is present. To improve face recognition under pose
variation, we present a geometry-assisted probabilistic approach. We approximate a human head
with a 3D ellipsoid model, where any face image is a projection of such a 3D dllipsoid at a
certain pose. In this approach, both training and test images are projected back to the surface of
the 3D dlipsoid, according to their estimated poses, to form texture maps. Thus the recognition
can be conducted by comparing the texture maps instead of the original images, as done in
traditional face recognition. The geometrical mapping could be treated as one way of
compensating pose variation and reducing the intra-subject variations. In addition, we represent a
texture map as an array of local patches, which enables us to train a probabilistic model for
comparing corresponding patches.

In this chapter, we first introduce how to generate a texture map from a face image based
on a known mapping parameter. Then we present a method of learning a probabilistic model for
comparing corresponding patches from a face database with pose variation, and how to apply it
for pose robust face recognition. In experimental results, we show that the probabilistic model

can improve the performance of pose robust face recognition.
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3.1 Geometrical mapping

If we compare two face images of the same subject captured at two different view angles,
the pixel-by-pixel difference is relative big because these two images are not registered/aligned
with respect to each other. This is also the reason why the traditional eigenface approach does
not work well for face images with pose variation. Image registration is a way to fix this
problem, i.e., the comparison should only be conducted after two images are registered.
Considering the fact that a human head has the non-planar geometry, one way to register face
images is to project them back to the surface of a 3D ellipsoid from each of the specific poses.
This procedure of projection is called geometrical mapping.

Geometrical mapping is a key component in our proposed algorithm. In this section, we
introduce how to generate a texture map s from afaceimage f , given aknown match parameter
X. In the following chapters, we will present how to estimate the mapping parameter x by

various methods.

Three assumptions are made. First, a human head is a 3D ellipsoid with radiusto be r_,
r,, and r,. Second, a face image is captured with a weak perspective camera model [20] and a

camera focal length equals to one. Third, all images are captured under the ambient lighting
environment. Under these assumptions, we use a mapping parameter x to describe the relation
between a face image and its corresponding texture map. The mapping parameter x is a 6-

dimensional vector x=[c, ¢, d R, R, R,]", where c, and c, indicate the center of the

face area in the face image, d indicates the average distance between the face and the camera,

and R,, Rg and R, indicate the rotation of the human head with respect to the XY Z axis. Aswe

can see, the mapping parameter x includes all the information for locating a face, as well as

generating the texture map from the face image.
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Let a human head centered at the origin of an XY Z coordinate system and the front face
look at the positive Z axis. Thus different views of human faces can be obtained by fixing the
camera and rotating the human head with certain degrees in various directions. To generate a
texture map s from f , essentialy for each pixd, s(a, 8), we need to find its corresponding
coordinate, f(v,u), by knowing the mapping parameter x, which is followed by a bilinear
interpolation [36] to fill in the intensity of pixel s(a, 8) . The parameters v and u are the axis of

the original image; o and B are the axis of the texture map. As shown in Figure 3 and Figure

4, there are basically two steps for this mapping.

First, a pixel s(a, ) in the texture map corresponds to one point (p,, p,, p,) on the

surface of a sphere, whose radiusis one:

p, =sin(a)sin(f)
p, =cos(a) (4)
p, =sin(a) cos()

As shown in the right illustration of Figure 3, the sphere is then converted into an

ellipsoid by stretching each radius accordingto r,, r ,and r,:

px =r>< px
py =rypy
pz :rzpz

Second, we can rotate the head ellipsoid by R,, R; and R, with respect to the XYZ
axis. As shown in Figure 4, the point on coordinate (p,, p,, p,) moves to a new coordinate

(p,. Py, p;) by the following equation.

p. cos(R,) sn(R,) 01 0 0 cos(R;) 0 sin(R,) [ p,
p, |=| —sin(R,) cos(R,) 0 cos(R,) -sin(R,) 0 1 0 P,
p, 0 0 1|0 sin(R,) cos(R,) ||-sin(R;) 0 cos(R,) [\ p,
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Then we project the coordinate (p,, p,, p,) onto the image plane by using the weak

perspective camera model, and translate the resulting coordinate by c, and c, in both vertical

and horizontal directions.

, Q)

Finally, we obtain the new coordinate (v,u) in theimage coordinate. By judging whether
(P, P, P,) isfacing the positive Z axis or nat, it can tell us whether (v,u) is avalid coordinate
in the image plane. If it is, the bilinear interpolation result of (v,u) isfilled in as the intensity of
the pixel s(a, B) . Otherwise s(a, ) isconsidered as amissing pixel and itsintensity is set to be

zero. To compensate the lighting variations, we also normalize the mean of the intensity of all

non-missing pixelsto be 128.

Figure 3 Geometric mapping: the corresponding between one pixel on the texture map and
one point on the surface of the ellipsoid.
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Figure 4 Geometric mapping: rotate the ellipsoid and obtain the corresponding pixel on the
image plane.
One issue in the above mapping is how to determine the radius of a human head ellipsoid,

r., r,, andr,, which is essentially the height, width and depth of the human head. Since we

aready include d in the mapping parameter, any one of the three radiuses, for example, the
width r,, can be set to be one. Thus we only need to determine the ratio between the width and

the depth, and the ratio between the width and the height. In our algorithm, the former is set to be
a fix constant 0.9 by considering that the head’s depth is dlightly larger than the head’s width,
while the latter is usually obtained from the external sources, such as a face detector or manual
labeling of afront face image. Once we obtain these two ratios, they are assumed to be constant
for the same subject. Of course, we can aso treat these two ratios as two additional elements in
the mapping parameter x, and estimate them using the same framework of estimating x, which
will be introduced in future chapters.

Since the generation of the map is an essential step in our mosaicing agorithm, the
efficiency of this step will affect the speed of face tracking/recognition. This step can be
computationally intensive if every pixel in s needs to find its corresponding position in f . To

solve this problem, we approximate the mapping using a triangular mesh, as shown in Figure 5.
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That is, the texture map s is represented as a set of triangles; for the vertexes of these triangles,
we derive their corresponding coordinates in f using the above mapping equations. Then the
mapping between two triangles can be approximated by an affine transformation, whose six
parameters are estimated via three corresponding vertexes. For the pixels inside each triangle, the
scan-line algorithm [73] can be used to quickly find the corresponding pixels. For example, in
Figure 6, for each triangle in the destination texture map s, the corresponding pixels of a vertical

column is lying on a line in the triangle of the source image f , whose slope, (d,,d,), is

determined via the affine transformation. The goal of this approximation is to speed up the
geometrical mapping while not noticeably affecting the recognition performance. The choice of
triangle size is a trade-off between the mapping speed and the mapping precision. If the triangle
islarger, the mapping is faster while the precision is also lower. If the triangle is too small, we do
not gain much in speeding up the geometrical mapping. In our implementation, the triangle size

is4 by 4 pixels.

Source f Destination S

Figure5 Trianglerepresentation for speeding up the texture mapping
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Source triangle Dedtination triangle

[

d

X

Figure 6 Scan-line algorithm: finding the corresponding pixel of onelinein the destination
triangleis equivalent to scan onelinein theimage place, whose slope is deter mined by the
affine transformation parameter s between these two triangles.

3.2 Geometry-assisted face recognition

In many face recognition systems, there is only one face image, normally the front view
face image, during the training stage. However, in the test stage, there might be test images that
correspond to different poses of human faces. This is a hard problem because the same subject
looks very different under various poses. In this section, we present our geometry-assisted
approach to deal with this case.

Asshown in Figure 7, given aface database with L subjects, there is only one front view
image, f, (1 =12,---,L), for each subject that is available for training. During the training stage,
we estimate the optimal mapping parameter x, for each training image f, based on a universal

mosaic model, which will be described in the next chapter. Essentially this optimization process
is trying to minimize the difference between the universal mosaic model and the texture map
controlled by the mapping parameter, which provides the information about the position of the
face, the distance of the face, and the pose. Notice that some of the parameters might be known
from external sources. For example, if we know all training images are front view, the pose

parameters, R, , R, and R

Y !

are known to be zero. Once the optimization is done, the
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corresponding texture map s, is generated from each training image f, . It is obvious that in the
texture map s, , only part of the pixels are valid information of the appearance, while the rest are

missing pixels since each face image only corresponds to one portion of the 3D human

ellipsoid’s surface. To describe this missing pixel information, we also generate a mask map, a, ,
which has the same dimension as the texture map s, . For al missing pixels in s, , the
corresponding pixel in a, iszero and the others are one.

During the test stage, given one test image f,, first we estimate the optimal mapping
parameter based on the universal mosaic model. Second, the resulting texture map s, and mask

map a, are compared with each of the training texture maps as the following:

||||(s -s)ea, oa||| (6)

"o
t
where o refers to the element-wise multiplication. Basically d, is the normalized mean-square-
error between the overlap area of the test texture map s, and the training texture map s, , and
la, =@, indicates the size of the overlap area between two texture maps. There is a degeneration
case when the two texture maps have a very small overlapping area, which leads to small d, .

Because in our estimation algorithm, the mapping parameter changes slowly, there is a very low
chance that we will fall into this degeneration case. Eventually, the test image is recognized as

the subject with the minimal d, .
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Figure 7 Geometry-assisted face recognition: all training and test images ar e converted into
the texture map, and the distance measureis calculated based on the overlap area between
two texture maps.

3.3 Probabilistic modeling for patches

Researchers have considered that different parts of a human face contribute differently to
face recognition. For example, Pentland et. al. [58] propose to use modular eigenspaces to model
the appearance of facia features, such as eyes, mouth, etc. Kanade and Yamada [32] perform
discriminative analysis for al sub-regionsin aface area and obtain a pose robust face recognition

algorithm.
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We extend the idea of sub-region analysis and applied it to the geometry-assisted

approach. As shown in Figure 8, for each texture map s, , we represent it as an array of local
patches s, ;- There are a number of benefits of using the patch representation instead of the

original whole texture map. First, when combining different texture maps from multiple poses to
generate a map that covers larger pose views, patches can be moved locally to find better
matching with other poses. Hence the moving of local patches compensates when the assumption
of the ellipsoid human head is not perfect. We will further utilize this benefit and propose new
algorithms in the next chapter. Second, instead of treating each pixel equally by using (6), we can
modify the similarity value of each patch according to the pose changes. In the meantime, a
probabilistic model can be trained to model such changes and improve face recognition under
pose variation.

Notice that after a texture map is decomposed into patches, in the boundary area of the
face portion, there are some patches including partial missing data. For simplicity, we treat all
these patches as missing data. Considering the fact that the patch size is not too big and also the
boundary area is heavily up-sampled from the original image domain, the simplification is
negligible since we only discard a very small amount of boundary pixels.

In our implementation, the patch size is 4 by 4 pixels and the texture map’s size is 90 by
180 pixels. Thus there are 22 and 45 patches in the vertical and horizontal directions respectively.
The selection of the patch size is a trade-off. If the patch size is too big, we lose the benefit of
modeling local appearance and we could not model enough patch variation with respect to the
varying pose. On the other hand, if the patch size is too small, it is harder to find corresponding
among patches from multiple texture maps. From the experiments, we find 4 by 4 is a good
choice for the patch size. Also we think it is not necessary to overlap patches since we will alow

patches move around locally, which will be introduced in the next chapter.
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Figure 8 Patch representation for thetexture map: atexture map is evenly decomposed
into an array of local patches.

Let us introduce how to train a probabilistic model for the similarity value of patches
from a face database with pose variation. In this thesis we train such a model on the CMU PIE
database [24]. The PIE database consists of face images of 68 subjects under different
combinations of poses and illuminations. We use part of this database in this thesis, which are 9
pose images from 68 subjects. These are the images with multiple poses under the neutra
illumination. Sample images from one subject can be seen from Figure 9, where the number, c27,
¢34, cl4, cl1, ¢c29, c22, c02, c37, c05, is the pose labels for each image. We choose ¢27 as the
training pose and the other eight poses as the test poses.

We take 9 pose images of 34 subjects for training the probabilistic model. We denote
each of theimages as f(I,¢,) , where ¢, is one of the eight pose labels. For the training process,
the mapping parameters of all images are estimated based on the universal mosaic model. Thus

we can obtain the texture maps of al images, and have the patch representation as s ;(1,4,) ,

where i and j aretheindex of patches vertically and horizontaly.

Since we treat the front view, c27, as the training images, we need to study how the
similarity values of corresponding patches between c27 and al other eight poses change. Thisis
done by fixing one patch and one particular pose, and calculating the similarity value (mean-
square-error) of one patch between all subjects in the pose c27 and all subjects in that particular
pose. For example, Figure 10 is the result of such a calculation for one patch closer to the right

eye and the pose ¢29. In this 2D map, the vertical axis represents all the training images, 34
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subjects under the pose c27, while the horizontal axis represents all test images from 34 subjects
under the pose c29. Each entry indicates the similarity value of the same patch between any pair
of subjects. For each combination of all other patches and other eight test poses, we should
generate one such 2D map.

Ideally we should expect that the diagonal elements of this 2D map are darker than the
off-diagonal elements because the former is an indication of the intra-subject variations, while
the latter is an indication of the inter-subject variations. In order to verify such expectation, we
plot the histogram of the diagonal elements and off-diagonal elements separately. Also, for
explicitly modeling these two types of variations, we approximate them as two Gaussian
distributions. That is, we estimate the mean and stand deviation of intra-subject variations from
the diagonal elements, and the mean of and stand deviation of inter-subject variations from off-

diagonal elements. The resulting two distributions can be denoted as following:

P e )= p{ 2 ’2}

1.d, -4}
P(d, |diff ,¢,) = F o p{ S (=L a,"'f* )} (7

where p=™, o™, ', o are the mean and stand deviation of intra-subject and inter-

subject variations for the patch (i, j) under the test pose ¢,. Let us denote the probabilistic

dlff

model as P, ={{x=™, ' ,0",0°"}, }. Notice that all four parameters depend on the test

¥
pose ¢, . For example, the first plot on the left of Figure 11 is the Gaussian approximation of two
distributions in Figure 10. The solid and broken curves are the histograms of two distributions,
and the dotted curves are the approximated two Gaussian distributions. The four figuresin Figure
11 are from the two distributions of the same patch with four different test poses: slightly right

(c29), more right (c11), further right (c14), profile (c34). We can see that as the pose changes
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from the front view to the profile view, the discriminative power is getting less, which is an
useful observation and should be taken into account during the recognition.

To illustrate the relation among these parameters for al test poses, we plot them in
Figure 12. In tota, there are five columns and eight rows, where each row corresponds to the

statistical information of each test pose, namely ¢34, c14, c11, c29, c05, c37, c02, c22 from top

to bottom. The first four columns are the plots of =™, u*', o=™, o' for al eight test

poses. The intensity of each pixel indicates the value of parameter. The brighter the intensity it,
the larger the value is. In order to compare the difference between these two distributions, we

normalize the intensity of the first and second column, as well as the intensity of the third and

fourth column. Naturally, we can observe that the second column, ", is brighter than the first

column, =™, and the fourth column, o

o, , is brighter than the third column, o™, which
means the inter-subject variations have larger mean and stand deviation than those of the intra-
subject variations.

The last column is the Fisher ratio [17] between two Gaussian distributions defined as

following:

_ (Iui(:ﬁjﬁ - /Jis,i}me)2
- diff 2
B

f, =L

o= + 0,

Since the fisher ratio is a good indication of the discriminative power, we can study
among all patches in the texture map, which patches provide more discriminative power than the
others. From the last column of Figure 12, we observe that the nose and forehead seem to have

more discriminative power. This observation might not be true in general. However, it seems to

be aright conclusion for this particular dataset.
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Figure 9 Sample I mages of one subject from the PIE database: theimagein thefirst row is
thetraining image, while all the othersaretest images.
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b 10

15 20 258 30
Test Subject ID

Figure 10 2D map of the similar values of one patch (around theright eye) between and
pose ¢c29 and c27
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Figure 11 Gaussian approximation: each figure hastwo histograms (solid and broken
curves) and two Gaussian appr oximations (dotted curves); four figures are from thetwo
distributions of the same patch (around the right eye) with four different poses, c29, cl11,

cl4, c34.

Figure 12 Probabilistic modeling for patches: thefirst four columnsareplotsof =™, u™",

o=, o for all eight test poses; thelast column isthe fisher ratio of two distributions for
all eight poses; each row correspondsto the statistical information of each test pose, namely
€34, cl14, c11, ¢c29, c05, ¢c37, c02, c22 from top to bottom.
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3.4 Probabilistic geometry-assisted face recognition

After introducing how to train a probabilistic model, let us focus on how to utilize it for
improving pose robust face recognition. Given a face database with L subjects, only one front
view image, f,, of each subject is available for training. During the training stage, the mosaic
algorithm estimates the optimal mapping parameter x, for each training image f, based on the

universal mosaic model. The resulting texture map is represented as an array of local patches,

I
S -

Given a test image, we generate its texture map s;; based on the universa mosaic

I
i

model. For the test texture map s;; and one of the training texture map s; ;, we compute the

similarity values of all corresponding patches, {d, ;} . Since we have developed the probabilistic

models of similarity values of each local patch, it enables us to properly combine these similarity
values, one computed for each patch, to reach to the local decision for recognizing whether the
two texture maps/faces are from the same subject or not.

Given the similarity values and the pose of the test image, the posteriori probability that

the test image and the training image belong to the same subject is:

p(d, ,|same, @) P(same) + p(d, [diiff , @) P(diiff )

P(saqui,j-(q) =

where ¢ is the pose of the test image, which can be obtained during the estimation of the

mapping parameter, P(same) and P(diff) are a priority probability of being the same subject or

not given any test image. For a database with L subjects, normally we can set P(same) =% and
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P(diff) =LT_1. Notice that in order to calculate p(d, ;|same @) using (7), @ needs to be equal

to one of the test poses ¢, . Thisissue can be dealt with in two different ways.

First, if the pose of the test image ¢ is similar to one of the eight test poses ¢,, we can
approximate ¢ using the most similar test pose. Second, if ¢ is not similar to any one of test
poses ¢, , we can compute the marginal distributions of (8) over @, :

P(d, [same) = 3 P(,) p(d, [same, @)

p(d, ;|diff) = > P(g,) p(d; , |diff , @,)

d. . |[same)P(same
P(San’ddij)z p( |,J| ) ( ) :
?7 p(d, ;|same) P(same) + p(d, ; |diff ) P(diff )
Here we assign a uniform distribution for P(g,) . It could be non-uniform if we consider

the probability of each pose presenting in the test set. Finally, the sumrule is applied. That is, the

averaged probability measure of all patches P(same*di, ;) will be the similarity measure between

the test image and one of the training subjects. Basically different combination rules, such as the
sum rule, the product rule, the max rule, etc, can be applied here. Kittler et. a. conclude that in
general the sum rule outperforms other combination rules because the sum rule is more resilient
to estimation errors [33]. The test image is recognized to be the subject that gives the highest

similarity measure.

3.5 Experimental results

We evaluate our algorithm by comparing its performance on the CMU PIE database with
a standard eigenface method [72]. We use half of the subjects (34 subjects) in the PIE database
for training the probabilistic model as presented above. The 9 pose images per subject from
remaining 34 subjects are used for the recognition experiments.

The front view image (c27) is used for the training, and the other 8 images are used for

test. As shown in Figure 13, the horizontal axis represents the labels of 8 pose images,
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34,14,11,29,05,37,03,22 from the right profile to the left profile. The vertical axis shows the
recognition rate of four different algorithms for each specific pose. The first is the traditional
eigenface approach [72], where the nearest neighbor classifier is applied. We have manually
cropped the human face for both the training and test images, and normalized them to the size of
64 by 64 pixels. Since there are 34 training images in total, it is possible to use an eigenspace
whose number of eigenvector varies from 1 to 33. We have tested al these possibilities and
plotted the one with the best recognition performance, whose number of eigenvectorsis 21. The
second algorithm is our geometry-assisted method without probabilistic modeling, which is
presented in Chapter 3.2. The third algorithm is the geometry-assisted method with probabilistic
modeling.

A number of observations can be made from this result. First, when the pose of the test
image is more toward the profile view, the recognition rate is getting lower. Second, both our
algorithms perform much better than the baseline algorithm. Third, the geometry-assisted method
with probabilistic modeling works better than the one without probabilistic modeling. We can see
that with one training image, our algorithm presents satisfying recognition performance: it
recognizes al face views with more than 90% correct rate except the two most extreme profile
views. Even for the two profile views, around 70% and 60% recognition rates are obtained.

We also plot the results of the multi-subregion method reported in Figure 8(a) of [32].
We can see that the performance of our algorithm is comparable with the multi-subregion method
for test images closer to the front view. For test images closer to profile views, our algorithm
performs noticeably better. For example, in their report, the recognition rates of two profile
views are both lower than 40%. There are a few reasons why our method works better for profile
views. One s that we utilize more appearance information instead of only using the area bounded
by facial features, such as eyes and the mouth, as done in [32]. Also, the geometrical mapping

greatly compensates the pose variation and reduces the intra-subject variations.
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=f= Geometry-assisted method without probabilistic modeling
md= Geometry-assisted method with probabilistic modeling
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Figure 13 Recognition performances of four algorithmson the CMU PIE database based
onefront training image.

3.6 Conclusions

In this chapter we have introduced a probabilistic geometry-assisted approach and
applied it to pose robust face recognition. All training and test images are projected onto the
surface of a 3D dlipsoid by estimating the optimal pose and position, and represented as texture
maps. The distance measure is calculated on the overlap area between any two texture maps.
Also by representing a texture map as an array of local patches, it enables us to develop a
probabilistic model for the similarity value of patches from a face database with pose variation.
Eventually we are able to utilize the Bayesian framework to evaluate the similarity value of
corresponding patches. Comparing with the baseline algorithm, we observe a significant
improvement when performing experiments on the CMU PIE database.

The above proposed algorithms work well for the case where only one training image is
available for each subject. However, if there is more than one training images, can we recognize

faces better? The key issue is how to combine multiple training images and generate a unified
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model that covers al pose variation in the training images. We will focus on this issue and

propose new algorithmsin the next chapter.
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4. Face Mosaicing For Recognition

In the previous chapter, we propose that pose robust face recognition should be
performed in the feature space of the texture map, instead of the original image space. Due to
limited one training image per subject, there is only one texture map for each subject after
training. In order to build a statistical mosaic model for each subject, we need multiple training
images. This chapter will present our proposed algorithm on how to build such a statistical model
from multiple images.

To be more specific, given f, , a set of images containing faces with different poses, we
need to build a geometric deviation model © ={g,u} and a dstatistical appearance model
M={m ,V,;}, whichisan array of patches each of which is modeled by an eigenspace. The
statistical mosaic model is composed of both these models together with the probabilistic model
P, whose training is presented in the previous chapter.

In our mosaic method, combining multiple images is essentially combining multiple
texture maps since al images are converted to texture maps. When combining multiple texture
maps, it is natural to observe that the same facial feature, such as the mouth corner, found in
multiple maps might not correspond to the same coordinate on the single texture map. The
blurring effect, which is normally not a good property for modeling, will therefore be observed

when we combine many texture maps. To reduce such blurring, one key ideain our proposal isto

allow a local patch to move toward better corresponding across multiple maps, use the flow
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representation for modeling the amount of movement, and train the flow representation to obtain
the geometric deviation model via PCA. Since the flow representation plays a key role in this
process, we first present how we use it for face recognition. Next, we introduce our proposed
algorithm for training both a geometric deviation model and an appearance model from multiple

training images. Finally, we show the experimental results by using this new method.

4.1 Flow representation for face recognition

Flow representation (optical flow) [34] is generally used for motion analysis. Using two
or more consecutive frames of an image sequence, a 2-dimensional vector field, called the optical
flow, is computed to estimate the most likely displacement of image pixels from one frame to
another. Some researchers use optical flow in the analysis of human expressions for the purpose
of expression recognition [46][75][69]. Also Kruizinga and Petkov [34] propose to utilize optical
flows in person identification. However, they only consider the optical flow residue as the
criterion of classification, while we propose to make use of the eigenflow residue, which appears
to exhibit better classification ability than the former.

Optical flow essentially is an approximation of the velocity field. It approximately
characterizes the motion of each pixel between two images. If two face images, which show
different expressions of the same subject, are fed into the optical flow algorithm, the resultant
motion field will emphasize the regions of facia features, such as the eyes and the mouth. Thisis
illustrated in Figure 14. The left half of the figure shows two face images from the same subject,
but with different expressions. The resulting optical flow is shown below these figures. The
second set shows the same figure except that the two input images are from two different
subjects. Obviously, the optical flow looks more irregular in this case. This clue can help

discriminating these two cases, which is the task of face recognition.
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The same idea can be applied to images with registration errors. Because the traditional
PCA approach is unacceptably sensitive to registration errors, even small shifts in input images
can make the system performance degrade significantly. However, face images are usually
difficult to register precisely, especialy in a live authentication system. Therefore, we want to
use the optical flow to build a system that is tolerant to different kinds of registration errors. In
Figure 15, the second image in the left column is an up-shifted version of the first image. The
optical flow shown below captures most of its motion around facial features. The right column
shows images of different subjects leading to an optical flow that appears to be random.

Since the optical flow provides a useful pattern for classifying personal identity, we
propose to use PCA to model this pattern. Suppose that in the training data set, there are a few
images with different expressions for each subject, such as five images shown in Figure 16.
Using these images, twenty optical flow images o, (1< k < K) (corresponding to twenty pairs)
can be obtained through the optica flow estimation. PCA can be computed through the

following:

_1lx
g—KkZ:Ook

1
C= E > (0, —9)(o, - g)T
k=0
By performing eigen-analysis for the covariance matrix C, we can obtain a number of

eigenvectors u ={u,,u,,--} . The three principal eigenflows of twenty optical flow images are

shown in Figure 17. Obviously large motion can be observed in the region of facial features, such
as mouth corners, eyebrows and nasolabial furrows. So all the expression variations occurring in
a single subject can be represented by a space spanned by these eigenflows. The optical flow o

between any two images of this subject should have small residue defined as:
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e=o-g —uuT(o—g)H2 (9)

Thisis basically the error term that could not be modeled by a subspace. In contrast, the

optical flow between this subject and other subjects cannot be represented well by this space,

which results in alarge residue. We call this the eigenflow residue. Thus, the eigenflow residue

can be a useful feature for recognition. Similarly eigenflows can be used to model the optical
flow caused by image registration errors.

We have applied the eigenflow approach for face recognition and authentication, and

obtained satisfying results. Please refer to [50] for detail information about this approach. In the

next section, we will introduce how to use the same idea for modeling the geometric deviation

and serving for face recognition.

KO

Figure 14 Applying optical flow on images with different expressions:. left hand sideare
two images from the same subject, and right hand side are two images from different
subject. Different randomness pattern can be observed from two resulting optical flows.
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Figure 15 Applying optical flow on imageswith registration errors: left hand side aretwo
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Figure 17 Thefirst three eigenflowstrained from expression images of one subject: Some
prominent movements of facial features, such as mouth corners, eyebrows, nasolabial



4.2 Modeling the geometric deviation

One potential problem of combining multiple texture maps is that the resulting averaged
map might get blur due to the fact that facia features from multiple maps do not corresponding
to the same coordinate in the texture map. To reduce such blurring, we might need to align the
facial features better by relying on some landmark points. For the model training process, it is
reasonabl e to obtain such landmark points by manual labeling.

Given K training images, f, , including different poses of human faces, in order to

facilitate the modeling process, we label the position of facial feature points. As shown in Figure
18, 25 facial feature points are labeled. For each training image, only a subset of the 25 points

will be marked according to their visibility. We call these points as key points.

Figure 18 Labeled facial features: up to 25 feature points arelabeled on each training
images

As usual, first we generate the texture maps s* from each training images. Since we only

label the facial key points on the training images, we need to find their corresponding coordinates
b, (i =1,2,---,25) in the texture map s*, as show in the first two rows of Figure 19. Essentialy

thisis an inverse operation of the geometrical mapping described in the previous chapter.
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After determining key points on all texture maps of the training images, we need to find

the coordinate on the mosaic model where all corresponding key points deviate to. Idedly if the
human head’s geometry is a perfect 3D ellipsoid, the same key point b, 1<k <K) from
multiple training texture maps should correspond to exactly the same coordinate, i.e.,
b} =b), =---=b} , For example, if we look at the three texture maps in the second row of Figure

19, the coordinate of the left nose’s corner should be the same. However, due to the fact that the
human head is not a perfect ellipsoid, these key points will deviate to each other. The amount of
deviation is an indication of how much geometrical difference between the actual head geometry
and the 3D dllipsoid. We will model such deviation by applying PCA on the flow representation.
First, we compute the averaged position b' of al key points b, (1<k<K) that
correspond to the same facial feature and are also visible on the texture map. We treat this
averaging as the target position in the final mosaic model where al corresponding key point
should deviate. As shown in the third row of Figure 19, each white point is the averaged position
computed from all training texture maps. Since our mosaic model is composed of an array of

patches, each one of 25 averaged key points falls into one particular patch, which is called key

patch. Notice that instead of averaging, we can also use weighting in generating b' . For
example, the texture maps that are more reliable (mostly front view images) would have larger
weights.

Second, for each texture map, we take the difference between the positions of key point
b, and that of the averaged key point b' as the key patch’s deviation flow (DF) that describes

which patch from each texture map should move toward one key patch in the mosaic model.
However, there are also non-key patches in the mosaic model. In order to model their deviation
flows, as shown in Figure 20, we represent the mosaic model as a set of triangles, whose vertexes
are the key patches. Thus for each non-key patch, it fallsinto at least one triangle. In the last step,

the deviation flow for a non-key patch from each training texture map is interpolated by the key



patch’ s deviation flow of onetriangle. The reason we assign a non-key patch to multiple triangles
is that in case some key patch’s deviation flows of one triangle are not available due to their
invisibility, we can rely on other triangles to perform the interpolation. One might think why we
compute deviation flows through the triangulation of key patches, rather than applying optical
flow. The reason is that traditional optical flow computation starts with two images: a test image
and a reference image. However, when we compute deviation flows, we do not have the
reference texture map yet, which will be calculated after the deviation map is obtained. Thus we

could not compute deviation flows using optical flow.

For each training texture map, its geometric deviation is a 2D vector map vy, . Its

dimension is the same as the number of patchesin the vertical and horizontal directions, and each

pixel is a vector indicating how far this patch is away from the averaged patch in the mosaic
model. Notice that for any training texture map, some elements in the 2D v{, are considered as
missing ones. We use a;; to denote the mask map of v, . If v, isamisselement, a; is zero,

otherwiseit isone.

In order to model the deviation, we train the geometric deviation v/, from all training

texture maps using the PCA with missing data [71] as following:

é(aljvlj)

vi =g, ifa’, =0 forlsks<K

1 K

C=—2(v -g(v -9’

K k=0

By performing eigen-analysis for the covariance matrix C, we obtain a number of

eigenvectors u ={u,,u,,--} . Figure 21 shows the resulting deviation model ©={g,u,,u,}

based on the training images from one subject. Essentially the linear combination of these basis
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vectors describes all the possible geometric deviation of any view angle for this particular

subject’ sface.

Figure 19 Mapping and averaging the position of key points: the position of all key points
in the training texture maps (2™ row), which correspond to the same facial feature, such as
theleft eye corner, are averaged and result in the position in the final model (bottom row).
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Figure 20 Computation of patch’s deviation flow: each non-key patch fallsinto at least one
triangle; the deviation of a non-key patch isinter polated by the key patch deviation of one
triangle.
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Figure 21 Trained geometric deviation model (Top: mean, left: 1¥ eigenvector, right: 2™
eigenvector)

4.3 Modeling the appearance

After modeling the geometric deviation, we aso need to build an appearance model,
which describes the facial appearance from all poses.

Figure 22 illustrates the process of building such an appearance model. On the left hand
side, there are two pairs of training texture map s* and its corresponding geometric deviation

vi‘fj . The resulting appearance modd []={m.

ihj?

V;,} with one mean and two eigenvectors are
shown on the right hand side. This appearance model is composed of an array of eigenspaces,
where each is devoted in modeling the appearance of the local patch indexed by (i, j). In order
to train one eigenspace for one particular patch, the key issue is to collect one corresponding
patch from each training texture maps s, where the correspondence is specified by the
geometric deviation vi‘fj . For example, to train an eigenspace MM, ; for a patch centered at

1
i

(40,83), first we obtain the correspondence information from v; ., which specifies how much

deviation the corresponding patch in the texture map s* with respect to the target location
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(40,83). Hence the summation of v;. and (40,83) determines the center of corresponding patch,

J

s

,j !

in the texture map s'. Using the same way, we can find other corresponding patches

sf;(k=23,---K) from all other texture maps. Notice some of s, might be considered as
missing patches.

, ‘ -
Once we collect corresponding patches s;; from all training texture maps, we are ready

to take these patches sﬁj (1=sk<K) assamplesand train astatistical model 1, ; viaPCA.

i
Figure 22 shows that a 2-dimensional eigenspace is obtained from the training patches.
Finally, the appearance model is composed of an array of PCA models, where each PCA model
describes the appearance of one patch. We call this the patch-PCA mosaic. Modeling via PCA is
popular when the number of training samples is large, such as the training of a universal mosaic
model based on many subjects, or of an individual mosaic model with many training images.
However, when the number of training samples is small, such as the training of an
individual mosaic model with only a few training images, it might not be suitable for training a
PCA model for each patch. Instead we would keep all the corresponding patches and use them

directly as part of the model. One computational efficient way of doing thisisto train a universal
PCA model based on all corresponding patches s, (1sk<K1<i<l|l<j<J)of al training
texture maps, and keep the coefficient of these patches in the universal PCA model as well. This
is called as the global-PCA mosaic. Natice that the patch-PCA mosaic and the global-PCA

mosaic only differ in how the corresponding patches across training texture maps are utilized to

obtain amodel, depending on the availability of training datain different application scenarios.
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Figure 22 Training process of the appear ance model for one patch: the deviation indicates
whereto find the cor responding patch from each of training texture maps; all
corresponding patches aretreated as samplesfor training a statistical model.

Figure 23 The mean of two univer sal mosaic models (left: without the modeling of
geometric deviation, right: with the modeling of geometric deviation).
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Eventually the statistical mosaic model includes the appearance model I, the geometric
deviation model © and the probabilistic model P, trained as in the previous chapter. We

consider that the geometric deviation model plays a key role in forming the mosaic model. For
example, Figure 23 shows the mean appearance of two mosaic models trained by the same set of
images from 10 subjects. The one on the left does not have the modeling of geometric deviation,
while the right one has. It is obvious that the model on the right is much less blurring and
captures more useful information of the facial appearance.

Looking at Figure 20, we notice that the modeling area of the mosaic model is bounded
by the position of most outside key patches. In order to let the mosaic model cover larger pose
variation, we can also do extrapolation while computing the deviation flow of non-key patches,
so that more appearance information can be included in the final model. One example of using
extrapolation is the right illustration of Figure 23, which covers much larger area on facial

appearance comparing to the up-right illustration of Figure 22.

4.4 Face recognition using the statistical mosaic model

In the previous section, we present an approach to train a statistical mosaic model. Now
let us see how this model can be used in pose robust face recognition.

Given L subjects with K training images for each subject, we use our approach to train
an individual statistical mosaic model for each subject. For simplicity, let us assume we have
enough training samples and obtain the patch-PCA mosaic for each subject. We will discuss the
case of the global-PCA mosaic in the end of this section.

As shown in Figure 24, given one test image, we generate its texture map by using the
universal mosaic model. Then we measure the distance between the test texture map and each of
the individual mosaic. Thus the key issue here is to compute the map-to-model distance. Notice

that the appearance model is composed of an array of patch models, which is called the reference
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patch. Basically the map-to-model distance is the summation of map-to-patch distances. That is,
for each reference patch, we need to find its corresponding patch from the test texture map, and
compute its distance to the reference patch model. Figure 24 illustrates the calculation of the
map-to-patch distance.

Since we deviate corresponding patches during the training stage, we should do the same
while looking for the corresponding patch in the test stage, instead of picking up the patch from
the text texture map that has the same coordinate as the reference patch. One simple approach is
to search for the best corresponding patch for the reference patch inside a searching window,
whose center is the coordinate of the reference patch. However, this approach does not impose
any constraint on the deviation of neighboring reference patches. To solve this issue, we would
like to make use of the deviation model that is trained before.

In the right hand size of Figure 24, there are three models, the deviation model

©={g,u}, the appearance model [T={m, ,V, ;}, and the probabilistic model P,, as the

i
components of the statistical mosaic model. The deviation model describes all the possible
geometric deviation of any view angle for one subject’s faces. Because the geometries of
different human heads are not the same, such deviation model contains useful information about
individual subject’s geometry. If we randomly sample one coefficient c=[c,c,, -] in this

subspace model, the linear combination (or subspace reconstruction) of this coefficient describes

the geometric deviation v' for al reference patches.
vi=g+Xcu,
k

The benefit of this approach is that it enforces the geometric deviation of neighbor
patches to follow certain constraint, which is described by the mean and eigenvectors of the
deviation model. Based on this idea, the key is to find a coefficient in deviation subspace, which
provides the optimal matching between the test texture map and the model. In our

implementation, we adopt a simple searching scheme to find such a coefficient by determining
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each dimension one by one. That is, in a K-dimensional deviation subspace, uniformly sample
multiple coefficients along the first dimension while the coefficients for other dimensions are
zero, and determine one of them which results in the maximal similarity between this text texture
map and the model. The range of sampling is bounded by the coefficients of training deviation
maps. Then we perform the same searching along the second dimension while fixing the optimal
value for the first dimension and zero for all other dimensions. The searching is finished until the
K™ dimension. Essentially this is a problem of motion estimation with a subspace constraint. In
the future, we might also use the POCS ideato find a better solution [13].

For each sampled coefficient in the above searching scheme, the reconstructed 2D
deviation map (in the bottom-left of Figure 24) indicates where to find the corresponding patch
in the test texture map. Then the residue distance (9) between the corresponding patch and the
reference patch model is computed, which is further feed into the probabilistic model. Finaly,
the probabilistic measurement provides how likely this corresponding patch belongs to the same
subject as the reference patch. By doing the same operation for al other reference patches and
averaging all patch-based probabilistic measurements, we obtain the similarity between this text
texture map and the model based on the current sampled coefficient. Finaly, the test image is
recognized as the subject who provides the largest similarity.

Depending on how the individual mosaic mode! is trained (the patch-PCA mosaic or the
global-PCA mosaic), there are different ways of calculating the distance between the
corresponding patch and the reference patch model. As we presented before, for the patch-PCA
mosaic, the residue with respect to the reference patch model is used as the distance measure. For
the case of the global-PCA mosaic, since one reference patch model is represented by a number
of coefficients, the distance measure is defined as the nearest neighbor of the corresponding

patch among all these coefficients.

62



Figure 24 Computing the map-to-patch distance: the deviation map builds up the patch
correspondence between the model and the test texture map; the distance measures from
corresponding patches ar e feed into the Bayesian framework to generate a probabilistic
distance measur ement.

4.5 Determining the mapping parameters for training images

Given a set of training images for one subject, the first step in our mosaic algorithmisto
generate the texture map for each training image. There are three ways of doing this. First, we
can treat a pre-trained universal mosaic model as the reference and calculate the mapping
parameter of all images refer to this universal model, by using the condensation method. Second,

if one of the training images is the front view, we can generate its texture map, which will be

63



treated as the initial mosaic model, by labeling its boundary and assuming al rotation angles are
zero. Then the mapping parameters of other training images can be found by minimizing their
distances to the initial model. The third method is the same as the second one except that the
rotation angles of the front view image are obtained from the 3D position of facial features,
instead of assuming zero angles. Thisis to solve one potential problem with the second method,
i.e., the front view face might not correspond to zero rotation angles. Actually this problem also
exists for the first method when generating the initial texture map for the universal model. We
will present the basic steps of the third method in this section.

The process of obtaining the 3D position of facial feature points is straightforward by
using the stereo triangulation technique [20] in the vision community. We require that multiple
view images of the initial front view image are available and all cameras are calibrated. In the
following case, we have 3 views of the human face captured simultaneously, where the center
view is the initial training image. First, as shown in Figure 25, we mark the common feature
points among three views. We also mark the face vertical boundary on the 2D image. Second, by
using the stereo triangulation, the 3D position of these feature points can be reconstructed. Third,
based on the 3D position of feature points with respect to the center view, we can fit a 3D
ellipsoid by minimizing the distance between the points to the ellipsoid surface, under the
constraint that the 2D projection of the 3D ellipsoid at all three views should fit with the marked
boundary. This constraint isimportant since if the 3D ellipsoid is larger than the actual head size,
part of the background will be included in the texture mapping. Basically the 3D reconstructed
vertical boundary points tell the vertical and horizontal center of the ellipsoid. Only the rotation
angles and the center in the Z axis need to be determined during the fitting process. The fitted
ellipsoid tells the optimal rotation angels that the front view training image could be
approximated by an ellipsoid model. For example, in Figure 26, although the face in the center
view looks like the front-view, the fitting results indicates that there is a slight tilt around the

horizontal axis. We will use these rotation angles in generating the initial mosaic based on this



image. Later we will show the experimental results of comparing the second and third method in
determining the mapping parameters for the training images.

What we have shown so far is one benefit of having calibrated multiple view images.
Another benefit is that we may even build a 3D wire frame geometric model using the 3D
coordinates of facial features. Thus the face image can be projected onto the wire frame, instead

of the 3D dllipsoid model.

Figure 26 3D feature points and fitted ellipsoid

4.6 Experimental results
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Similar to the previous chapter, we evaluate our algorithm by comparing its performance
on the CMU PIE database with a baseline method. We use half of the subjects (34 subjects) in
the PIE database for training the probabilistic. The 9 pose images per subject from remaining 34
subjects are used for the recognition experiments.

Three poses (¢c27, c14, c02) are used for the training, and the remaining 6 poses (¢34,
cl1, c29, c05, c37, c22) are used for test. As shown in Figure 28, the horizontal axis represents
the labels of 6 test poses. The vertical axis shows the recognition rate of three different
algorithms for each specific pose. The first is the result of the eigen light-field algorithm from
Figure 10 (a) in [23]. It is hard to find a previous method testing on the same scheme of the same
database as us. We plot this result even it only uses one front view per subject as the training
data. The second algorithm is our face mosaic method without the modeling of geometric

deviation, which essentially let the mean of all eigenvectors of ® ={g,u} to be zero. The third

algorithm is the face mosaic method with the modeling of geometric deviation. Since the number
of training images is small, we train the global-PCA mosaic for each subject. Three eigenvectors
are used in building the global-PCA subspace. Thus each reference patch from the training stage
is represented as a 3-dimentional vector. For the face mosaic method, the patch size is 4 by 4
pixels and the size of the texture map is 90 by 180 pixels. For illustration purpose, we plot the
mean of three models in Figure 27. We can see that all mean images contain enough pose
variation and do not blur much.

Comparing among these three algorithms, both of our algorithms works better than the
baseline algorithm. Also, if we compare this result with the experimental results in the previous
chapter (Figure 13), we can see the algorithm presented in this chapter works better since it has
more training images and the individua mosaic model successfully combines the pose
information from multiple images, while the algorithm in the previous chapter only takes one
image for training. Obvious the mosaic approach provides a better way of registering multi-view

images for an enhanced modeling, unlike the naive training procedure of the traditional eigenface

66



approach. For our algorithms, the one with deviation modeling performs better than the one
without deviation modeling. There are at least two benefits for the one with deviation modeling.
One is that a geometric model can be used in the test stage. The other is that as a result of

deviation modeling, the patch-based model also captures the personal characteristic of the multi-

view facial appearance in anon-blurring manner.

Figure 27 Mean images of threeindividual mosaic models.
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Figure 28 Recognition performances of three algorithms on the CM U PIE database based
threetraining images.

In Section 4.5, we have mentioned that the 3D position of facial feature points could be
used to determine the mapping parameters for the training images. We would like to see how

could this help the mosaic based face recognition. We perform experiments based on the FIA
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database, which we will introduce in detail in the next chapter. There are 20 subjects in the
database, with 9 training images per subject, where one of them contains the front view face.
There are 50 test images per subject. We have performed two algorithms on this database. Both
of them use the individual mosaic method with deviation modeling. They only differ in that one
uses zero angles in the mapping parameter for the initial front view image, the other uses the 3D
position of facia feature points to determine the rotation angles. From the experimental resultsin
the following table, we can see that the one use the 3D position works slightly better than the one
assuming zero angles. This is reasonable since the 3D position provides better approximation to
the true geometry. Also, due to the fact that only the initial mosaic is enhanced via 3D points

fitting, the improvement is not dramatic.

Table 1 Comparison of methodsin initializing the mosaic model
Mosaic method with zero initial | Mosaic method via 3D
angle initialization

7.32% 6.71%

4.7 Conclusions

This chapter presents an approach to train a statistical mosaic model by combining
multiple training images with pose variation. Also we propose to utilize the geometric deviation
model for finding the corresponding patch during the test stage. We show improved performance
for pose robust face recognition by using this new method.

Our face mosaic model is a quite sophistical statistical model because of the following.
First, as the hardest variation, the pose variation is handled naturally by mapping images from
different view-angles to form a mosaic mean image, which can be treated as a compact
representation of faces under different view-angles. Second, all the other variations that could not
be modeled by the mean image, for example, illumination and expression if they present in the
training images, are taken care of by a number of eigenvectors. Therefore, instead of modeling

only one type of variations as the conventional methods, our method is trying to model all
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possible appearance variations in only one model. Third, as a simple geometrical assumption of
the ellipsoid model, it has the problem of over-simplification since the human head is not truly an
ellipsoid. This is taken care of by training a geometric deviation model, which results in better
corresponding across multiple texture maps.

Having shown the application of pose robust face recognition, we would like to apply
our mosaic model for video-based face recognition as well, which involves face tracking and

recognition from video sequences. We will present it in the next chapter.
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5. Video-based Face Recognition

In traditional image-based face recognition, usually the face area is cropped before
feeding to a recognition system. However, in video-based face recognition, given a video
sequence containing human faces, we have to track the face over sequences before any
recognition task can proceed, which normally involves two different tasks: face tracking and face
recognition. One computation efficient way is to combine these two tasks together. That is, by
using the same model for both tracking and recognition, these two tasks can be performed
simultaneously. Since this same model has to serve the purpose of both tracking, which requires
a simple model for achieving real-time tracking efficiency, and recognition, which requires a
specific model containing enough variations about the identity.

As we presented in the previous chapters, since our face mosaic model is a simple
statistical model combining both appearance and geometric information, it is a good candidate
for serving face tracking and recognition simultaneously. In this chapter, we will focus on how to

use the mosaic model for video-based face tracking and recognition.

5.1 Face tracking using the mosaic model

Given one video frame, the most important task in all the tracking, recognition and online
model training is to generate a texture map and compare it with the mosaic model, which results

in the similarity between this frame and the model. Since the mapping parameter x contains all
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the information for generating the texture map, the goal of face tracking is to estimate the optimal
X, which can result in the minimal distance (or maximal similarity) between the texture map and
the mosaic model. In one word, the face tracking is equivalent to estimating x.

There are two methods for estimating the mapping parameter x: the condensation method
[29] and the Levenberg-Marquardt algorithm [63], which is similar to the gradient decent

method.

5.1.1 Face tracking via the condensation method

As we said before, the goal in face tracking is to estimate the mapping parameter X
based on the current frame f,, and the mosaic model []. The basic idea of the condensation
method is that instead of directly estimating x,, given each frame f, it estimates the conditional
probability density function (PDF) p(x, |f,). The name “condensation” refers to “conditional

density compensation”, which means to compensate or propagate the conditional PDF

p(X,., |f,,) by using the knowledge from f , and to obtain an estimation of p(x,, |f,).

Because in general the conditional PDF p(x, |f,) might not be Gaussian distribution,
importance sampling is used to approximate the arbitrary non-Gaussian distribution, where a set
of K samples together with their weights, {x*,w} (1< k <K), is used. As shown in Figure
29, given a set of samples {x®,w®™} , a conditional PDF p(x|f) could be synthesized to

approximate the original conditional PDF p(x |f) asfollows.
p(x|f) = kil W 5(x - x™®) (10)

Thus propagation of a conditional PDF becomes the updating of the sample set, i.e,
given {x® , w0}, and f_, generate {x'”,w!“} . As shown in Figure 30, the propagation can be

accomplished in two steps.
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The first step “prediction” is essentially to answer the question: “if | have not seen the
current observation f_, what would be the most likely place that each of the sample will sit on
based on the best of my knowledge about the system?’ This is answered by applying the
knowledge of p(x, |x,,) to predict a new sample set {x} from {x"’} . The knowledge of
p(x, | x,,) can come from the domain knowledge or be trained from the training data. For

example, if we know the human head is moving around in all possible directions, we can use the

following equation as one way of applying the domain knowledge.

where b, is a white noise with certain variance. One potential problem with this multiple

samples propagation is that some of the samples might have too tiny weights, and propagating
them would not contribute much to the modeling of a conditional PDF. For this reason, people

have proposed to add a “re-sampling” step before the “prediction” step, where the Monte Carlo
Method is used to generate a new set of samples {x®,} from {x®,,w®} . Figure 31 illustrates
the procedure of the Monte Carlo Method. Basically based on {x%,w®} and (10), we can

obtain an estimated conditional PDF p(x |f), from which a cumulative density function (CDF) is

generated. Finally, by looking at which bin arandom number isfalling into, we can generate a set
of samples {x', } that fit with this conditional PDF. For example, if a random number is in the
range of the red bin, x®, will be anew samplein {x®}.

In the second step “weight assignment”, each sample x is assigned with a new weight
w = p(f | x%), which measures how likely the current frame f, can be observed based on
this particular sample x . This likelihood measure is calculated by generating a texture map s,

based on x and f,, as presented in Section 3.1, and calculating the similarity measure between
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s, and the mosaic model [], as presented in Section 4.4. Eventually the new weights are
normalized such that the total weights of all samples equalsto one.

After the propagation, the weighted mean of the new sample set {x*,w!“} becomes the

n

current estimated x, . When the next frame f_,, arrives, we will start the same estimation

procedure based on the current sample set {x,w!“} , which essentially carries al the statistical

information of x,, and is propagated to future frames. We implement this agorithm for face

tracking and observed reasonable good tracking results.
For face tracking in a video sequence, normally it is assumed that the tracking result of
the first frame is available before the tracking starts. This result might come from the face

detection or manual labeling. Notice in the condensation method, we also need to initialize a set

of samples of their corresponding weights {x,w®}, which are obtained from the tracking
result of the first frame, x,. Basically we generate random samples {x¥} around x,, and then
assign weights according to the similarity measure between the texture maps from {x} and the

mosaic model [] .

Notice in previous chapters, for the training and test images in a recognition system, we
generate their texture maps based on the universal texture map by using the condensation
method. This procedure is actually the same as tracking one frame without a good sample set
from the previous frames. Obviously, in this case we need to use more samplesin order to have a
good estimation of the mapping parameter of one face image. In our thesis proposal, we were
using the Hidden Markov Model (HMM) to model the mapping parameters, which is not
necessary anymore since the condensation method is an extension of the HMM. Because
Gaussian assumption is made in the HMM, while the condensation method does not make such

an assumption.
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based on the observation density function.
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Figure 31 Monte Carlo method: a PDF is approximated by generating a set of sampleswith
uniform weights.

5.1.2 Face tracking via the Levenberg-Marquardt algorithm

Having introduced the condensation method, let us look into another tracking algorithm,
the Levenberg-Marquardt algorithm. This method is especially useful when the mosaic model is
trained without the deviation model and the probabilistic model. In this case, since there is no
notion of patch representation, the mosaic model can be simply represented as one eigenspace
M ={m,V} . When the patch representation is used, we need to add the coefficient of the
geometrical deviation model into the minimization process as well.

Essentially the face tracking is a minimization procedure, which is illustrated by Figure
32. The objective is to iteratively minimize the difference between the texture map s, (a, 5) and

the statistica model M ={m,V} , which consists of the mean m and g eigenvectors

V ={v,,v,,--,v,f . Since the mapping parameter x, controls the texture map s, , this
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minimization is over the parameter X, . The minimization will stop if the following distance is

small enough, otherwise it will keep updating the mapping parameter X, .
minJ =|wo(s-m —vc)||2 =y (11)
Xn a,p

c=(v'diag(w?)v)™*(diag(w?)v)" (s—m)
where - refers to the element-wise multiplication, diag() generates a matrix whose diagonal
element is the input vector, and c is the eigen-coefficient of s, with respect to the mosaic model.
The parameter w is the mask map for s, , which combines the mask information from two
sources. Oneis the mask map for the original input image f . The other is the mask map from the

mosaic model.
We adopt the Levenberg-Marquardt algorithm to find the optimal mapping parameter x,,
that minimizes (11). This algorithm requires the computation of the partial derivatives of e with

respect to al unknown parametersin x, , for example:

de 0de,ds 0a dp. da Op,. as . 9B dp. 0B 9p
—_(_(_ﬂ+_ﬂ) +_(_ﬂﬂ+_ﬂﬁ))

OR, 0s da 0p,0R, 0p, dR,” 9B dp,dR, Op, OR,

where oe =diag(w)(I —w"),
0s
9a _y,
ap,
Oa __ 1
apy r2— p'y2
% _ ’rZ _ p'y2
o, p’
B__ B

%, prr-p)
o, _ . - 'sn(R )s
% =p, cos(R,)sin(R,) — p,sin(R,)sin(R,) ,
ap.

ﬁ =-p,sin(R,) - p,cos(R,) .
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ad2S and & arethe image intensity gradients of s, at (a,3). With these partial derivatives,

oa a5
we can calculate an approximate Hessian matrix A and the weighted gradient vector b [63]. For

simplicity, if there are two parameters, R, and R;, in X

n?

de oOe Jde oOe
: ZaRa oR, ZaRa R,
| 0e oe de oe

23R, R, ZOR, 0R,

b :|:—Ze£ —Zeﬁ}

A

OR, oR,
Then the parameters x,, can be linearly updated by

Ax, =(A+A1)7b (12)
This algorithm consists of the following steps:
1. Assigntheinitia valuefor x,, .
2. Compute s, and w according to Section 3.1.
3. Compute the error e as in (11) and the intensity gradient on s,, computer the partial
derivative of e with respect to x, , and compute A and b.
4. Linearly update [Aa,AB]" by Ax, calculated in (12).
5. Evauate (11) using the updated parameters and check whether the error J decreases; if
not, increase A as described in [63], and compute anew AX, .
6. Continue the iteration until the parameters converge or a fixed number of steps are
finished.
If we compare the Levenberg-Marquardt algorithm with the condensation method, we

can see that the former is similar to the gradient decent method, which tries to move toward the
global minimal point on the error surface as fast as possible from ainitia point, while the latter
is a statistical method, which starts with many points (samples) on the error surface, moves each

of them toward their best locations, and takes the averaged location as the tracking results.

77



Normally the Levenberg-Marquardt algorithm is more likely to be trapped into the local minimal
since only one point is moving around on the error surface and it might starts with a bad initial
point. On the other hand, due to its statistical nature, the condensation method is more robust in
terms of tracking performance, because as long as some of the samples are closer to the true
global minimal, they will be responded by high weights and the result would be pretty good
already. However, the drawback of the condensation method is also due to its statistical nature.
That is, since many samples are used for tracking, the computation load of the condensation
method is usually higher than the Levenberg-Marquardt algorithm, which can converge in
usually a few iterations. In summary, we can see that these two methods are complementary to

each other in terms of tracking performance and computational efficiency.

Figure 32 Tracking viathe Levenberg-Mar quar dt algorithm: the mapping parameter is
iteratively adjusted in order to minimize the distance between the texture map and the
mosaic model.

5.2 Face recognition
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There are two different schemes for performing face tracking and recognition from video
sequences.

First isto use the image-based method. For a face database with L subjects, we build the
individualized model for each subject, based on one or multiple training images. Given a test
sequence and one specific model, a distance measurement can be calculated for each frame by
face tracking. Averaging of the distance over all frames in the sequence provides the distance
between the test sequence and one specific model. After the distances between the sequence and
all models are calculated, we can obtain the recognition result for this sequence by comparing
distances across subjects.

Second is to use the video-based method. Zhou et. a. [82] propose a framework to
combine the face tracking and recognition using the condensation method. They basically
propagate a set of samples governed by two parameters: the mapping parameter and the subject
ID. Thuswe call it as the 2D condensation method, as shown in Figure 33.

There are at least three benefits of using video-based recognition comparing to image-
based recognition in using the condensation method. First, during the weighting normalization
step, the conventional condensation method normalizes weights of all samples of one subject,
while the 2D condensation method normalizes weights of all samples of all subjects. Thus the
samples of the matched subject would have relative larger weights than samples of hon-matched
subjects. In the mean time, the weights of the samples of non-matched subjects are depressed,
which is what we want.

Second, the set of samples with the same mapping parametersis assigned for all subjects.
On one hand, it reduces the computation of evaluating the weights based on each sample because
the geometrical mapping operation is the same. On the other hand, samples for non-matched
subjects are not allowed to move freely, whose movement is mainly governed by samples of the

matched subject.
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Third, the 2D condensation method might be able to handle the open-set recognition
problem. Due to the weight normalization, it is likely that no subject shows dominant weights if
the test subject is not included in the training set. Otherwise the samples of the matched subject
should have dominant weights comparing to samples of non-matched subjects. As shown in
Figure 34, we perform a simple experiment to show this point. Given a face database with 29
subjects, if the test frame comes from one of the 29 subjects (i.e., thisis a close-set recognition),
the total probabilities of all samples from the matched subject is much larger than the ones from
other subjects. However, in the close-set recognition, since the test frame does not match with

any subjects in the database. No dominant probability is observed.
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Figure 33 Basics of video-based recognition
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Figure 34 The different between close-set and open-set recognition using the 2D
condensation method.

Let usintroduce the basic step in the 2D condensation method using Figure 35. Given L
subjects in the training set, the individualized model is built for each subject. Suppose we use a
set of K samples for modeling the mapping parameter. In the initial status, there are L [K
samples in the 2D space. The first step isto select the top K samples (red circles) that have the
largest weights among all L [K samples. Then these K samples are predicted to a new location
according to a certain model. Second, L samples are duplicated for all subjects based on each
one of K samples. In other words, all L samples share the same set of mapping parameters.
Third, the same mapping parameter from L samples would result in the same texture map, which
greatly saves the computation load of geometrical mapping. The texture map will have different
similarity with respect to L different models. Thus different weights are assigned to each
sample. Finally, the subject who has the maximum total weights from K samples will be the

recognition result.
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Figure 35 Propagation stepsfor video-based recognition

Before we present the experimental results, first we will introduce the Face-In-Action

video database we are collecting.

5.3 Face-In-Action video database

As more and more researchers are starting to work on video-based face recognition, as
opposed to traditional image-based face recognition, there is more demand for a database of
video sequences containing human faces. With such a database, the benefits of video-based face
recognition can be explored. We are making the effort to collect such a face video database,

called Face In Action (FIA) database [49].
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5.3.1 Capturing scenario

There are many existing databases containing face images under controlled conditions,
such as FERET[60], PIE [67], ORL [64], Xm2vts [57], etc. However, when collecting a face
database in videos, we have to bring in motion. Based on our study, we consider “passport
checking” as the most popular motion scenario for real-world applications of face recognition
techniques. As shown in Figure 36, in a controlled environment with the blue background,
multiple cameras are pointing at the desk from three different angles. The cameras capture the
whole process of the subject’s walking approaching the desk, standing in front of the desk,
making simple conversation, head motion that might happen during passport checking, and
finally walking away from the desk. The resulting video hence contains the moving head while
the subject is walking, user-dependent pose variation due to natural motion of the head, lip
movements and expression variations during conversation.

Actualy this capturing scenario is not only mimicking “passport checking”, it is also
highly representative for many other daily scenarios, such as checking in a hotel, visiting the

hospital or governmental offices, etc.
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Figure 36 FIA capturing scenario: multiple cameras ar e capturing faceswhilethe subject is
mimicking in going through the airport “passport checking”.
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5.3.2 Capturing system

In face database collection, one samples the face in multiple dimensions, such as pose,
illumination, expression, aging, etc. In our FIA capturing system, we sample in the following
dimensions: motion, pose, image resolution, illumination and variations over time. Motion is
sampled by continuous videos at 30 frames per second. Pose is sampled by capturing faces from
three difference directions simultaneously. The image resolution is sampled by using cameras
with two different focus lengths. Illumination is sampled by capturing faces in both indoor and
outdoor scenarios. Variations over time are sampled by capturing three different sessions each
spanning three months.

As shown in Figure 37, we built a cart for mounting the capturing system. On the C-
shape arm, there are 6 cameras. All cameras are pointing to the same center spot and have the
same distance (0.83M) to that spot. Each camerais able to capture video sequences with 640 by
480 frame size in 30 frames per second. Six cameras are arranged into three pairs. Since the C-
shape arm can be adjusted vertically by the linear bearing according to the height of the subject,
afaceis essentially captured by three pairs of cameras with the same vertical angle but different
horizontal angles (-60°, 0°, 60°) respectively. Within each pair of cameras, one has 4mm focal-
length, which results in the face area with around 300 by 300 pixels, and the other has 8mm
focal-length, which results in the face area with around 100 by 100 pixels. The video sequence
with larger face area can be used for applications demanding high-resolution face images, such as
3D reconstruction, while the smaller one is closer to the face data in video surveillance
applications. Figure 38 shows the picture of the camera cart. Three light bulbs are placed on the
cart so as to create an ambient lighting environment for capturing.

Two carts are used for capturing human faces in the indoor and outdoor scenario

respectively. There are three differences between the indoor and outdoor scenario. First is that



there is no controlled illumination in the outdoor scenario. Second is that no blue background
will be placed for the outdoor scenario. Third is that neither color nor camera calibration is
performed for the outdoor scenario. Thus the sequences from the outdoor scenario can be used to
study how well the video-based face recognition performs in the natural illumination. To capture
variations over time, we are planning to capture 200 subjects in three different sessions each
spanning three months. For one session, both indoor and outdoor scenario will be captured. Six
sequences are captured simultaneously for 20 seconds in each scenario.

Having introduced the camera cart, we now present the system configuration, as shown
in Figure 39. We use the Dragonfly™ camera from Point Grey Research Inc.[62], which is an
OEM-style IEEE-1394 board level camera. Based on the data rate we are capturing (640 by 480
by 30 frames by 20 seconds), one IEEE-1394 bus can only allow the data stream of three
cameras. Although three cameras on the same bus are synchronized, we would have to
synchronize two buses and thus al six cameras are synchronized. The SYNC Unit [62] plays the
role of synchronizing two different IEEE-1394 buses. Eventually al six camera streams are
saved onto the hard driver of one computer. Based on our experiences, the speed of the hard
drive, rather than the CPU speed, is the bottleneck of the capturing system. Currently we use
more memory as the cache to compensate the not-fast-enough hard driver.

For each subject, we collect the following data: six 20 seconds face sequences at 30
frames per second, for both indoor and outdoor scenarios, for 3 sessions in total. We store
personal information for each subject, such as, age, gender, glasses, beard, mustache, etc. Also
for each indoor scenario, we provide the color calibration data using the color checker, and the

camera calibration data using the check board.
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Figure 37 The design of the camera cart: six cameras are grouped into three pairs and
mounted on a height-adjustable arm.

Figure 38 Cameracart and lights: 3 light bulbs are used to create an ambient lighting
environment.
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Figure 39 System configuration: six cameras ar e connected to two | EEE-1394 buses on the
computer; the SYNC unit synchronizes two buses.
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5.3.3 Specifications and samples

In summary, the specification of the FIA database are listed in the following:

200 subjects.

3 sessions per subject.

2 scenarios per session (indoor and outdoor).

Color and camera calibration data for the indoor scenario.

6 sequences per scenario.

20 seconds per segquence.

30 frames per second.

640 by 480 24-bits color image per frame

Storing mage data for each subject, such as age, gender, etc.
Saving each image in JPEG format with 90% quality (100K).

Total storage of the database: 100k* 30* 20* 6* 2* 3* 200=412G.

One sampl e snapshot from six cameras can be seen in Figure 40. Three images in the top row

are captured by 8mm focal-length cameras. The others three images are captured by 4mm focal-

length cameras. Figure 41 shows the sample images from one sequence in the FIA database.

Substantial pose variation can be observed from this sequence.
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Figure 40 A sample snapshot from 6 cameras. top images are from cameraswith
longer focal-length; bottom images ar e from cameraswith short focal-length; each column
areimagesfrom a pair of camera neighbor to each other.

Figure 41 Sampleimages of one sequencein the FIA database: substantial pose variation
can be observed from this database.

5.4 Experimental results

5.4.1 Face tracking

Since a face mosaic model describes the facia appearance from multiple views, we can
use it for performing pose robust face recognition. There are two methods for model-based face

tracking. One is to use the condensation method. The other is to use the Levenberg-Marquardt
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algorithm. The second option is faster, however might have dlightly worse performance
comparing to the first one. We use the patch-PCA or global-PCA mosaic model for the first
option depending on the number of training images. In the second option, we can use the mosaic
model without deviation modeling, for targeting at fast tracking speed.

The tracking result of one sequence using the individual patch-PCA mosaic is shown in
Figure 42. The while circle shows the result of the face position, and two curves show the result
of horizontal and vertical rotation angles. We can see these two curves always across the eyes
and nose area across frames. We use 500 samples in the condensation method. The tracking can

be performed at around 2 frames per second.

Figure 42 Tracking results based on the patch-PCA mosaic model: horizontal and vertical
lineindicatesthe estimated posein two directions.

5.4.2 Face recognition

We have performed an experiment on the FIA database. There are 29 subjects in the
database, with 10 sequences per subject as the test sequences. Each sequence has 50 frames, and
the first frame is labeled with the ground truth data. We use the individual PCA agorithm with
the image-based recognition and the individual PCA with the video-based recognition as the

baseline agorithms. For both algorithms, 9 images are used for training and the best
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performances are reported by trying different number of eigenvectors. The algorithms work best
when the number of eigenvectors is 4. For example, Figure 43 shows the 9 training images for
one subject in the FIA database. The face location of training images is from the manual labeling,
while that of the test images is based on the tracking results using our mosaic model. All face
images are cropped to be 64 by 64 pixels from the video frame.

For our algorithms, we tested three different options. First is to use the individual patch-
PCA mosaic with image-based recognition, which uses the averaged distance between the frames
to the mosaic model as the final distance measure. There are 9 images per subject as the training
images. Second is to use the individual patch-PCA mosaic with video-based recognition, which
uses the 2D condensation method to perform tracking and recognition. The same set of training
images are used. The third is similar to the second option except that only one training image per
subject is used. Thus only one texture map from each training image can be used for training. We
illustrate the mean images of the individual models in three methods. We can observe dramatic
blurring effect in the mean from the individual PCA model. On the other hand, the mean of our
individual patch-PCA mosaic model covers large pose variation while still keeps enough
individual facial characteristic. Since there is only one front training image in the third option of
the mosaic method, the mean is only the texture map of that image.

The recognition performance of the baseline a gorithms and our approaches are shown in
the following table. Two observations can be made from here. First, given the same model, such
as the PCA model or the mosaic model, video-based face recognition is better than the image-
based recognition. Second, the mosaic model works much better than the PCA model for pose-
robust recognition. The third option works worse than the first two options since it has only

training image per subject.
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Figure 44 The means of individual model in three methods (left: Individual PCA trained
from 9 images, middle: mosaic model trained from 9 images, right: mosaic model trained

Table 2 Recognition error rate of different algorithms

from 1image).

PCA withimage- | PCA with video- M osaic with M osaic with I\\/I:g;sglckz);vsgg
basedmethod | based method | 'Mege-based video-based method (1
method method L
training image)
17.24% 8.97% 6.90% 4.14% 9.66%

5.5 Conclusions

In this chapter, by using the face mosaic model, we are able to perform face tracking and

recognition simultaneously even dramatic pose variation is present in the test sequences. We

introduce the face tracking using two different algorithms. the condensation method and the

Levenberg-Marquardt algorithm. We present two methods of integrated face tracking and

recognition scheme: image-based method and video-based method. We aso present the

collection effort of the FIA face video database. We apply our algorithm on the FIA database and

obtain satisfying tracking and recognition performance.
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The strength of this approach is that simple geometric mapping is used to compensate the
large pose variation, which makes texture maps have less intra-variations across poses comparing
to the original image domain. Automatically face tracking and recognition can be performed

from video sequences with large pose variation.

92



6. Face Recognition via Updating Mosaic Model

When applying the individual PCA approach for face recognition, we propose an
eigenspace updating algorithm [51], which results in an updating-during-recognition scheme.
That is, the eigenspace for each subject is updated by test images while each of them being
recognized. There are two reasons for doing this. First, in many applications it is not feasible to
capture many training images for each subject containing enough variations for statistical
modeling of that subject. Usualy only one or a few images under the normal condition are
available for training. Thus, it would be better if more and more images of that subject are used
to update its model during the testing stage. Secondly, people change their appearance over time.
Even if there are many images available for training, the system may not recognize faces when a
subject changes the appearance due to aging, expression, pose, and illumination changes. A
recognition system that is able to learn the changing appearance of the subject and adapt to it can
achieve better performance. From our experimental results [51], significant improvements are
observed on recognizing face images with different variations, such as pose, expression and
illumination variations.

We believe this idea of updating-during-recognition can also be applied to the face
mosaic models. Due to the limitation of training images, our face mosaic model might only learn
part of facial pose variation, or it only learns pose variation under the same expression. In this

case, by taking more images from the test sequence, which contains pose variation or expression
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that have not been seen, our mosaic model can be enhanced and eventually results in a better
recognition system.
In this chapter, we first present the theory of updating eigenspaces. Then we present the

experimental results of updating the mosaic model for face recognition application.

6.1 Eigenspace updating with decaying memory

We present three methods of performing eigenspace updating with decaying memory.
When the dimension of the feature space is not high, we will use the updating based on the
covariance matrix. Otherwise we will use the updating based on the inner-product matrix. Since
the mosaic model is trained from the texture maps with missing data, the third algorithm will deal

with the special case of updating the PCA model with missing data.

6.1.1 Updating based on the covariance matrix

Suppose there is a random process { x,}, where n is the time index, x, is a column

vector in a d -dimensional space, of which we want to find the eigenspace. Each sample will be
available sequentially over time. If this random process is stationary, we can estimate its mean by
the following equation:

If X, isanon-stationary random process, which implies that it has a time-varying mean

m,,, we propose to estimate the mean at time n as:

m~tn-1 m~tn-2

1+a,_+a?+D

N X +a X . +a?x .+
m =20 (13)

n
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where a, is the decay parameter. It controls how much the previous samples contribute to the

estimation of the current mean. Since &, isin therange of Oto 1, we have:

1+a, +a? +1F 1 (14)
1-a,
Using (14) in (13), the resulting equation can be simplified to:
r,T\]I'l :ammn—l +(1_am)xn (15)

This equation reveals that based on the current sample and the previously estimated
mean, we can obtain the new estimated mean in a recursive manner. How to choose a,, mainly
depends on the knowledge of the random process. Note that «a,, controls how fast we want to
forget about the old samples. Therefore, if the statistics of the random process change fast, we
chooseasmall a,, . If the statistics change slowly, alarge a,, may perform better.

After the mean of the random process is estimated, we can estimate the covariance

matrix, C,, a eachtime n by:

é - (Xn _mn)(xn _mn)T +av(xn—l _mn—l)(xn—l _rhn—l)T +a\/2(xn—2 _mn—z)(xn—z _rhn—z)T +D]:[|:|
1+a, +a? +0D

where a, is also a decay parameter, which is chosen based on how fast the covariance of a
random process is changing. Now we can rewrite f:n inasimilar manner as m_ :

C.=a,C, . +1-a,)(x, —m)x, —m)" (16)
Since we obtain f:n a time n, we can perform PCA for én and obtain the

corresponding eigenvectors. We keep N eigenvectors corresponding to the N largest

eigenvalues. In the recursive updating process, we only need to store the mean vector m and the

covariance matrix f:n . All the previous training samples can be discarded.
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6.1.2 Updating based on the inner-product matrix

In many applications, PCA is applied directly in the image domain, such as face
recognition. Suppose the face image has a size of 32 by 32, then the covariance matrix of an
image set would be 1024 by 1024. It is very inefficient to store and update it using the algorithm
introduced in Section 6.1.1. To solve this problem, we propose an updating algorithm based on
the inner-product matrix.

Suppose at time n, we aready have performed PCA for the random process at time

n-1. Thus we have eigenvectors, ¢, and eigenvalues, A?,, of the covariance matrix, C, .

We can write:

€= A0l + 220000 + I3 Al V0l
where eigenvalues, A, , are sorted in the decreasing order and the superscript (i) indicates the

order of eigenvalues. By retaining only the first Q eigenvectors (with the largest eiegnvalues),

we can approximate C__, as

~

Cru= A0l + A0 iel + I A% o 1)

The criteria for choosing Q vary, and depend on practical applications. We have tried
three methods: (a) Fix Q to be a constant value; (b) Set a minimum threshold, and keep the first
Q eigenvectors whose eigenvalues are larger than this threshold; (c) Keep the eigenvectors

corresponding to the largest eigenvalues, such that a specific fraction of energy in the eigenvalue
spectrum is retained. These methods will result in different computational complexity for the
updating algorithm.

Now we can use (15) to estimate the mean at time n. By replacing én_l in (16) with
(17), we can obtain
C, =a Mool +aitelel + I a 20 %el +@-a,)(x, ~h,)x, ~f,)"

An equivaent formulation as above is that
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BB '

o
n

where
B, =a %ol JaA%e? 0@ S0l (i-a,(x,-m,) (18)
Based on the B, matrix, an inner-product metrix can be formulated as
A =BB,

Furthermore, A, can be described by the following equations:
(A, =, A0ALE: i,j=12...Q
(A)ign = (A )gu =ya,(d-a A (x, - m,); 1=12..Q
(An)guoa = @=a,)(x, =M, )" (x, —m,). (19)
Since the matrix A, is usually a small matrix with the size of Q+1 by Q+1, we can

determine its eigenvectors v, by adirect method, which satisfies
Ay =BTB y? = A0y =12 .Q+1 (20)
By pre-multiplying (20) with B, we can obtain the eigenvectors of matrix én as
follows:
0" = V2B YO i=12,.Q+1 1)

where the term A 2 isto make the resulting eigenvector to be a unit vector. Now we summarize

the iterative updating algorithm outlined in this section:

Initialization:
1. Given the first two samples x,,x,, estimate the mean, m,, by (15), and construct the

matrix

B, = [ya, (x, -,)  (x, —ri,)]
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2. Based on (20) and (21), we can get the eigenvector, ¢, , and the eigenvalue, A, .

| terative updating:

1. Getanew sample x,,.
2. Estimatethemean, m_, at time n by (15), and get the B, matrix from (18).
3. Formthe matrix A by (19) and calculate its eigenvectors, vy, and eigenvalues, A, by
adirect method.
4. Sort the eigenvalues A_, and retain Q corresponding eigenvectors.
5. Obtain the eigenvectors, ¢, a time n by (21).
We have mentioned three methods of choosing Q. If we use the second and the third
methods, Q will increase as more and more training samples arrive till it reaches the intrinsic
dimensionality of previous training samples. Due to the approximation in (17), among the Q

eigenvectors, typicaly the first few eigenvectors are more precise than the others. Therefore, in

practice if weneed N eigenvectors for building an eigenspace, we would keep Q to be a number

larger than N .

6.1.3 Updating eigenspace with missing data

In some applications, the training vector x, contains the missing data. In this case, the
updating of the eigenspace needs to be re-stated as following: Given a new sample x, and its
corresponding mask a, , update the existing eigenspace m, ,, ¢,,,and w_, tobem , ¢, and
W, .

Similar to what we present in Section 6.1.1, this updating can be formulated in the

following three steps. First, the mean m _, is updated based on the current weighting vector
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and the masked test sample. Notice the division is element-wise. Also the weighting vector w

is updated by the new mask vector.

” 1 “
m =————(w__m__, +a X 22
n Wn,l+an( m-1 n-1 n n) ( )
wW_ =W __ +a

Then the covariance matrix is updated by combining the previous covariance and the
current new masked sample. The weighting matrix is updated by the out-product matrix of the
new mask vector.

~ 1 ~ “ n
C=——>—  _(W_C _ +a((x.-m)x —-m.)'a 23
n Wn_1+ana:]—( v-1~"n-1 n( n n)( n n) n) ( )

Wn = Wn—l + a‘na-rl;
Finally, by performing eigen-analysis for the estimated covariance matrix én, we can

obtain the new eigenvectors ¢ , .

Here we might meet the same problem as the updating of the normal eigenspace (without

missing data). That is, for some applications, we are dealing with high dimension training
samples and thus the covariance én is expensive to compute and update. Due to the fact that we

need to perform the element-wise operation in (23), we could not borrow the same idea as in
Section 6.1.2, which updates the inner-product matrix, instead of the covariance matrix. Thusin

practice, we might keep al training sample x, and their corresponding masks a,, .

6.2 Experimental results of updating the mosaic model

Given a set of face images from L subjects for training, each subject has one individual

mosaic model trained from hisher own training images. When a test image arrives, it is
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compared with every individual mosaic model and assigned to the one that gives the minimal
similarity measure.

Now we need to decide whether to update the mosaic model of the recognized subject,
using the test image. We use the twin-threshold scheme for making the decision. First, by
comparing the minimal similarity with a pre-defined threshold, we can see whether the current
model can represent the test image well. If it does, we do not perform updating since this test
image does not bring enough new statistical information for the mosaic model. Second, we
calculate the confidence measure as the difference between the similarity measure of the second
candidate and the similarity measure of the top candidate. Then the confidence measure is
compared with another pre-defined threshold. If the confidence measure is larger than that
threshold, this test image will be utilized to update the assigned mosaic model using our updating
method, as described in Section 6.1.3. Basically the larger the confidence measure, the more
confidence we have about the current recognition result. Thus as time goes on, the mosaic model
will include the most recent statistics of the subject’ s appearance, and be able to recognize more
“new looking” images from that subject.

Notice that there might be chances we would do a wrong updating, i.e., the test image and
the model being updated are not from the same subject. The wrong updating corrupts the model,
which is very bad for recognition. However, given the fact the most of the recognition
performance without updating can achieve 90% recognition rate, the chance of wrong updating is
very small.

As we mentioned before, the value of the decaying parameter a,, should be determined
according to the statistics of the random process. If the statistics of the random process change

fast, we choose a small a,. If the statistics change slowly, a large a,, may perform better. In
[51], we provide an explicit formulation on how to choose a, dynamicaly. In the

implementation of updating with missing data, we do not incorporate this dynamic scheme.
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We have tested our proposed algorithm on the FIA database. We use the same experimental

setup as the option 3 of Section 5.4.2. There are 29 subjects in the database, with 10 sequences

per subject as the test sequences. Each sequence has 50 frames, and the first frame is labeled

with the ground truth data. Only one image per subject is available for training a mosaic model

without deviation. During the test stage, if any video frame from the test sequence passes the

twin-threshold test, we will use it to update the mosaic model of the recognized subject. Figure

45 shows the mean of one individual mosaic model being updated during the test stage. We show

the recognition performance of our proposed updating agorithm comparing with the one without

updating. We can see that the mosaic model with updating greatly improves the face recognition

from video sequences.

Figure 45 The mean of the mosaic model being updated during the test stage of one subject

Table 3 Recognition performance of updating the mosaic model

Mosaic model without updating

Mosaic model with updating

12.07%

6.90%
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6.3 Conclusions

In this chapter we apply the updating-during-recognition scheme to using the face mosaic
models on face recognition applications. We first present the theory for updating a normal
eigenspace, which can be performed via the covariance matrix or the inner-product matrix. Then
we show the similar covariance updating can also be applied in updating an eigenspace with
missing data. In the updating-during-recognition scheme, any video frame that satisfies the twin-
threshold will be utilized to update the individual mosaic model of the recognized subject.

In the experimental part, we show that by using the updating scheme, the face mosaic model
can be enhanced during the test stage, and eventually improve the face recognition from video

sequences.
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7. Summary and Future Directions

All the work in this thesis is to improve the face recognition performance in dealing with
variations. We propose the idea of geometrical mapping in taking care of the pose variation. The
resulting texture map from the geometrical mapping is represented as an array of local patches,
which enables us to study the discriminative power of local patches according to different
patches. Also, we propose to build a statistical mosaic model from multiple training images with
the help from a geometric deviation model. Furthermore, we apply the face mosaic model in
video-based face tracking and recognition. And also we use the updating-during-recognition
scheme to enhance the model and recognition over time.

The contribution of thisthesisliesin the following:

The first contribution isto use a 3D ellipsoid model to compensate the pose variation. As
the hardest variations to deal with, previously pose variation is either modeled purely from a 2D
representation, or via a very sophistical 3D shape model. We attempt to model the pose variation
by relying on a simple 3D €llipsoid, which provides the benefit of automatic and efficient
modeling comparing to the sophistical 3D shape model, and of better approximation to the true
geometry comparing to the 2D representation.

The second contribution is to learn a probabilistic model for comparing similarity

measures of corresponding patches. By modeling the intra-subject and inter-subject variations
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explicitly, we can study how the discriminative power changes according the pose variation. Also
the Bayesian framework can be used to evaluate the similarity value of corresponding patches.

The third contribution is to represent the mosaic model as an array of patches and as a
subspace model instead of one plane texture map. Traditionally the mosaic is generated by
sticking multiple images together to form one larger texture map. We propose to use a statistical
subspace for modeling the mosaic, which certainly models much more variations comparing to
using only one texture map. Also the patch representation for the texture map and the mosaic
model is better than the original texture maps because the low-dimensiona feature (patch) is
easier to be modeled using the statistical tool than the high-dimensional feature (map).

The fourth contribution is to propose the geometric deviation model in combining
multiple images for training a mosaic model. There are two benefits of using this deviation
models. First, it aleviates the blurring problem raised by the week geometric assumption of the
3D ellipsoid model. Much clear and informative mosaic model can be obtained by utilizing the
deviation model. Second, this deviation model is an indication of how much the true geometry of
the human face deviates from the 3D ellipsoid model. For training images from one subject, this
deviation model contains the individualized geometric information, which will certainly help the
face recognition together with our mosaic model on facial appearances.

The fifth contribution is to utilize the face mosaic model in pose robust video-based face
recognition. The traditional problem with video-based face recognition is face registration, i.e.,
we should not only track the face area, but also register the face before the recognition can take
place. Since the face mosaic is a good model for pose variation, we use it in performing face
tracking and recognition simultaneously.

The sixth contribution is to build a capturing system for collecting a multi-view face
video database. In the face recognition community, there are a number of public available face
image databases, such as FERET, ORL, PIE, etc, which have been the great sources for different

algorithms to compare face recognition performance. However, there are not much face video
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databases, especially the multi-view database. We have built a capturing system on both
hardware and software. This system is able to capture six different video sequences of human
faces simultaneously and save into the hard disk. Three different views of face videos are
captured synchronoudly.

The final contribution is to apply the updating-during-recognition scheme for video-
based face recognition. Due the limited amount of training data, the face model normally does
not contain enough statistical information after the training stage. By updating the mosaic model
using part of the test data, we can enhance the modeling and recognition over time. This scheme
is genera in the sense that it can be applied to video-based face recognition based on any
updateable models.

There are some interesting extensions for the work described in this thesis:

First, we have mentioned there is one dimension on how much the recognition
algorithms are relying on the geometric model. Our approach is in the middle along this
dimension. If we move toward the direction of using more geometric information, hopefully the
recognition performance is better, while the difficult of model fitting is also getting harder. Now
the question is that where would be the best trade-off along this dimension, in terms of efficient
and automatic recognition.

Second, suppose we only have one front training image for one subject, can we
estimate/anticipate what would be the profile view looks like for this subject? | think we can
approach this problem by studying the relationship between the patches from the front view and
the patches from the profile view. Our face mosaic has already modeled the statistical of the
within-patch appearance, but we did not model statistical of the between-patch case.

Third, an interesting problem in pose robust face recognition is that, if we only allow one
training image per subject, which pose image should we use for training, in order to have the best
recognition performance? Is that purely front view? Or 45 degree in horizontal direction? We

wish that the answer to this question is approach-independent.
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Fourth, more and more interests are moving toward the 3D face recognition, where both
the training and test data are 3D range face images. In this case, we can still apply the mosaicing
idea. That is, to register different parts of range images and stick them together to form a larger
model. The difference between this and our application is that the geometric deviation model is

not needed since we have a perfect 3D geometric model.
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