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Abstract 

 

Researchers have been working on human face recognition for decades. Face recognition is hard 

due to different types of variations in face images, such as pose, illumination and expression, 

among which pose variation is the hardest one to deal with. To improve face recognition, this 

thesis presents an integrated approach to performing pose robust video-based face tracking and 

recognition by using a face mosaic model. We approximate a human head with a 3D ellipsoid 

model, where each face image is a projection of the 3D ellipsoid at a certain pose. In our 

approach, both training and test images are projected back to the surface of the 3D ellipsoid, 

according to their estimated poses, to form the texture maps. Thus the recognition can be 

conducted by comparing texture maps instead of the original images, as done in traditional face 

recognition. In addition, by representing the texture map as an array of local patches, we can 

train a probabilistic model for comparing corresponding patches. With multiple training images 

under different views, we are able to obtain a statistical mosaic model as well as a geometric 

deviation model, which not only reduces the blurring effect in the mosaic model, but also serves 

as an indication of how much the actual human faces geometry deviates from the 3D ellipsoid 

model. Furthermore, we apply the face mosaic model to video-based face recognition. The 

mosaic model is able to simultaneously track, register, and recognize human faces from video 

sequences. Finally, we also apply the updating-during-recognition scheme in using the mosaic 

model. This scheme allows the mosaic model to be updated during the test stage in order to 

enhance the modeling and recognition over time. 
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1. Introduction 
 

 

For decades human face recognition has been an active topic in the field of object 

recognition. A general statement of this problem can be formulated as follows: given still or 

video images of a scene, identify one or more persons in the scene using a stored database of 

faces [10]. A system that performs face recognition has many applications, such as nonintrusive 

identification and authentication for credit card usage, nonintrusive access control to buildings, 

and identification for law enforcement.  

Comprehensive surveys of human and machine recognition techniques can be found in 

[10][1][20][79]. A lot of algorithms were proposed to deal with the image-to-image, or image-

based, recognition where both the training and test sets consist of still face images. There are two 

basic kinds of face recognition algorithms: one is based on the feature matching, such as Elastic 

Graphic Matching [40]; the other is based on the template matching, such as the eigenface 

approach [72], and Linear Discriminate Analysis (LDA) [2]. In the latter, the eigenface approach, 

which applies Principal Component Analysis (PCA) in the pixel domain, plays a fundamental 

role. It is widely considered as the baseline of many face recognition algorithms. It has the 

advantage of fast computation, stable performance for the case of frontal face recognition with 

constraints on illumination, expression variations, etc. However, with existing approaches, the 

performance of face recognition systems in practice is affected by different types of variations, 

for example, expression, illumination, and pose.  
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At least two observations have been made from the previous extensive studies. First, face 

recognition is to deal with variations. Researchers have studied how face recognition is affected 

by different kinds of variations, such as expression [74][55][50], illumination [1], pose [78][58], 

aging [41], and sunglasses [80]. Among these, pose variation is the hardest one to model and 

therefore contributes most of the recognition error [20][61]. Because pose variation results not 

only in shape variation, but also in appearance variation due to the changing relation between the 

illumination source and the face. For example, as shown in Figure 1, one of the results from Face 

Recognition Vendor Test (FRVT) 2002, the recognition rate of pose variation is much lower than 

that of illumination variation. Second, face registration is the key of face recognition. This 

observation is a direct consequence of the first one. In dealing with different variations, if we 

could register face images into the canonical model, the recognition task would be simpler. In 

traditional image-based face recognition, the face area is normally cropped before feeding it into 

the recognition module. The importance of face registration has been overlooked in the literature. 

However, in video-based face recognition, the face portion has to be registered from the video 

frame before any recognition can take place.  
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Figure 1 Experimental results of FRVT 2002 on the recognition rate of different variations. 
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1.1 Our approaches 
 

 In this thesis, we propose an integrated approach to performing video-based pose robust 

face tracking and recognition using a face mosaic model. 

 As motivated by the research on video mosaics [68] and fingerprint mosaicing [37], we 

propose to model the facial appearance by constructing a mosaic model from multiple faces at 

various poses. Traditionally, the pose variation is very difficult to model. We propose to use the 

geometry of a face to improve the mosaicing result. By approximating a human head with a 3D 

ellipsoid, each face image is the result of projecting the ellipsoid’s certain portion on the image 

plane. Given a number of face images under various poses, as shown in Figure 2, we map the 

face portion of each frame onto the surface of the ellipsoid using the geometric mapping 

algorithm. Unwrapping the surface of the ellipsoid will result in a texture map, which has a α  

and β  coordinate system. In the mean time, instead of one single texture map, a statistical model 

composed of a mean image and a number of eigen-images, is trained by using the unwrapped 

texture maps.  

 In this thesis, we first present how to perform pose robust face recognition using 

geometry-assisted probabilistic modeling. In our approach, all training and test images are 

projected to the surface of a 3D ellipsoid by estimating the optimal pose and position 

information, and represented as texture maps. The distance measure is calculated in the overlap 

area between texture maps of the training and test images. Also by representing a texture map as 

an array of local patches, it enables us to develop a probabilistic model for comparing 

corresponding patches from a face database with pose variation. We study how the 

discriminative power of corresponding patches varies for different poses. Eventually, we are able 

to utilize the Bayesian framework to evaluate the distance measure of corresponding patches. 
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 Second, we combine multiple images with pose variation to build a statistical mosaic 

model, which is used for face recognition. In our mosaic method, combining multiple images is 

essentially combining multiple texture maps. Since the same facial feature, such as the mouth 

corner, found in multiple maps might not correspond to the same coordinate on the single texture 

map, the blurring effect would be observed when we combine multiple texture maps. To reduce 

such blurring, one key idea in our approach is to allow a patch to move locally toward better 

corresponding across multiple maps, use the flow representation for modeling the amount of 

movement, and train the flow representation to form a geometric deviation model via PCA. The 

benefit of this approach is that while we are obtaining a less-blurring facial appearance model 

from multiple views, we also form a geometric deviation model, which models how the actual 

geometry of each individual subject deviates to the 3D ellipsoid model. It is important to use two 

models: one for appearance variations and another for geometric deviation, especially when a 

rough 3D ellipsoid model is used as the face geometry. We show that both the appearance and 

the geometric model are useful for face recognition. 

 Third, since our face mosaic model is a simple statistical model combining both 

appearance and geometric information, we apply it for performing face tracking and recognition 

simultaneously. Given a test face sequence, we can track faces using the condensation method 

[28] or the Levenberg-Marquardt algorithm [63], based on a face mosaic model. Both algorithms 

are trying to estimate the optimal mapping parameter in order to minimize the distance measure 

between the test image and the model. Face tracking and recognition can be performed 

simultaneously by using the condensation framework. 

 Fourth, due to a limited number of training images, usually we cannot train a face mosaic 

model containing enough statistical information. To deal with this issue, we apply the updating-

during-recognition scheme [51] in video-based face recognition. That is, by taking more images 

from a test sequence, which contains pose variation or expression that have not been seen, as the 
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training data, our mosaic model can be enhanced and eventually results in a better recognition 

system. 

 

α

β

 
 

Figure 2 Generating a statistical face mosaic model from multiple images with different 
poses. 

 
 

In literature, a few papers propose techniques similar to face mosaicing [11][42]. Compared 

to them, our method has a number of novelties. First is that instead of using the cylindrical 

projection, we use the ellipsoidal projection, which works more naturally with the head motion in 

both horizontal and vertical directions. Second is that while traditional mosaic algorithms usually 

result in only one texture map image, our method generates one statistical model with both the 

mean image and a number of eigen-images, which provides a more sophistical statistical model to 

represent different types of variations, compared to using only one template image. Third, we 

represent the mosaic as a set of patches and learn a probabilistic model for the similarity measure 

between the corresponding patches of the mosaic model and the test image. Fourth, while 

traditional mosaic algorithms assume a planar relation among multiple images, we use the 

ellipsoid model together with the deviation modeling, which results in better matching among 

multiple texture maps. 
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Comparing to other approaches in pose robust face recognition, we can imagine there is one 

dimension measuring how much the face recognition algorithm are relying on the geometric 

information. The approach of modeling dynamic and using mapping functions are on the extreme 

end of this dimension since they do not use any geometric information. While Blanz and Vetter’s 

work [5] is on another extreme end of this dimension because they use a very sophistical shape 

model. Kanade and Yamada [32]’s work use a little geometric information because they register 

the face based on three facial features. Comparing to them, our approach uses less geometric 

information than Blanz and Vetter’s work, but more than Kanade and Yamada’s work. 

Researchers always assume that the better modeling leads to the better recognition performance. 

However, the price we have to pay for a more sophistical modeling is that the model fitting will 

become too difficult. For example, in [5], both the training and test images are manually labeled 

with 6 to 8 feature points. On the other hand, we believe that unlike the rendering applications in 

computer graphics, we might not need a very sophistical geometric model for face recognition 

applications. The benefit with a simpler geometric model is that the fitting will tend to be easier 

and automatic, which is the goal of our approach. Although our approach uses more geometric 

information than [32], which needs to track three feature points for any test images, we consider 

our approach can fit the model more reliable since we use the appearance information of all face 

portion to register the face according to the model. Compared to AAM [16][56], our mosaic 

model can model much large pose variations because in AAM none of the meshes can be 

occluded during the model fitting, which greatly constrains the possible pose variation.  

Comparing to Zhou et. al.’s work [82], our approach uses a sophistical face mosaic model 

which can take care of pose variation better than the traditional PCA model used in [82]. In 

addition, we utilize the idea of statistical learning in updating the face mosaic model, which 

greatly improves the face recognition, especially when there are very few training images to begin 

with. 
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1.2 Thesis structure 
 

The remaining of the thesis is organized as follows.  

Chapter 2 introduces the background of human face recognition. We survey the previous 

work on three major problems in face recognition: template based face recognition, pose robust 

face recognition, and video based face recognition. 

In Chapter 3, we introduce how to generate a texture map from a face image based on a 

known mapping parameter. We present a method of learning a probabilistic model for comparing 

corresponding patches from a face database with pose variation, and how to apply it for pose 

robust face recognition. In the experiments, we show that the probabilistic model can improve the 

pose robust face recognition. Comparing with the baseline algorithm, we observe a significant 

improvement when performing experiments on the CMU PIE database. 

Chapter 4 presents a method of combining multiple training images for training a statistical 

mosaic model. A geometric deviation model is trained in order to have a better matching among 

patches from multiple texture maps. We show an improvement of using the deviation model from 

pose robust face recognition experiments. 

Chapter 5 introduces the mosaic based face tracking and recognition from video sequences. 

Given a face mosaic model and a test sequence, we introduce two methods of performing face 

tracking: the condensation method and the Levenberg-Marquardt algorithm. We also present our 

effort in collecting a face video database. Experimental results of both tracking and recognition 

from video sequences are shown. 

Chapter 6 presents how to apply an updating-during-recognition scheme in using the mosaic 

model. Different methods of subspace updating are presented. We show that by using the 

updating, pose robust face recognition can be greatly improved based on only one front training 

image. 
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Finally, Chapter 7 concludes this thesis and point out the contributions. Also we provide 

interesting extensions for the work described in this thesis. 
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2. Background 

 
 
 

Human face has been an interesting research topic for decades. Many promising topics 

are explored based on the interaction between the face and the computer, such as face modeling 

[81], face animation [42], face rending [6], face detection [77][66][38], and face recognition 

[10][1][20][79]. 

As we mentioned before, comprehensive surveys of human and machine face recognition 

techniques can be found in [10][1][20][79]. Thus, this chapter does not intend to give a detailed 

survey of all previous work in the human face recognition. Rather, we would like to focus our 

attention on three major problems in face recognition: template based face recognition, pose 

robust face recognition, and video based face recognition. 

 

2.1 Template based face recognition 
 

Human face recognition has a long history in the vision community. The first major 

attempt is made in Kanade’s Ph.D thesis in 1973 [31], which tries to recognize faces via the 

distribution of facial feature points. There are two basic kinds of face recognition algorithms: one 

is based on the feature matching, such as Elastic Graphic Matching [40]; the other is based on the 

template matching, such as the eigenface approach [72], Linear Discriminate Analysis (LDA) 

[2]. The eigenface approach has the benefit of fast computation, easy implementation and good 

performance in normal conditions. Since the birth of the eigenface approach, the template based 
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approach has become more dominant than the feature based approach. In the later chapters, we 

also use the eigenface approach as one of the baseline algorithms. The details of this algorithm 

are presented in this section. 

Suppose there are M training face images for each of the K subjects. Let each face image 

),( yxI  be a 2-dimensional N-by-N array of pixel values. An image may also be represented (after 

scanning) as a vector of dimension N 2 , where each image corresponds to a single point in the 

N 2 -dimensional image space. Let us denote each face image of the training set as f ij , a 12 ×N  

vector, where i and j denote the subject index and the face image index respectively, and 

10 −≤≤ Ki , 10 −≤≤ Mj . The average face vector g  is defined by 

                                                  ∑∑
−

=

−

=×
=

1

0

1

0

1 K

i

M

j
ij

KM
fg                                                 

The difference between each training face and the average is denoted by the vector 

gfs −= ijij . These difference vectors form a MKN ×2  matrix, ],...,,[ 1,10100 −−= MKsssA . We apply 

PCA to these difference vectors by finding a set of Q orthonormal eigenvectors, nu , 

corresponding to the largest eigenvalues of the matrix TAA , i.e.,  

                                            nnn
T uuAA λ= ,        n=0,1,…, 1−Q ,                                                (1) 

where 0λ , 1λ ,…, 1−Qλ  are nonnegative and in a decreasing order. However, the matrix TAA  is 

N 2  by N 2 , and determining N 2  eigenvectors can be computationally intensive. Usually the 

number of training faces, KM × , is much smaller than N 2 . So we first determine the 

eigenvectors, '
nu , of a MKMK ×  matrix AAT , i.e., 

                                ''
nnn

T uAuA λ=                                                                           (2) 

Pre-multiplying (2) by A  and comparing to (1), we can see that 2/1' −= nnn λAuu . These 

eigenvectors form an orthonormal basis set of a new feature space, called the eigenspace. 
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Essentially it is a subspace representation of all the faces. Thus, we can transform each face 

image, f ij , from the image space to the eigenspace as follows:  

                                         )( gfu −= ij
T
nnw        n=0,1,…, 1−Q                                          (3) 

Each face image can be described as a vector T
Qij www ],...,,[ 110 −=p  in the eigenspace. 

During the test stage of the recognition system, a test face image f  is projected to the eigenspace, 

as in (3), to obtain the projected vector p . Then the nearest neighbor classifier is used to 

determine a subject whose ijp  has the minimal distance to p .                   

The eigenvector determination can be computationally expensive when the number of 

training images is large. The power method [26] is one approach to efficiently determining the 

dominant eigenvectors. Instead of determining all the eigenvectors, the power method obtains 

only the dominant eigenvectors, i.e., the eigenvectors associated with the largest eigenvalues.  

Essentially the eigenspace provides a low dimensional linear subspace for describing the 

facial appearance. All recognition tasks are performed in this subspace instead of the original 

pixel domain. However, the objective in the dimension reduction is to best represent the original 

data set in the mean squared sense, which might not be optimal in terms of classification. This 

observation leads to one direction of improving the role of PCA in face recognition: to treat 

classification as the criterion of constructing a subspace.  

Fisherface [2] and its subsequent work [12][77] are one attempt along this direction. 

They basically combine PCA and LDA to generate a subspace that is optimal in terms of linear 

classification. Another attempt is to use kernel methods together with PCA [47][35] or LDA [48] 

to learn a subspace.  

The second direction of extending PCA is to apply PCA on feature domains other than 

pixels. For example, we can apply PCA on the optical flow between two images, which results in 

an expression robust face recognition system [50]. Chung et. al. [15] apply PCA on the Gabor 

filter responses, and the new algorithm works better for illumination and pose variation. 
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2.2 Pose robust face recognition 
 

As we mentioned before, among the variations that have been extensively studied, pose 

variation is the hardest. Let us review the previous work in dealing with the pose variation in face 

recognition. 

There are different types of approaches for pose robust/invariant face recognition. The 

first type of approach is to learn the dynamics/trajectories from images with continuous pose 

variation. And then such trajectories can be used for recognizing faces from image sequences 

[43][3][52]. The trajectory is represented by either a curve or a surface. Notice this is also one 

typical approach in the literature of video-based face recognition. One drawback with these 

approaches is that certain application scenario, where the subject shows consistent motion in 

both training and test video sequences, has to be assumed, in order to make the dynamic to be 

meaningful. This assumption is not true in general, but might be true for specific tasks, which 

limits the popularity of this type of approaches. 

The second type of approach is to treat the whole face image under a certain pose as one 

sample in a high dimension space, and learn the relation between a front pose image and non-

front pose images by constructing a mapping function between them. Given a test image with an 

arbitrary pose, a recognition-by-synthesis approach can be applied. That is, we can either 

transform this test image into the front view [43], or transform each of the training images into 

the same pose as the test image [58], based on the learned mapping function. One potential 

problem with this type of approaches is that it is not clear whether the relation among multiple 

pose images could be approximated as a simple function, such as a linear transformation [43]. 

The eigen light-field method [23] can also be classified as this type of approach.  

Since a face image is pretty complex and different parts of the face might transform in a 

different manner under varying poses, researchers start to look at faces as a set of parts/patches 

[54][32]. Kanade and Yamada [32] conduct a systematic analysis on how the discriminative 
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power of different parts on human faces changes according to different poses, and such analysis 

leads to a probabilistic approach to pose invariant face recognition. In this thesis, we propose to 

use the patch representation for texture maps. There are at least three benefits of using the patch 

representation instead of the original texture maps. First, the patches representation enables use 

to build a probabilistic model for the similarity between corresponding patches. Thus each patch 

could be treated differently according to its discriminative power. Second benefit is that the 

variation of the facial patch is simpler and thus more likely to be modeled with a certain function 

or a probabilistic model. Third, when multiple texture maps are combined together, the patches 

are allowed to move locally in order to have a better corresponding among multiple texture maps, 

which compensates the not-perfect assumption on the 3D ellipsoid geometry of the human head. 

Since we are dealing with pose variation, which is a result of the human head’s geometry 

projected differently, naturally researchers would rely on the geometric information to aid the 

pose invariant face recognition. If we imagine there is a dimension indicating how much 

geometric information is used for recognition, we can place many algorithms along this 

dimension. Many algorithms, such as the ones in the first and second type of approaches, do not 

use any geometric information. Others do make use of geometric information by assuming a 

particular head model. For example, a cylinder head model is widely used in face tracking [9][7]. 

However, the cylinder model does not act naturally for head nod. Thus we propose a spherical 

head model to enhancing the modeling [53]. In this thesis, we will use a 3D ellipsoid as the head 

model based on the consideration that the human head does have different width, height, and 

depth. Blanz and Vetter’s approach [5] is in the extreme end of this dimension since they use 

perfect 3D geometric information of human heads. Based on a large set of face images, they train 

two subspace models for facial texture and shape respectively. Given a test image under any pose 

and lighting, they can fit the image with two models by tuning the coefficients in the models. 

Finally, the model coefficients are used for recognition.  
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Researchers also take care of pose variation via face registration. One common way in 

face registration is to detect the facial features, such as eyes, mouth, etc, and apply transforms 

based on the corresponding facial features in images under different poses [3]. Active 

Appearance Models (AAM) [16][56] has been used for face tracking and recognition, where the 

face is modeled by a triangulated mesh structure. Once the mesh could be fitted to a face image, 

this face image is registered with a canonical model. Of course, [5] is also a sophistical approach 

of registering face images. 

 

2.3 Video-based face recognition 
 

To improve face recognition, recently the researchers start to look at video-based face 

recognition [44][18][82][51], where the test images are video sequences containing faces. Recent 

psychophysical results show that a human makes use of facial motion information for face 

recognition [70]. Video-based face recognition has several advantages over image-based face 

recognition. First, the geometric information can be explored given continuous video sequences 

showing different poses of human faces, which helps to handle pose variation. Second, the 

motion information of faces can be utilized to facilitate the recognition task. For example, the 

subject-dependent dynamic characteristics can help face recognition [52]. Third, given the fact 

that in video sequences most of face variations are present in a continuous fashion, video-based 

recognition allows the learning or updating of the subject’s model over time. For example, we 

propose an updating-during-recognition scheme, where the current and past frames in a video 

sequence can be used to update the subject’s models to improve recognition results for future 

frames [51]. Furthermore, most practical face recognition systems actually take video sequences 

under certain scenario as the input. Thus, it is very natural to take advantage of the video 

information from the input, instead of just selecting certain frames and performing image-based 

recognition.  
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There are not much previous approaches can be considered as video-based recognition 

yet. Most of the previous video-based algorithms simply apply image-based recognition to each 

frame, and average the frame based scores to obtain the final similarity between the sequence and 

the model. We still consider this type of approaches as image-based recognition.  

One type of video-based recognition is to model the dynamics in video sequences 

[43][3][52], where face tracking and recognition are two separate steps. Normally face 

recognition is performed after the tracking is finished, which still ignores the face registration 

issue. Recently, another trend in video-based face recognition is to simultaneously perform face 

tracking and recognition given a test sequence. For example, Zhou et. al. [82] apply the 

condensation method for video-based face recognition. In their case, since a simple PCA model 

is used in modeling facial appearance, the tracking performance in dealing with pose variation 

will be affected. 
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3. Face Recognition Using Geometry-Assisted 

Probabilistic Modeling  

 

 
As we mentioned before, the most difficulty variation for face recognition is pose 

variation. The difficulty is that the intra-subject variations are as large as, or even larger than the 

inter-subject variations when pose variation is present. To improve face recognition under pose 

variation, we present a geometry-assisted probabilistic approach. We approximate a human head 

with a 3D ellipsoid model, where any face image is a projection of such a 3D ellipsoid at a 

certain pose. In this approach, both training and test images are projected back to the surface of 

the 3D ellipsoid, according to their estimated poses, to form texture maps. Thus the recognition 

can be conducted by comparing the texture maps instead of the original images, as done in 

traditional face recognition. The geometrical mapping could be treated as one way of 

compensating pose variation and reducing the intra-subject variations. In addition, we represent a 

texture map as an array of local patches, which enables us to train a probabilistic model for 

comparing corresponding patches.   

In this chapter, we first introduce how to generate a texture map from a face image based 

on a known mapping parameter. Then we present a method of learning a probabilistic model for 

comparing corresponding patches from a face database with pose variation, and how to apply it 

for pose robust face recognition. In experimental results, we show that the probabilistic model 

can improve the performance of pose robust face recognition.  
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3.1 Geometrical mapping 
 

If we compare two face images of the same subject captured at two different view angles, 

the pixel-by-pixel difference is relative big because these two images are not registered/aligned 

with respect to each other. This is also the reason why the traditional eigenface approach does 

not work well for face images with pose variation. Image registration is a way to fix this 

problem, i.e., the comparison should only be conducted after two images are registered. 

Considering the fact that a human head has the non-planar geometry, one way to register face 

images is to project them back to the surface of a 3D ellipsoid from each of the specific poses. 

This procedure of projection is called geometrical mapping.  

Geometrical mapping is a key component in our proposed algorithm. In this section, we 

introduce how to generate a texture map s  from a face image f , given a known match parameter 

x . In the following chapters, we will present how to estimate the mapping parameter x  by 

various methods. 

Three assumptions are made. First, a human head is a 3D ellipsoid with radius to be xr , 

yr , and zr . Second, a face image is captured with a weak perspective camera model [20] and a 

camera focal length equals to one. Third, all images are captured under the ambient lighting 

environment. Under these assumptions, we use a mapping parameter x  to describe the relation 

between a face image and its corresponding texture map. The mapping parameter x  is a 6-

dimensional vector TRRRd ]cc[ hv χβα=x , where vc  and hc  indicate the center of the 

face area in the face image, d  indicates the average distance between the face and the camera, 

and αR , βR  and χR  indicate the rotation of the human head with respect to the XYZ axis. As we 

can see, the mapping parameter x  includes all the information for locating a face, as well as 

generating the texture map from the face image.  
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Let a human head centered at the origin of an XYZ coordinate system and the front face 

look at the positive Z axis. Thus different views of human faces can be obtained by fixing the 

camera and rotating the human head with certain degrees in various directions. To generate a 

texture map s  from f , essentially for each pixel, ),( βαs , we need to find its corresponding 

coordinate, ),( uvf , by knowing the mapping parameter x , which is followed by a bilinear 

interpolation [36] to fill in the intensity of pixel ),( βαs . The parameters v  and u  are the axis of 

the original image; α  and β  are the axis of the texture map. As shown in Figure 3 and Figure 

4, there are basically two steps for this mapping.  

First, a pixel ),( βαs  in the texture map corresponds to one point ),,( zyx ppp  on the 

surface of a sphere, whose radius is one: 
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As shown in the right illustration of Figure 3, the sphere is then converted into an 

ellipsoid by stretching each radius according to xr , yr , and zr : 
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Second, we can rotate the head ellipsoid by αR , βR  and χR  with respect to the XYZ 

axis. As shown in Figure 4, the point on coordinate ),,( zyx ppp  moves to a new coordinate 

),,( zyx ppp ′′′  by the following equation.  
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Then we project the coordinate ),,( zyx ppp ′′′  onto the image plane by using the weak 

perspective camera model, and translate the resulting coordinate by vc  and hc  in both vertical 

and horizontal directions.  
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Finally, we obtain the new coordinate ),( uv  in the image coordinate. By judging whether 

),,( zyx ppp ′′′  is facing the positive Z axis or not, it can tell us whether ),( uv  is a valid coordinate 

in the image plane. If it is, the bilinear interpolation result of ),( uv  is filled in as the intensity of 

the pixel ),( βαs . Otherwise ),( βαs  is considered as a missing pixel and its intensity is set to be 

zero. To compensate the lighting variations, we also normalize the mean of the intensity of all 

non-missing pixels to be 128. 
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Figure 3 Geometric mapping: the corresponding between one pixel on the texture map and 

one point on the surface of the ellipsoid. 
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Figure 4 Geometric mapping: rotate the ellipsoid and obtain the corresponding pixel on the 

image plane. 
 
 

One issue in the above mapping is how to determine the radius of a human head ellipsoid, 

xr , yr , and zr , which is essentially the height, width and depth of the human head. Since we 

already include d  in the mapping parameter, any one of the three radiuses, for example, the 

width xr , can be set to be one. Thus we only need to determine the ratio between the width and 

the depth, and the ratio between the width and the height. In our algorithm, the former is set to be 

a fix constant 0.9 by considering that the head’s depth is slightly larger than the head’s width, 

while the latter is usually obtained from the external sources, such as a face detector or manual 

labeling of a front face image. Once we obtain these two ratios, they are assumed to be constant 

for the same subject. Of course, we can also treat these two ratios as two additional elements in 

the mapping parameter x , and estimate them using the same framework of estimating x , which 

will be introduced in future chapters. 

Since the generation of the map is an essential step in our mosaicing algorithm, the 

efficiency of this step will affect the speed of face tracking/recognition. This step can be 

computationally intensive if every pixel in s  needs to find its corresponding position in f . To 

solve this problem, we approximate the mapping using a triangular mesh, as shown in Figure 5. 
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That is, the texture map s  is represented as a set of triangles; for the vertexes of these triangles, 

we derive their corresponding coordinates in f  using the above mapping equations. Then the 

mapping between two triangles can be approximated by an affine transformation, whose six 

parameters are estimated via three corresponding vertexes. For the pixels inside each triangle, the 

scan-line algorithm [73] can be used to quickly find the corresponding pixels. For example, in 

Figure 6, for each triangle in the destination texture map s , the corresponding pixels of a vertical 

column is lying on a line in the triangle of the source image f , whose slope, ),( yx dd , is 

determined via the affine transformation. The goal of this approximation is to speed up the 

geometrical mapping while not noticeably affecting the recognition performance. The choice of 

triangle size is a trade-off between the mapping speed and the mapping precision. If the triangle 

is larger, the mapping is faster while the precision is also lower. If the triangle is too small, we do 

not gain much in speeding up the geometrical mapping. In our implementation, the triangle size 

is 4 by 4 pixels. 
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Figure 5 Triangle representation for speeding up the texture mapping 
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Figure 6 Scan-line algorithm: finding the corresponding pixel of one line in the destination 
triangle is equivalent to scan one line in the image place, whose slope is determined by the 

affine transformation parameters between these two triangles. 
 
 

3.2 Geometry-assisted face recognition 
 

In many face recognition systems, there is only one face image, normally the front view 

face image, during the training stage. However, in the test stage, there might be test images that 

correspond to different poses of human faces. This is a hard problem because the same subject 

looks very different under various poses. In this section, we present our geometry-assisted 

approach to deal with this case. 

As shown in Figure 7, given a face database with L  subjects, there is only one front view 

image, ),,2,1( Lll L=f , for each subject that is available for training. During the training stage, 

we estimate the optimal mapping parameter lx  for each training image lf  based on a universal 

mosaic model, which will be described in the next chapter. Essentially this optimization process 

is trying to minimize the difference between the universal mosaic model and the texture map 

controlled by the mapping parameter, which provides the information about the position of the 

face, the distance of the face, and the pose. Notice that some of the parameters might be known 

from external sources. For example, if we know all training images are front view, the pose 

parameters, αR , βR  and χR , are known to be zero. Once the optimization is done, the 
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corresponding texture map ls  is generated from each training image lf . It is obvious that in the 

texture map ls , only part of the pixels are valid information of the appearance, while the rest are 

missing pixels since each face image only corresponds to one portion of the 3D human 

ellipsoid’s surface. To describe this missing pixel information, we also generate a mask map, la , 

which has the same dimension as the texture map ls . For all missing pixels in ls , the 

corresponding pixel in la  is zero and the others are one. 

During the test stage, given one test image tf , first we estimate the optimal mapping 

parameter based on the universal mosaic model. Second, the resulting texture map ts  and mask 

map ta  are compared with each of the training texture maps as the following: 
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−=                                                       (6) 

where o  refers to the element-wise multiplication. Basically ld  is the normalized mean-square-

error between the overlap area of the test texture map ts  and the training texture map ls , and 

lt aa o  indicates the size of the overlap area between two texture maps. There is a degeneration 

case when the two texture maps have a very small overlapping area, which leads to small ld . 

Because in our estimation algorithm, the mapping parameter changes slowly, there is a very low 

chance that we will fall into this degeneration case. Eventually, the test image is recognized as 

the subject with the minimal ld . 
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Figure 7 Geometry-assisted face recognition: all training and test images are converted into 
the texture map, and the distance measure is calculated based on the overlap area between 

two texture maps. 
 

3.3 Probabilistic modeling for patches 
 

Researchers have considered that different parts of a human face contribute differently to 

face recognition. For example, Pentland et. al. [58] propose to use modular eigenspaces to model 

the appearance of facial features, such as eyes, mouth, etc. Kanade and Yamada [32] perform 

discriminative analysis for all sub-regions in a face area and obtain a pose robust face recognition 

algorithm. 
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We extend the idea of sub-region analysis and applied it to the geometry-assisted 

approach. As shown in Figure 8, for each texture map ls , we represent it as an array of local 

patches l
ji ,s . There are a number of benefits of using the patch representation instead of the 

original whole texture map. First, when combining different texture maps from multiple poses to 

generate a map that covers larger pose views, patches can be moved locally to find better 

matching with other poses. Hence the moving of local patches compensates when the assumption 

of the ellipsoid human head is not perfect. We will further utilize this benefit and propose new 

algorithms in the next chapter. Second, instead of treating each pixel equally by using (6), we can 

modify the similarity value of each patch according to the pose changes. In the meantime, a 

probabilistic model can be trained to model such changes and improve face recognition under 

pose variation.  

Notice that after a texture map is decomposed into patches, in the boundary area of the 

face portion, there are some patches including partial missing data. For simplicity, we treat all 

these patches as missing data. Considering the fact that the patch size is not too big and also the 

boundary area is heavily up-sampled from the original image domain, the simplification is 

negligible since we only discard a very small amount of boundary pixels. 

In our implementation, the patch size is 4 by 4 pixels and the texture map’s size is 90 by 

180 pixels. Thus there are 22 and 45 patches in the vertical and horizontal directions respectively. 

The selection of the patch size is a trade-off. If the patch size is too big, we lose the benefit of 

modeling local appearance and we could not model enough patch variation with respect to the 

varying pose. On the other hand, if the patch size is too small, it is harder to find corresponding 

among patches from multiple texture maps. From the experiments, we find 4 by 4 is a good 

choice for the patch size. Also we think it is not necessary to overlap patches since we will allow 

patches move around locally, which will be introduced in the next chapter. 
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Figure 8 Patch representation for the texture map: a texture map is evenly decomposed 
into an array of local patches. 

 
Let us introduce how to train a probabilistic model for the similarity value of patches 

from a face database with pose variation. In this thesis we train such a model on the CMU PIE 

database [24]. The PIE database consists of face images of 68 subjects under different 

combinations of poses and illuminations. We use part of this database in this thesis, which are 9 

pose images from 68 subjects. These are the images with multiple poses under the neutral 

illumination. Sample images from one subject can be seen from Figure 9, where the number, c27, 

c34, c14, c11, c29, c22, c02, c37, c05, is the pose labels for each image. We choose c27 as the 

training pose and the other eight poses as the test poses. 

We take 9 pose images of 34 subjects for training the probabilistic model. We denote 

each of the images as ),( ml φf , where mφ  is one of the eight pose labels. For the training process, 

the mapping parameters of all images are estimated based on the universal mosaic model. Thus 

we can obtain the texture maps of all images, and have the patch representation as ),(, mji l φs , 

where i  and j  are the index of patches vertically and horizontally.  

Since we treat the front view, c27, as the training images, we need to study how the 

similarity values of corresponding patches between c27 and all other eight poses change. This is 

done by fixing one patch and one particular pose, and calculating the similarity value (mean-

square-error) of one patch between all subjects in the pose c27 and all subjects in that particular 

pose. For example, Figure 10 is the result of such a calculation for one patch closer to the right 

eye and the pose c29. In this 2D map, the vertical axis represents all the training images, 34 
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subjects under the pose c27, while the horizontal axis represents all test images from 34 subjects 

under the pose c29. Each entry indicates the similarity value of the same patch between any pair 

of subjects. For each combination of all other patches and other eight test poses, we should 

generate one such 2D map. 

Ideally we should expect that the diagonal elements of this 2D map are darker than the 

off-diagonal elements because the former is an indication of the intra-subject variations, while 

the latter is an indication of the inter-subject variations. In order to verify such expectation, we 

plot the histogram of the diagonal elements and off-diagonal elements separately. Also, for 

explicitly modeling these two types of variations, we approximate them as two Gaussian 

distributions. That is, we estimate the mean and stand deviation of intra-subject variations from 

the diagonal elements, and the mean of and stand deviation of inter-subject variations from off-

diagonal elements. The resulting two distributions can be denoted as following: 
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where same
ji ,µ , same

ji ,σ , diff
ji ,µ , diff

ji ,σ  are the mean and stand deviation of intra-subject and inter-

subject variations for the patch ),( ji  under the test pose mφ . Let us denote the probabilistic 

model as }},,,{{ ,,,, m

diff
ji

same
ji

diff
ji

same
jid φσσµµ=P . Notice that all four parameters depend on the test 

pose mφ . For example, the first plot on the left of Figure 11 is the Gaussian approximation of two 

distributions in Figure 10. The solid and broken curves are the histograms of two distributions, 

and the dotted curves are the approximated two Gaussian distributions. The four figures in Figure 

11 are from the two distributions of the same patch with four different test poses: slightly right 

(c29), more right (c11), further right (c14), profile (c34). We can see that as the pose changes 
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from the front view to the profile view, the discriminative power is getting less, which is an 

useful observation and should be taken into account during the recognition. 

To illustrate the relation among these parameters for all test poses, we plot them in 

Figure 12. In total, there are five columns and eight rows, where each row corresponds to the 

statistical information of each test pose, namely c34, c14, c11, c29, c05, c37, c02, c22 from top 

to bottom. The first four columns are the plots of same
ji ,µ , diff

ji ,µ , same
ji ,σ , diff

ji ,σ  for all eight test 

poses. The intensity of each pixel indicates the value of parameter. The brighter the intensity it, 

the larger the value is. In order to compare the difference between these two distributions, we 

normalize the intensity of the first and second column, as well as the intensity of the third and 

fourth column. Naturally, we can observe that the second column, diff
ji ,µ , is brighter than the first 

column, same
ji ,µ , and the fourth column, diff

ji ,σ , is brighter than the third column, same
ji ,σ , which 

means the inter-subject variations have larger mean and stand deviation than those of the intra-

subject variations.  

The last column is the Fisher ratio [17] between two Gaussian distributions defined as 

following: 
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Since the fisher ratio is a good indication of the discriminative power, we can study 

among all patches in the texture map, which patches provide more discriminative power than the 

others. From the last column of Figure 12, we observe that the nose and forehead seem to have 

more discriminative power. This observation might not be true in general. However, it seems to 

be a right conclusion for this particular dataset. 
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Figure 9 Sample Images of one subject from the PIE database: the image in the first row is 

the training image, while all the others are test images. 
 

 
 

Figure 10 2D map of the similar values of one patch (around the right eye) between and 
pose c29 and c27 
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Figure 11 Gaussian approximation: each figure has two histograms (solid and broken 
curves) and two Gaussian approximations (dotted curves); four figures are from the two 
distributions of the same patch (around the right eye) with four different poses, c29, c11, 

c14, c34. 
  

 
 

Figure 12 Probabilistic modeling for patches: the first four columns are plots of same
ji ,µ , diff

ji ,µ , 
same

ji ,σ , diff
ji ,σ  for all eight test poses; the last column is the fisher ratio of two distributions for 

all eight poses; each row corresponds to the statistical information of each test pose, namely 
c34, c14, c11, c29, c05, c37, c02, c22 from top to bottom. 
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3.4 Probabilistic geometry-assisted face recognition 
 

  After introducing how to train a probabilistic model, let us focus on how to utilize it for 

improving pose robust face recognition. Given a face database with L  subjects, only one front 

view image, lf , of each subject is available for training. During the training stage, the mosaic 

algorithm estimates the optimal mapping parameter lx  for each training image lf  based on the 

universal mosaic model. The resulting texture map is represented as an array of local patches, 

l
ji ,s .  

Given a test image, we generate its texture map t
ji ,s  based on the universal mosaic 

model. For the test texture map t
ji ,s  and one of the training texture map l

ji ,s , we compute the 

similarity values of all corresponding patches, }{ , jid . Since we have developed the probabilistic 

models of similarity values of each local patch, it enables us to properly combine these similarity 

values, one computed for each patch, to reach to the local decision for recognizing whether the 

two texture maps/faces are from the same subject or not.  

Given the similarity values and the pose of the test image, the posteriori probability that 

the test image and the training image belong to the same subject is: 

       
)(),()(),(

)(),(
),(

,,

,
, diffPdiffdpsamePsamedp

samePsamedp
dsameP

tjitji

tji
tji φφ

φ
φ

+
=                                   (8) 

where tφ  is the pose of the test image, which can be obtained during the estimation of the 

mapping parameter, )(sameP  and )(diffP  are a priority probability of being the same subject or 

not given any test image. For a database with L  subjects, normally we can set 
L

sameP
1

)( =  and 
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L

L
diffP

1
)(

−= . Notice that in order to calculate ),( , tji samedp φ  using (7), tφ  needs to be equal 

to one of the test poses mφ . This issue can be dealt with in two different ways. 

First, if the pose of the test image tφ  is similar to one of the eight test poses mφ , we can 

approximate tφ  using the most similar test pose. Second, if tφ  is not similar to any one of test 

poses mφ , we can compute the marginal distributions of (8) over mφ : 

                                    ∑=
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 Here we assign a uniform distribution for )( mP φ . It could be non-uniform if we consider 

the probability of each pose presenting in the test set. Finally, the sum rule is applied. That is, the 

averaged probability measure of all patches )( , jidsameP  will be the similarity measure between 

the test image and one of the training subjects. Basically different combination rules, such as the 

sum rule, the product rule, the max rule, etc, can be applied here. Kittler et. al. conclude that in 

general the sum rule outperforms other combination rules because the sum rule is more resilient 

to estimation errors [33]. The test image is recognized to be the subject that gives the highest 

similarity measure.  

 

3.5 Experimental results 
 

We evaluate our algorithm by comparing its performance on the CMU PIE database with 

a standard eigenface method [72]. We use half of the subjects (34 subjects) in the PIE database 

for training the probabilistic model as presented above. The 9 pose images per subject from 

remaining 34 subjects are used for the recognition experiments. 

The front view image (c27) is used for the training, and the other 8 images are used for 

test. As shown in Figure 13, the horizontal axis represents the labels of 8 pose images, 
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34,14,11,29,05,37,03,22 from the right profile to the left profile. The vertical axis shows the 

recognition rate of four different algorithms for each specific pose. The first is the traditional 

eigenface approach [72], where the nearest neighbor classifier is applied. We have manually 

cropped the human face for both the training and test images, and normalized them to the size of 

64 by 64 pixels. Since there are 34 training images in total, it is possible to use an eigenspace 

whose number of eigenvector varies from 1 to 33. We have tested all these possibilities and 

plotted the one with the best recognition performance, whose number of eigenvectors is 21. The 

second algorithm is our geometry-assisted method without probabilistic modeling, which is 

presented in Chapter 3.2. The third algorithm is the geometry-assisted method with probabilistic 

modeling.  

A number of observations can be made from this result. First, when the pose of the test 

image is more toward the profile view, the recognition rate is getting lower. Second, both our 

algorithms perform much better than the baseline algorithm. Third, the geometry-assisted method 

with probabilistic modeling works better than the one without probabilistic modeling. We can see 

that with one training image, our algorithm presents satisfying recognition performance: it 

recognizes all face views with more than 90% correct rate except the two most extreme profile 

views. Even for the two profile views, around 70% and 60% recognition rates are obtained.  

We also plot the results of the multi-subregion method reported in Figure 8(a) of [32]. 

We can see that the performance of our algorithm is comparable with the multi-subregion method 

for test images closer to the front view. For test images closer to profile views, our algorithm 

performs noticeably better. For example, in their report, the recognition rates of two profile 

views are both lower than 40%. There are a few reasons why our method works better for profile 

views. One is that we utilize more appearance information instead of only using the area bounded 

by facial features, such as eyes and the mouth, as done in [32]. Also, the geometrical mapping 

greatly compensates the pose variation and reduces the intra-subject variations.  
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Figure 13 Recognition performances of four algorithms on the CMU PIE database based 
one front training image. 

 
 

3.6 Conclusions 
 

In this chapter we have introduced a probabilistic geometry-assisted approach and 

applied it to pose robust face recognition. All training and test images are projected onto the 

surface of a 3D ellipsoid by estimating the optimal pose and position, and represented as texture 

maps. The distance measure is calculated on the overlap area between any two texture maps. 

Also by representing a texture map as an array of local patches, it enables us to develop a 

probabilistic model for the similarity value of patches from a face database with pose variation. 

Eventually we are able to utilize the Bayesian framework to evaluate the similarity value of 

corresponding patches. Comparing with the baseline algorithm, we observe a significant 

improvement when performing experiments on the CMU PIE database. 

The above proposed algorithms work well for the case where only one training image is 

available for each subject. However, if there is more than one training images, can we recognize 

faces better? The key issue is how to combine multiple training images and generate a unified 
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model that covers all pose variation in the training images. We will focus on this issue and 

propose new algorithms in the next chapter. 
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4. Face Mosaicing For Recognition 

 
 

In the previous chapter, we propose that pose robust face recognition should be 

performed in the feature space of the texture map, instead of the original image space. Due to 

limited one training image per subject, there is only one texture map for each subject after 

training. In order to build a statistical mosaic model for each subject, we need multiple training 

images. This chapter will present our proposed algorithm on how to build such a statistical model 

from multiple images. 

To be more specific, given kf , a set of images containing faces with different poses, we 

need to build a geometric deviation model },{ ug=Θ  and a statistical appearance model 

},{ ,, jiji Vm=∏ , which is an array of patches each of which is modeled by an eigenspace. The 

statistical mosaic model is composed of both these models together with the probabilistic model 

dP  whose training is presented in the previous chapter. 

In our mosaic method, combining multiple images is essentially combining multiple 

texture maps since all images are converted to texture maps. When combining multiple texture 

maps, it is natural to observe that the same facial feature, such as the mouth corner, found in 

multiple maps might not correspond to the same coordinate on the single texture map. The 

blurring effect, which is normally not a good property for modeling, will therefore be observed 

when we combine many texture maps. To reduce such blurring, one key idea in our proposal is to 

allow a local patch to move toward better corresponding across multiple maps, use the flow 
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representation for modeling the amount of movement, and train the flow representation to obtain 

the geometric deviation model via PCA. Since the flow representation plays a key role in this 

process, we first present how we use it for face recognition. Next, we introduce our proposed 

algorithm for training both a geometric deviation model and an appearance model from multiple 

training images. Finally, we show the experimental results by using this new method. 

 

4.1 Flow representation for face recognition 
 

Flow representation (optical flow) [34] is generally used for motion analysis. Using two 

or more consecutive frames of an image sequence, a 2-dimensional vector field, called the optical 

flow, is computed to estimate the most likely displacement of image pixels from one frame to 

another. Some researchers use optical flow in the analysis of human expressions for the purpose 

of expression recognition [46][75][69]. Also Kruizinga and Petkov [34] propose to utilize optical 

flows in person identification. However, they only consider the optical flow residue as the 

criterion of classification, while we propose to make use of the eigenflow residue, which appears 

to exhibit better classification ability than the former.  

Optical flow essentially is an approximation of the velocity field. It approximately 

characterizes the motion of each pixel between two images. If two face images, which show 

different expressions of the same subject, are fed into the optical flow algorithm, the resultant 

motion field will emphasize the regions of facial features, such as the eyes and the mouth. This is 

illustrated in Figure 14. The left half of the figure shows two face images from the same subject, 

but with different expressions. The resulting optical flow is shown below these figures. The 

second set shows the same figure except that the two input images are from two different 

subjects. Obviously, the optical flow looks more irregular in this case. This clue can help 

discriminating these two cases, which is the task of face recognition. 
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The same idea can be applied to images with registration errors. Because the traditional 

PCA approach is unacceptably sensitive to registration errors, even small shifts in input images 

can make the system performance degrade significantly. However, face images are usually 

difficult to register precisely, especially in a live authentication system. Therefore, we want to 

use the optical flow to build a system that is tolerant to different kinds of registration errors. In 

Figure 15, the second image in the left column is an up-shifted version of the first image. The 

optical flow shown below captures most of its motion around facial features. The right column 

shows images of different subjects leading to an optical flow that appears to be random. 

Since the optical flow provides a useful pattern for classifying personal identity, we 

propose to use PCA to model this pattern. Suppose that in the training data set, there are a few 

images with different expressions for each subject, such as five images shown in Figure 16. 

Using these images, twenty optical flow images )1( Kkk ≤≤o  (corresponding to twenty pairs) 

can be obtained through the optical flow estimation. PCA can be computed through the 

following: 
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By performing eigen-analysis for the covariance matrix C , we can obtain a number of 

eigenvectors },,{ 21 Luuu = . The three principal eigenflows of twenty optical flow images are 

shown in Figure 17. Obviously large motion can be observed in the region of facial features, such 

as mouth corners, eyebrows and nasolabial furrows. So all the expression variations occurring in 

a single subject can be represented by a space spanned by these eigenflows. The optical flow o  

between any two images of this subject should have small residue defined as: 
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This is basically the error term that could not be modeled by a subspace. In contrast, the 

optical flow between this subject and other subjects cannot be represented well by this space, 

which results in a large residue. We call this the eigenflow residue. Thus, the eigenflow residue 

can be a useful feature for recognition. Similarly eigenflows can be used to model the optical 

flow caused by image registration errors.  

We have applied the eigenflow approach for face recognition and authentication, and 

obtained satisfying results. Please refer to [50] for detail information about this approach. In the 

next section, we will introduce how to use the same idea for modeling the geometric deviation 

and serving for face recognition. 

 

                                            

  
 

Figure 14 Applying optical flow on images with different expressions: left hand side are 
two images from the same subject, and right hand side are two images from different 

subject. Different randomness pattern can be observed from two resulting optical flows. 
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Figure 15 Applying optical flow on images with registration errors: left hand side are two 
images from the same subject, and right hand side are two images from different subject. 

Different randomness pattern can be observed from two resulting optical flows. 
 

 
 

Figure 16 Five expression images used for training an individual eigenflow for this subject. 
 

 
 

Figure 17 The first three eigenflows trained from expression images of one subject: Some 
prominent movements of facial features, such as mouth corners, eyebrows, nasolabial 

furrows, can be seen from them. 
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4.2 Modeling the geometric deviation 
 

One potential problem of combining multiple texture maps is that the resulting averaged 

map might get blur due to the fact that facial features from multiple maps do not corresponding 

to the same coordinate in the texture map. To reduce such blurring, we might need to align the 

facial features better by relying on some landmark points. For the model training process, it is 

reasonable to obtain such landmark points by manual labeling. 

Given K  training images, kf , including different poses of human faces, in order to 

facilitate the modeling process, we label the position of facial feature points. As shown in Figure 

18, 25 facial feature points are labeled. For each training image, only a subset of the 25 points 

will be marked according to their visibility. We call these points as key points.  

 

 

 
                                                            

Figure 18 Labeled facial features: up to 25 feature points are labeled on each training 
images 

 

As usual, first we generate the texture maps ks  from each training images. Since we only 

label the facial key points on the training images, we need to find their corresponding coordinates 

)25,,2,1( L=ii
kb  in the texture map ks , as show in the first two rows of Figure 19. Essentially 

this is an inverse operation of the geometrical mapping described in the previous chapter.  
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After determining key points on all texture maps of the training images, we need to find 

the coordinate on the mosaic model where all corresponding key points deviate to. Ideally if the 

human head’s geometry is a perfect 3D ellipsoid, the same key point )1( Kki
k ≤≤b  from 

multiple training texture maps should correspond to exactly the same coordinate, i.e., 

i
K

ii bbb === L21 , For example, if we look at the three texture maps in the second row of Figure 

19, the coordinate of the left nose’s corner should be the same. However, due to the fact that the 

human head is not a perfect ellipsoid, these key points will deviate to each other. The amount of 

deviation is an indication of how much geometrical difference between the actual head geometry 

and the 3D ellipsoid. We will model such deviation by applying PCA on the flow representation. 

First, we compute the averaged position ib  of all key points )1( Kki
k ≤≤b  that 

correspond to the same facial feature and are also visible on the texture map. We treat this 

averaging as the target position in the final mosaic model where all corresponding key point 

should deviate. As shown in the third row of Figure 19, each white point is the averaged position 

computed from all training texture maps. Since our mosaic model is composed of an array of 

patches, each one of 25 averaged key points falls into one particular patch, which is called key 

patch. Notice that instead of averaging, we can also use weighting in generating ib . For 

example, the texture maps that are more reliable (mostly front view images) would have larger 

weights. 

Second, for each texture map, we take the difference between the positions of key point 

i
kb  and that of the averaged key point ib  as the key patch’s deviation flow (DF) that describes 

which patch from each texture map should move toward one key patch in the mosaic model. 

However, there are also non-key patches in the mosaic model. In order to model their deviation 

flows, as shown in Figure 20, we represent the mosaic model as a set of triangles, whose vertexes 

are the key patches. Thus for each non-key patch, it falls into at least one triangle. In the last step, 

the deviation flow for a non-key patch from each training texture map is interpolated by the key 
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patch’s deviation flow of one triangle. The reason we assign a non-key patch to multiple triangles 

is that in case some key patch’s deviation flows of one triangle are not available due to their 

invisibility, we can rely on other triangles to perform the interpolation. One might think why we 

compute deviation flows through the triangulation of key patches, rather than applying optical 

flow. The reason is that traditional optical flow computation starts with two images: a test image 

and a reference image. However, when we compute deviation flows, we do not have the 

reference texture map yet, which will be calculated after the deviation map is obtained. Thus we 

could not compute deviation flows using optical flow. 

For each training texture map, its geometric deviation is a 2D vector map k
ji ,v . Its 

dimension is the same as the number of patches in the vertical and horizontal directions, and each 

pixel is a vector indicating how far this patch is away from the averaged patch in the mosaic 

model. Notice that for any training texture map, some elements in the 2D k
ji ,v  are considered as 

missing ones. We use k
ji ,a  to denote the mask map of k

ji ,v . If k
ji ,v  is a miss element, k

ji ,a  is zero, 

otherwise it is one. 

In order to model the deviation, we train the geometric deviation k
ji ,v  from all training 

texture maps using the PCA with missing data [71] as following: 
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By performing eigen-analysis for the covariance matrix C , we obtain a number of 

eigenvectors },,{ 21 Luuu = . Figure 21 shows the resulting deviation model },,{ 21 uug=Θ  

based on the training images from one subject. Essentially the linear combination of these basis 
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vectors describes all the possible geometric deviation of any view angle for this particular 

subject’s face.  

∑
nN

1

 

Figure 19 Mapping and averaging the position of key points: the position of all key points 
in the training texture maps (2nd row), which correspond to the same facial feature, such as 
the left eye corner, are averaged and result in the position in the final model (bottom row). 

 

--

Key patch’s 
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Non-Key 
patch’s DF
Non-Key 
patch’s DF

 
 

Figure 20 Computation of patch’s deviation flow: each non-key patch falls into at least one 
triangle; the deviation of a non-key patch is interpolated by the key patch deviation of one 

triangle. 



  57 

 

                                        

 
 
Figure 21 Trained geometric deviation model (Top: mean, left: 1st eigenvector, right: 2nd 
eigenvector) 
 

4.3 Modeling the appearance 
 

After modeling the geometric deviation, we also need to build an appearance model, 

which describes the facial appearance from all poses.  

Figure 22 illustrates the process of building such an appearance model. On the left hand 

side, there are two pairs of training texture map ks  and its corresponding geometric deviation 

k
ji ,v . The resulting appearance model },{ ,, jiji Vm=∏  with one mean and two eigenvectors are 

shown on the right hand side. This appearance model is composed of an array of eigenspaces, 

where each is devoted in modeling the appearance of the local patch indexed by ),( ji . In order 

to train one eigenspace for one particular patch, the key issue is to collect one corresponding 

patch from each training texture maps ks , where the correspondence is specified by the 

geometric deviation k
ji ,v . For example, to train an eigenspace ji ,Π  for a patch centered at 

(40,83), first we obtain the correspondence information from 1
, jiv , which specifies how much 

deviation the corresponding patch in the texture map 1s  with respect to the target location 
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(40,83). Hence the summation of 1
, jiv  and (40,83) determines the center of corresponding patch, 

1
, jis , in the texture map 1s . Using the same way, we can find other corresponding patches 

),3,2(, Kkk
ji L=s  from all other texture maps. Notice some of k

ji ,s  might be considered as 

missing patches. 

Once we collect corresponding patches k
ji ,s  from all training texture maps, we are ready 

to take these patches )1(, Kkk
ji ≤≤s  as samples and train a statistical model ji ,Π  via PCA.  

Figure 22 shows that a 2-dimensional eigenspace is obtained from the training patches. 

Finally, the appearance model is composed of an array of PCA models, where each PCA model 

describes the appearance of one patch. We call this the patch-PCA mosaic. Modeling via PCA is 

popular when the number of training samples is large, such as the training of a universal mosaic 

model based on many subjects, or of an individual mosaic model with many training images. 

However, when the number of training samples is small, such as the training of an 

individual mosaic model with only a few training images, it might not be suitable for training a 

PCA model for each patch. Instead we would keep all the corresponding patches and use them 

directly as part of the model. One computational efficient way of doing this is to train a universal 

PCA model based on all corresponding patches )1,1,1(, JjIiKkk
ji ≤≤≤≤≤≤s of all training 

texture maps, and keep the coefficient of these patches in the universal PCA model as well. This 

is called as the global-PCA mosaic. Notice that the patch-PCA mosaic and the global-PCA 

mosaic only differ in how the corresponding patches across training texture maps are utilized to 

obtain a model, depending on the availability of training data in different application scenarios. 
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Figure 22 Training process of the appearance model for one patch: the deviation indicates 

where to find the corresponding patch from each of training texture maps; all 
corresponding patches are treated as samples for training a statistical model. 

 

  
 

Figure 23 The mean of two universal mosaic models (left: without the modeling of 
geometric deviation, right: with the modeling of geometric deviation).  
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Eventually the statistical mosaic model includes the appearance model Π , the geometric 

deviation model Θ  and the probabilistic model dP  trained as in the previous chapter. We 

consider that the geometric deviation model plays a key role in forming the mosaic model. For 

example, Figure 23 shows the mean appearance of two mosaic models trained by the same set of 

images from 10 subjects. The one on the left does not have the modeling of geometric deviation, 

while the right one has. It is obvious that the model on the right is much less blurring and 

captures more useful information of the facial appearance.   

Looking at Figure 20, we notice that the modeling area of the mosaic model is bounded 

by the position of most outside key patches. In order to let the mosaic model cover larger pose 

variation, we can also do extrapolation while computing the deviation flow of non-key patches, 

so that more appearance information can be included in the final model. One example of using 

extrapolation is the right illustration of Figure 23, which covers much larger area on facial 

appearance comparing to the up-right illustration of Figure 22. 

 

4.4 Face recognition using the statistical mosaic model 
 

In the previous section, we present an approach to train a statistical mosaic model. Now 

let us see how this model can be used in pose robust face recognition.  

Given L  subjects with K  training images for each subject, we use our approach to train 

an individual statistical mosaic model for each subject. For simplicity, let us assume we have 

enough training samples and obtain the patch-PCA mosaic for each subject. We will discuss the 

case of the global-PCA mosaic in the end of this section. 

As shown in Figure 24, given one test image, we generate its texture map by using the 

universal mosaic model. Then we measure the distance between the test texture map and each of 

the individual mosaic. Thus the key issue here is to compute the map-to-model distance. Notice 

that the appearance model is composed of an array of patch models, which is called the reference 
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patch. Basically the map-to-model distance is the summation of map-to-patch distances. That is, 

for each reference patch, we need to find its corresponding patch from the test texture map, and 

compute its distance to the reference patch model. Figure 24 illustrates the calculation of the 

map-to-patch distance.  

Since we deviate corresponding patches during the training stage, we should do the same 

while looking for the corresponding patch in the test stage, instead of picking up the patch from 

the text texture map that has the same coordinate as the reference patch. One simple approach is 

to search for the best corresponding patch for the reference patch inside a searching window, 

whose center is the coordinate of the reference patch. However, this approach does not impose 

any constraint on the deviation of neighboring reference patches. To solve this issue, we would 

like to make use of the deviation model that is trained before.  

In the right hand size of Figure 24, there are three models, the deviation model 

},{ ug=Θ , the appearance model },{ ,, jiji Vm=∏ , and the probabilistic model dP , as the 

components of the statistical mosaic model. The deviation model describes all the possible 

geometric deviation of any view angle for one subject’s faces. Because the geometries of 

different human heads are not the same, such deviation model contains useful information about 

individual subject’s geometry. If we randomly sample one coefficient ],,[ 21 Lcc=c  in this 

subspace model, the linear combination (or subspace reconstruction) of this coefficient describes 

the geometric deviation tv  for all reference patches.  

                  ∑+=
k

kk
t c ugv  

The benefit of this approach is that it enforces the geometric deviation of neighbor 

patches to follow certain constraint, which is described by the mean and eigenvectors of the 

deviation model. Based on this idea, the key is to find a coefficient in deviation subspace, which 

provides the optimal matching between the test texture map and the model. In our 

implementation, we adopt a simple searching scheme to find such a coefficient by determining 
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each dimension one by one. That is, in a K-dimensional deviation subspace, uniformly sample 

multiple coefficients along the first dimension while the coefficients for other dimensions are 

zero, and determine one of them which results in the maximal similarity between this text texture 

map and the model. The range of sampling is bounded by the coefficients of training deviation 

maps. Then we perform the same searching along the second dimension while fixing the optimal 

value for the first dimension and zero for all other dimensions. The searching is finished until the 

Kth dimension. Essentially this is a problem of motion estimation with a subspace constraint. In 

the future, we might also use the POCS idea to find a better solution [13]. 

For each sampled coefficient in the above searching scheme, the reconstructed 2D 

deviation map (in the bottom-left of Figure 24) indicates where to find the corresponding patch 

in the test texture map. Then the residue distance (9) between the corresponding patch and the 

reference patch model is computed, which is further feed into the probabilistic model. Finally, 

the probabilistic measurement provides how likely this corresponding patch belongs to the same 

subject as the reference patch. By doing the same operation for all other reference patches and 

averaging all patch-based probabilistic measurements, we obtain the similarity between this text 

texture map and the model based on the current sampled coefficient. Finally, the test image is 

recognized as the subject who provides the largest similarity. 

Depending on how the individual mosaic model is trained (the patch-PCA mosaic or the 

global-PCA mosaic), there are different ways of calculating the distance between the 

corresponding patch and the reference patch model. As we presented before, for the patch-PCA 

mosaic, the residue with respect to the reference patch model is used as the distance measure. For 

the case of the global-PCA mosaic, since one reference patch model is represented by a number 

of coefficients, the distance measure is defined as the nearest neighbor of the corresponding 

patch among all these coefficients. 
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Figure 24 Computing the map-to-patch distance: the deviation map builds up the patch 

correspondence between the model and the test texture map; the distance measures from 
corresponding patches are feed into the Bayesian framework to generate a probabilistic 

distance measurement. 
 
 

4.5 Determining the mapping parameters for training images 
 

Given a set of training images for one subject, the first step in our mosaic algorithm is to 

generate the texture map for each training image. There are three ways of doing this. First, we 

can treat a pre-trained universal mosaic model as the reference and calculate the mapping 

parameter of all images refer to this universal model, by using the condensation method. Second, 

if one of the training images is the front view, we can generate its texture map, which will be 
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treated as the initial mosaic model, by labeling its boundary and assuming all rotation angles are 

zero. Then the mapping parameters of other training images can be found by minimizing their 

distances to the initial model.  The third method is the same as the second one except that the 

rotation angles of the front view image are obtained from the 3D position of facial features, 

instead of assuming zero angles. This is to solve one potential problem with the second method, 

i.e., the front view face might not correspond to zero rotation angles. Actually this problem also 

exists for the first method when generating the initial texture map for the universal model. We 

will present the basic steps of the third method in this section. 

The process of obtaining the 3D position of facial feature points is straightforward by 

using the stereo triangulation technique [20] in the vision community. We require that multiple 

view images of the initial front view image are available and all cameras are calibrated. In the 

following case, we have 3 views of the human face captured simultaneously, where the center 

view is the initial training image. First, as shown in Figure 25, we mark the common feature 

points among three views. We also mark the face vertical boundary on the 2D image. Second, by 

using the stereo triangulation, the 3D position of these feature points can be reconstructed. Third, 

based on the 3D position of feature points with respect to the center view, we can fit a 3D 

ellipsoid by minimizing the distance between the points to the ellipsoid surface, under the 

constraint that the 2D projection of the 3D ellipsoid at all three views should fit with the marked 

boundary. This constraint is important since if the 3D ellipsoid is larger than the actual head size, 

part of the background will be included in the texture mapping. Basically the 3D reconstructed 

vertical boundary points tell the vertical and horizontal center of the ellipsoid. Only the rotation 

angles and the center in the Z axis need to be determined during the fitting process. The fitted 

ellipsoid tells the optimal rotation angels that the front view training image could be 

approximated by an ellipsoid model. For example, in Figure 26, although the face in the center 

view looks like the front-view, the fitting results indicates that there is a slight tilt around the 

horizontal axis. We will use these rotation angles in generating the initial mosaic based on this 
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image. Later we will show the experimental results of comparing the second and third method in 

determining the mapping parameters for the training images. 

What we have shown so far is one benefit of having calibrated multiple view images. 

Another benefit is that we may even build a 3D wire frame geometric model using the 3D 

coordinates of facial features. Thus the face image can be projected onto the wire frame, instead 

of the 3D ellipsoid model.  

 

Figure 25 Marked feature points for three views 
  

 

Figure 26 3D feature points and fitted ellipsoid 
 

4.6 Experimental results 
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Similar to the previous chapter, we evaluate our algorithm by comparing its performance 

on the CMU PIE database with a baseline method. We use half of the subjects (34 subjects) in 

the PIE database for training the probabilistic. The 9 pose images per subject from remaining 34 

subjects are used for the recognition experiments. 

Three poses (c27, c14, c02) are used for the training, and the remaining 6 poses (c34, 

c11, c29, c05, c37, c22) are used for test. As shown in Figure 28, the horizontal axis represents 

the labels of 6 test poses. The vertical axis shows the recognition rate of three different 

algorithms for each specific pose. The first is the result of the eigen light-field algorithm from 

Figure 10 (a) in [23]. It is hard to find a previous method testing on the same scheme of the same 

database as us. We plot this result even it only uses one front view per subject as the training 

data. The second algorithm is our face mosaic method without the modeling of geometric 

deviation, which essentially let the mean of all eigenvectors of },{ ug=Θ  to be zero. The third 

algorithm is the face mosaic method with the modeling of geometric deviation. Since the number 

of training images is small, we train the global-PCA mosaic for each subject. Three eigenvectors 

are used in building the global-PCA subspace. Thus each reference patch from the training stage 

is represented as a 3-dimentional vector. For the face mosaic method, the patch size is 4 by 4 

pixels and the size of the texture map is 90 by 180 pixels. For illustration purpose, we plot the 

mean of three models in Figure 27. We can see that all mean images contain enough pose 

variation and do not blur much. 

Comparing among these three algorithms, both of our algorithms works better than the 

baseline algorithm. Also, if we compare this result with the experimental results in the previous 

chapter (Figure 13), we can see the algorithm presented in this chapter works better since it has 

more training images and the individual mosaic model successfully combines the pose 

information from multiple images, while the algorithm in the previous chapter only takes one 

image for training. Obvious the mosaic approach provides a better way of registering multi-view 

images for an enhanced modeling, unlike the naïve training procedure of the traditional eigenface 
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approach. For our algorithms, the one with deviation modeling performs better than the one 

without deviation modeling. There are at least two benefits for the one with deviation modeling. 

One is that a geometric model can be used in the test stage. The other is that as a result of 

deviation modeling, the patch-based model also captures the personal characteristic of the multi-

view facial appearance in a non-blurring manner.  

 

   
 

Figure 27 Mean images of three individual mosaic models. 
 

 
 
Figure 28 Recognition performances of three algorithms on the CMU PIE database based 

three training images. 
 

In Section 4.5, we have mentioned that the 3D position of facial feature points could be 

used to determine the mapping parameters for the training images. We would like to see how 

could this help the mosaic based face recognition. We perform experiments based on the FIA 
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database, which we will introduce in detail in the next chapter. There are 20 subjects in the 

database, with 9 training images per subject, where one of them contains the front view face. 

There are 50 test images per subject. We have performed two algorithms on this database. Both 

of them use the individual mosaic method with deviation modeling. They only differ in that one 

uses zero angles in the mapping parameter for the initial front view image, the other uses the 3D 

position of facial feature points to determine the rotation angles. From the experimental results in 

the following table, we can see that the one use the 3D position works slightly better than the one 

assuming zero angles. This is reasonable since the 3D position provides better approximation to 

the true geometry. Also, due to the fact that only the initial mosaic is enhanced via 3D points 

fitting, the improvement is not dramatic.   

  
Table 1 Comparison of methods in initializing the mosaic model 

Mosaic method with zero initial 
angle 

Mosaic method via 3D 
initialization 

                   7.32%                  6.71% 
 

4.7 Conclusions 
 

This chapter presents an approach to train a statistical mosaic model by combining 

multiple training images with pose variation. Also we propose to utilize the geometric deviation 

model for finding the corresponding patch during the test stage. We show improved performance 

for pose robust face recognition by using this new method. 

Our face mosaic model is a quite sophistical statistical model because of the following. 

First, as the hardest variation, the pose variation is handled naturally by mapping images from 

different view-angles to form a mosaic mean image, which can be treated as a compact 

representation of faces under different view-angles. Second, all the other variations that could not 

be modeled by the mean image, for example, illumination and expression if they present in the 

training images, are taken care of by a number of eigenvectors. Therefore, instead of modeling 

only one type of variations as the conventional methods, our method is trying to model all 
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possible appearance variations in only one model. Third, as a simple geometrical assumption of 

the ellipsoid model, it has the problem of over-simplification since the human head is not truly an 

ellipsoid. This is taken care of by training a geometric deviation model, which results in better 

corresponding across multiple texture maps. 

Having shown the application of pose robust face recognition, we would like to apply 

our mosaic model for video-based face recognition as well, which involves face tracking and 

recognition from video sequences. We will present it in the next chapter. 
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5. Video-based Face Recognition 

 
 

In traditional image-based face recognition, usually the face area is cropped before 

feeding to a recognition system. However, in video-based face recognition, given a video 

sequence containing human faces, we have to track the face over sequences before any 

recognition task can proceed, which normally involves two different tasks: face tracking and face 

recognition. One computation efficient way is to combine these two tasks together. That is, by 

using the same model for both tracking and recognition, these two tasks can be performed 

simultaneously. Since this same model has to serve the purpose of both tracking, which requires 

a simple model for achieving real-time tracking efficiency, and recognition, which requires a 

specific model containing enough variations about the identity. 

As we presented in the previous chapters, since our face mosaic model is a simple 

statistical model combining both appearance and geometric information, it is a good candidate 

for serving face tracking and recognition simultaneously. In this chapter, we will focus on how to 

use the mosaic model for video-based face tracking and recognition.  

 

5.1 Face tracking using the mosaic model 
 

Given one video frame, the most important task in all the tracking, recognition and online 

model training is to generate a texture map and compare it with the mosaic model, which results 

in the similarity between this frame and the model. Since the mapping parameter x  contains all 
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the information for generating the texture map, the goal of face tracking is to estimate the optimal 

x , which can result in the minimal distance (or maximal similarity) between the texture map and 

the mosaic model. In one word, the face tracking is equivalent to estimating x .  

There are two methods for estimating the mapping parameter x : the condensation method 

[29] and the Levenberg-Marquardt algorithm [63], which is similar to the gradient decent 

method.  

 

5.1.1 Face tracking via the condensation method 
 

As we said before, the goal in face tracking is to estimate the mapping parameter x  

based on the current frame nf  and the mosaic model ∏ . The basic idea of the condensation 

method is that instead of directly estimating nx  given each frame nf , it estimates the conditional 

probability density function (PDF) )|( nnp fx . The name “condensation” refers to “conditional 

density compensation”, which means to compensate or propagate the conditional PDF 

)|( 11 −− nnp fx  by using the knowledge from nf , and to obtain an estimation of )|( nnp fx .  

Because in general the conditional PDF )|( nnp fx  might not be Gaussian distribution, 

importance sampling is used to approximate the arbitrary non-Gaussian distribution, where a set 

of K  samples together with their weights, },{ )()( k
n

k
n wx )1( Kk ≤≤ , is used. As shown in Figure 

29, given a set of samples },{ )()( kk wx , a conditional PDF )|(ˆ fxp  could be synthesized to 

approximate the original conditional PDF )|( fxp  as follows.  

                             ∑ −=
=

K

k

kkwp
1

)()( )()|(ˆ xxfx δ                                                                (10) 

Thus propagation of a conditional PDF becomes the updating of the sample set, i.e., 

given },{ )(
1

)(
1

k
n

k
n w −−x , and nf , generate },{ )()( k

n
k

n wx . As shown in Figure 30, the propagation can be 

accomplished in two steps. 



  72 

The first step “prediction” is essentially to answer the question: “if I have not seen the 

current observation nf , what would be the most likely place that each of the sample will sit on 

based on the best of my knowledge about the system?” This is answered by applying the 

knowledge of )|( 1−nnp xx  to predict a new sample set }{ )(k
nx  from }{ )(

1
k

n−x . The knowledge of 

)|( 1−nnp xx  can come from the domain knowledge or be trained from the training data. For 

example, if we know the human head is moving around in all possible directions, we can use the 

following equation as one way of applying the domain knowledge. 

                                                     nnn bxx += −1  

where nb  is a white noise with certain variance. One potential problem with this multiple 

samples’ propagation is that some of the samples might have too tiny weights, and propagating 

them would not contribute much to the modeling of a conditional PDF. For this reason, people 

have proposed to add a “re-sampling” step before the “prediction” step, where the Monte Carlo 

Method is used to generate a new set of samples }{
')(

1
k

n−x  from },{ )(
1

)(
1

k
n

k
n w −−x . Figure 31 illustrates 

the procedure of the Monte Carlo Method. Basically based on },{ )(
1

)(
1

k
n

k
n w −−x  and (10), we can 

obtain an estimated conditional PDF )|(ˆ fxp , from which a cumulative density function (CDF) is 

generated. Finally, by looking at which bin a random number is falling into, we can generate a set 

of samples }{
')(

1
k

n−x  that fit with this conditional PDF. For example, if a random number is in the 

range of the red bin, )6(
1−nx  will be a new sample in }{

')(
1

k
n−x . 

In the second step “weight assignment”, each sample )(k
nx  is assigned with a new weight 

)|( )()( k
nn

k
n pw xf= , which measures how likely the current frame nf  can be observed based on 

this particular sample )(k
nx . This likelihood measure is calculated by generating a texture map ns  

based on )(k
nx  and nf , as presented in Section 3.1, and calculating the similarity measure between 
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ns  and the mosaic model ∏ , as presented in Section 4.4. Eventually the new weights are 

normalized such that the total weights of all samples equals to one. 

After the propagation, the weighted mean of the new sample set },{ )()( k
n

k
n wx  becomes the 

current estimated nx . When the next frame 1+nf  arrives, we will start the same estimation 

procedure based on the current sample set },{ )()( k
n

k
n wx , which essentially carries all the statistical 

information of nx , and is propagated to future frames. We implement this algorithm for face 

tracking and observed reasonable good tracking results. 

For face tracking in a video sequence, normally it is assumed that the tracking result of 

the first frame is available before the tracking starts. This result might come from the face 

detection or manual labeling. Notice in the condensation method, we also need to initialize a set 

of samples of their corresponding weights },{ )(
1

)(
1

kk wx , which are obtained from the tracking 

result of the first frame, 1x . Basically we generate random samples }{ )(
1

kx  around 1x , and then 

assign weights according to the similarity measure between the texture maps from }{ )(
1

kx  and the 

mosaic model ∏ .  

Notice in previous chapters, for the training and test images in a recognition system, we 

generate their texture maps based on the universal texture map by using the condensation 

method. This procedure is actually the same as tracking one frame without a good sample set 

from the previous frames. Obviously, in this case we need to use more samples in order to have a 

good estimation of the mapping parameter of one face image. In our thesis proposal, we were 

using the Hidden Markov Model (HMM) to model the mapping parameters, which is not 

necessary anymore since the condensation method is an extension of the HMM. Because 

Gaussian assumption is made in the HMM, while the condensation method does not make such 

an assumption. 
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Figure 29 Importance sampling: represent a non-Gaussian PDF using a set of samples and 
corresponding weights (indicated by the size). 

 

Prediction

Weight
assignment

Observation
density
function

},{ )(
1

)(
1

k
n

k
n w −−x

},{ )()( k
n

k
n wx

 

 

Figure 30 Two steps for density PDF propagation: prediction step estimates the new 
position of each sample and the weight assignment step assign weights for each sample 

based on the observation density function. 
 
 



  75 

x

)|(ˆ fxp

0

1

)(
1

N
n−x)6(

1−nx

Random
number

generator

},{ )(
1

)(
1

k
n

k
n w −−x

}{
')(

1
k

n−x

)|(ˆ fx xp ≤

x

)1(
1−nx

 
 
 
Figure 31 Monte Carlo method: a PDF is approximated by generating a set of samples with 

uniform weights.  
 
 

5.1.2 Face tracking via the Levenberg-Marquardt algorithm 
 

Having introduced the condensation method, let us look into another tracking algorithm, 

the Levenberg-Marquardt algorithm. This method is especially useful when the mosaic model is 

trained without the deviation model and the probabilistic model. In this case, since there is no 

notion of patch representation, the mosaic model can be simply represented as one eigenspace 

},{ Vm=Π . When the patch representation is used, we need to add the coefficient of the 

geometrical deviation model into the minimization process as well. 

Essentially the face tracking is a minimization procedure, which is illustrated by Figure 

32. The objective is to iteratively minimize the difference between the texture map ),( βαns  and 

the statistical model },{ Vm=Π , which consists of the mean m  and q  eigenvectors 

{ }qvvvV ,,, 21 L= . Since the mapping parameter nx  controls the texture map ns , this 
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minimization is over the parameter nx . The minimization will stop if the following distance is 

small enough, otherwise it will keep updating the mapping parameter nx . 

                                 ∑=−−=
βα ,

22
)(min eJ

n

vcmsw
x

o                                                               (11) 

                                  )())(())(( 212 msvwvwvc −= − TT diagdiag                  

where o  refers to the element-wise multiplication, ()diag  generates a matrix whose diagonal 

element is the input vector, and c is the eigen-coefficient of ns  with respect to the mosaic model. 

The parameter w  is the mask map for ns , which combines the mask information from two 

sources. One is the mask map for the original input image nf . The other is the mask map from the 

mosaic model.  

We adopt the Levenberg-Marquardt algorithm to find the optimal mapping parameter nx  

that minimizes (11). This algorithm requires the computation of the partial derivatives of e  with 

respect to all unknown parameters in nx , for example: 
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and
α∂

∂s
 and 

β∂
∂s

 are the image intensity gradients of ns  at ( )βα , . With these partial derivatives, 

we can calculate an approximate Hessian matrix A and the weighted gradient vector b [63]. For 

simplicity, if there are two parameters, αR  and βR , in nx ,  
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Then the parameters nx  can be linearly updated by  

                                               bIAx 1)( −+=∆ λn                                                                         (12) 

This algorithm consists of the following steps: 

1. Assign the initial value for nx . 

2. Compute ns  and w  according to Section 3.1. 

3. Compute the error e  as in (11) and the intensity gradient on ns , computer the partial 

derivative of e  with respect to nx , and compute A and b. 

4. Linearly update T],[ βα ∆∆  by nx∆  calculated in (12). 

5. Evaluate (11) using the updated parameters and check whether the error J  decreases; if 

not, increase λ  as described in [63], and compute a new nx∆ . 

6. Continue the iteration until the parameters converge or a fixed number of steps are 

finished. 

If we compare the Levenberg-Marquardt algorithm with the condensation method, we 

can see that the former is similar to the gradient decent method, which tries to move toward the 

global minimal point on the error surface as fast as possible from a initial point, while the latter 

is a statistical method, which starts with many points (samples) on the error surface, moves each 

of them toward their best locations, and takes the averaged location as the tracking results. 
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Normally the Levenberg-Marquardt algorithm is more likely to be trapped into the local minimal 

since only one point is moving around on the error surface and it might starts with a bad initial 

point. On the other hand, due to its statistical nature, the condensation method is more robust in 

terms of tracking performance, because as long as some of the samples are closer to the true 

global minimal, they will be responded by high weights and the result would be pretty good 

already. However, the drawback of the condensation method is also due to its statistical nature. 

That is, since many samples are used for tracking, the computation load of the condensation 

method is usually higher than the Levenberg-Marquardt algorithm, which can converge in 

usually a few iterations. In summary, we can see that these two methods are complementary to 

each other in terms of tracking performance and computational efficiency.  
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Figure 32 Tracking via the Levenberg-Marquardt algorithm: the mapping parameter is 
iteratively adjusted in order to minimize the distance between the texture map and the 

mosaic model. 
 

5.2 Face recognition 
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There are two different schemes for performing face tracking and recognition from video 

sequences.  

First is to use the image-based method. For a face database with L  subjects, we build the 

individualized model for each subject, based on one or multiple training images. Given a test 

sequence and one specific model, a distance measurement can be calculated for each frame by 

face tracking. Averaging of the distance over all frames in the sequence provides the distance 

between the test sequence and one specific model. After the distances between the sequence and 

all models are calculated, we can obtain the recognition result for this sequence by comparing 

distances across subjects.  

Second is to use the video-based method. Zhou et. al. [82] propose a framework to 

combine the face tracking and recognition using the condensation method. They basically 

propagate a set of samples governed by two parameters: the mapping parameter and the subject 

ID. Thus we call it as the 2D condensation method, as shown in Figure 33.  

There are at least three benefits of using video-based recognition comparing to image-

based recognition in using the condensation method. First, during the weighting normalization 

step, the conventional condensation method normalizes weights of all samples of one subject, 

while the 2D condensation method normalizes weights of all samples of all subjects. Thus the 

samples of the matched subject would have relative larger weights than samples of non-matched 

subjects. In the mean time, the weights of the samples of non-matched subjects are depressed, 

which is what we want.  

Second, the set of samples with the same mapping parameters is assigned for all subjects. 

On one hand, it reduces the computation of evaluating the weights based on each sample because 

the geometrical mapping operation is the same. On the other hand, samples for non-matched 

subjects are not allowed to move freely, whose movement is mainly governed by samples of the 

matched subject. 
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Third, the 2D condensation method might be able to handle the open-set recognition 

problem. Due to the weight normalization, it is likely that no subject shows dominant weights if 

the test subject is not included in the training set. Otherwise the samples of the matched subject 

should have dominant weights comparing to samples of non-matched subjects. As shown in 

Figure 34, we perform a simple experiment to show this point. Given a face database with 29 

subjects, if the test frame comes from one of the 29 subjects (i.e., this is a close-set recognition), 

the total probabilities of all samples from the matched subject is much larger than the ones from 

other subjects. However, in the close-set recognition, since the test frame does not match with 

any subjects in the database. No dominant probability is observed. 

 

 

Figure 33 Basics of video-based recognition 
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Figure 34 The different between close-set and open-set recognition using the 2D 
condensation method.  

 
 

Let us introduce the basic step in the 2D condensation method using Figure 35. Given L  

subjects in the training set, the individualized model is built for each subject. Suppose we use a 

set of K  samples for modeling the mapping parameter. In the initial status, there are KL ⋅  

samples in the 2D space. The first step is to select the top K  samples (red circles) that have the 

largest weights among all KL ⋅  samples. Then these K  samples are predicted to a new location 

according to a certain model. Second, L  samples are duplicated for all subjects based on each 

one of K  samples. In other words, all L  samples share the same set of mapping parameters. 

Third, the same mapping parameter from L  samples would result in the same texture map, which 

greatly saves the computation load of geometrical mapping. The texture map will have different 

similarity with respect to L  different models. Thus different weights are assigned to each 

sample. Finally, the subject who has the maximum total weights from K  samples will be the 

recognition result. 
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Figure 35 Propagation steps for video-based recognition 
 
 
 Before we present the experimental results, first we will introduce the Face-In-Action 

video database we are collecting.  

 

5.3 Face-In-Action video database 
 

As more and more researchers are starting to work on video-based face recognition, as 

opposed to traditional image-based face recognition, there is more demand for a database of 

video sequences containing human faces. With such a database, the benefits of video-based face 

recognition can be explored. We are making the effort to collect such a face video database, 

called Face In Action (FIA) database [49]. 
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5.3.1 Capturing scenario 
 

There are many existing databases containing face images under controlled conditions, 

such as FERET[60], PIE [67], ORL [64], Xm2vts [57], etc. However, when collecting a face 

database in videos, we have to bring in motion.  Based on our study, we consider “passport 

checking” as the most popular motion scenario for real-world applications of face recognition 

techniques. As shown in Figure 36, in a controlled environment with the blue background, 

multiple cameras are pointing at the desk from three different angles. The cameras capture the 

whole process of the subject’s walking approaching the desk, standing in front of the desk, 

making simple conversation, head motion that might happen during passport checking, and 

finally walking away from the desk.  The resulting video hence contains the moving head while 

the subject is walking, user-dependent pose variation due to natural motion of the head, lip 

movements and expression variations during conversation. 

Actually this capturing scenario is not only mimicking “passport checking”, it is also 

highly representative for many other daily scenarios, such as checking in a hotel, visiting the 

hospital or governmental offices, etc.  

 

 
 

Figure 36 FIA capturing scenario: multiple cameras are capturing faces while the subject is 
mimicking in going through the airport “passport checking”. 
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5.3.2 Capturing system 
 

In face database collection, one samples the face in multiple dimensions, such as pose, 

illumination, expression, aging, etc.  In our FIA capturing system, we sample in the following 

dimensions: motion, pose, image resolution, illumination and variations over time. Motion is 

sampled by continuous videos at 30 frames per second.  Pose is sampled by capturing faces from 

three difference directions simultaneously.  The image resolution is sampled by using cameras 

with two different focus lengths.  Illumination is sampled by capturing faces in both indoor and 

outdoor scenarios.  Variations over time are sampled by capturing three different sessions each 

spanning three months. 

  As shown in Figure 37, we built a cart for mounting the capturing system. On the C-

shape arm, there are 6 cameras. All cameras are pointing to the same center spot and have the 

same distance (0.83M) to that spot. Each camera is able to capture video sequences with 640 by 

480 frame size in 30 frames per second. Six cameras are arranged into three pairs. Since the C-

shape arm can be adjusted vertically by the linear bearing according to the height of the subject, 

a face is essentially captured by three pairs of cameras with the same vertical angle but different 

horizontal angles (-60°, 0°, 60°) respectively. Within each pair of cameras, one has 4mm focal-

length, which results in the face area with around 300 by 300 pixels, and the other has 8mm 

focal-length, which results in the face area with around 100 by 100 pixels. The video sequence 

with larger face area can be used for applications demanding high-resolution face images, such as 

3D reconstruction, while the smaller one is closer to the face data in video surveillance 

applications. Figure 38 shows the picture of the camera cart. Three light bulbs are placed on the 

cart so as to create an ambient lighting environment for capturing.   

Two carts are used for capturing human faces in the indoor and outdoor scenario 

respectively. There are three differences between the indoor and outdoor scenario. First is that 
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there is no controlled illumination in the outdoor scenario. Second is that no blue background 

will be placed for the outdoor scenario. Third is that neither color nor camera calibration is 

performed for the outdoor scenario. Thus the sequences from the outdoor scenario can be used to 

study how well the video-based face recognition performs in the natural illumination. To capture 

variations over time, we are planning to capture 200 subjects in three different sessions each 

spanning three months. For one session, both indoor and outdoor scenario will be captured. Six 

sequences are captured simultaneously for 20 seconds in each scenario. 

Having introduced the camera cart, we now present the system configuration, as shown 

in Figure 39. We use the Dragonfly™ camera from Point Grey Research Inc.[62], which is an 

OEM-style IEEE-1394 board level camera. Based on the data rate we are capturing (640 by 480 

by 30 frames by 20 seconds), one IEEE-1394 bus can only allow the data stream of three 

cameras. Although three cameras on the same bus are synchronized, we would have to 

synchronize two buses and thus all six cameras are synchronized. The SYNC Unit [62] plays the 

role of synchronizing two different IEEE-1394 buses. Eventually all six camera streams are 

saved onto the hard driver of one computer. Based on our experiences, the speed of the hard 

drive, rather than the CPU speed, is the bottleneck of the capturing system. Currently we use 

more memory as the cache to compensate the not-fast-enough hard driver. 

For each subject, we collect the following data: six 20 seconds face sequences at 30 

frames per second, for both indoor and outdoor scenarios, for 3 sessions in total. We store 

personal information for each subject, such as, age, gender, glasses, beard, mustache, etc. Also 

for each indoor scenario, we provide the color calibration data using the color checker, and the 

camera calibration data using the check board. 
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Figure 37 The design of the camera cart: six cameras are grouped into three pairs and 
mounted on a height-adjustable arm. 

 

 
 

Figure 38 Camera cart and lights: 3 light bulbs are used to create an ambient lighting 
environment. 

 

 
 

Figure 39 System configuration: six cameras are connected to two IEEE-1394 buses on the 
computer; the SYNC unit synchronizes two buses. 
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5.3.3 Specifications and samples 
 
In summary, the specification of the FIA database are listed in the following: 

• 200 subjects. 

• 3 sessions per subject.  

• 2 scenarios per session (indoor and outdoor).  

• Color and camera calibration data for the indoor scenario. 

• 6 sequences per scenario.  

• 20 seconds per sequence. 

• 30 frames per second. 

• 640 by 480 24-bits color image per frame 

• Storing mage data for each subject, such as age, gender, etc. 

• Saving each image in JPEG format with 90% quality (100K). 

• Total storage of the database: 100k*30*20*6*2*3*200=412G. 

One sample snapshot from six cameras can be seen in Figure 40. Three images in the top row 

are captured by 8mm focal-length cameras. The others three images are captured by 4mm focal-

length cameras. Figure 41 shows the sample images from one sequence in the FIA database. 

Substantial pose variation can be observed from this sequence. 
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Figure 40 A sample snapshot from 6 cameras: top images are from cameras with 
longer focal-length; bottom images are from cameras with short focal-length; each column 

are images from a pair of camera neighbor to each other. 
 

 
 

Figure 41 Sample images of one sequence in the FIA database: substantial pose variation 
can be observed from this database. 

 

5.4 Experimental results 
 

5.4.1 Face tracking 
 

Since a face mosaic model describes the facial appearance from multiple views, we can 

use it for performing pose robust face recognition. There are two methods for model-based face 

tracking. One is to use the condensation method. The other is to use the Levenberg-Marquardt 
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algorithm. The second option is faster, however might have slightly worse performance 

comparing to the first one. We use the patch-PCA or global-PCA mosaic model for the first 

option depending on the number of training images. In the second option, we can use the mosaic 

model without deviation modeling, for targeting at fast tracking speed.  

The tracking result of one sequence using the individual patch-PCA mosaic is shown in 

Figure 42. The while circle shows the result of the face position, and two curves show the result 

of horizontal and vertical rotation angles. We can see these two curves always across the eyes 

and nose area across frames. We use 500 samples in the condensation method. The tracking can 

be performed at around 2 frames per second. 

 
 

 

 
 

Figure 42 Tracking results based on the patch-PCA mosaic model: horizontal and vertical 
line indicates the estimated pose in two directions. 

  

5.4.2 Face recognition  
 

We have performed an experiment on the FIA database. There are 29 subjects in the 

database, with 10 sequences per subject as the test sequences. Each sequence has 50 frames, and 

the first frame is labeled with the ground truth data. We use the individual PCA algorithm with 

the image-based recognition and the individual PCA with the video-based recognition as the 

baseline algorithms. For both algorithms, 9 images are used for training and the best 
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performances are reported by trying different number of eigenvectors. The algorithms work best 

when the number of eigenvectors is 4. For example, Figure 43 shows the 9 training images for 

one subject in the FIA database. The face location of training images is from the manual labeling, 

while that of the test images is based on the tracking results using our mosaic model. All face 

images are cropped to be 64 by 64 pixels from the video frame.  

For our algorithms, we tested three different options. First is to use the individual patch-

PCA mosaic with image-based recognition, which uses the averaged distance between the frames 

to the mosaic model as the final distance measure. There are 9 images per subject as the training 

images. Second is to use the individual patch-PCA mosaic with video-based recognition, which 

uses the 2D condensation method to perform tracking and recognition. The same set of training 

images are used. The third is similar to the second option except that only one training image per 

subject is used. Thus only one texture map from each training image can be used for training. We 

illustrate the mean images of the individual models in three methods. We can observe dramatic 

blurring effect in the mean from the individual PCA model. On the other hand, the mean of our 

individual patch-PCA mosaic model covers large pose variation while still keeps enough 

individual facial characteristic. Since there is only one front training image in the third option of 

the mosaic method, the mean is only the texture map of that image.  

The recognition performance of the baseline algorithms and our approaches are shown in 

the following table. Two observations can be made from here. First, given the same model, such 

as the PCA model or the mosaic model, video-based face recognition is better than the image-

based recognition. Second, the mosaic model works much better than the PCA model for pose-

robust recognition. The third option works worse than the first two options since it has only 

training image per subject. 

 



  91 

 

Figure 43 9 training images from one subject in the FIA database 
 
 

   

Figure 44 The means of individual model in three methods (left: Individual PCA trained 
from 9 images, middle: mosaic model trained from 9 images, right: mosaic model trained 

from 1 image). 
  

Table 2 Recognition error rate of different algorithms 
 

PCA with image-
based method 

PCA with video-
based method 

Mosaic with 
image-based 

method 

Mosaic with 
video-based 

method 

Mosaic with 
video-based 
method (1 

training image) 
17.24% 8.97% 6.90% 4.14% 9.66% 

 

5.5 Conclusions 
 

In this chapter, by using the face mosaic model, we are able to perform face tracking and 

recognition simultaneously even dramatic pose variation is present in the test sequences. We 

introduce the face tracking using two different algorithms: the condensation method and the 

Levenberg-Marquardt algorithm. We present two methods of integrated face tracking and 

recognition scheme: image-based method and video-based method. We also present the 

collection effort of the FIA face video database. We apply our algorithm on the FIA database and 

obtain satisfying tracking and recognition performance.  
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The strength of this approach is that simple geometric mapping is used to compensate the 

large pose variation, which makes texture maps have less intra-variations across poses comparing 

to the original image domain. Automatically face tracking and recognition can be performed 

from video sequences with large pose variation. 
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6. Face Recognition via Updating Mosaic Model 

 

When applying the individual PCA approach for face recognition, we propose an 

eigenspace updating algorithm [51], which results in an updating-during-recognition scheme. 

That is, the eigenspace for each subject is updated by test images while each of them being 

recognized.  There are two reasons for doing this. First, in many applications it is not feasible to 

capture many training images for each subject containing enough variations for statistical 

modeling of that subject. Usually only one or a few images under the normal condition are 

available for training. Thus, it would be better if more and more images of that subject are used 

to update its model during the testing stage. Secondly, people change their appearance over time. 

Even if there are many images available for training, the system may not recognize faces when a 

subject changes the appearance due to aging, expression, pose, and illumination changes. A 

recognition system that is able to learn the changing appearance of the subject and adapt to it can 

achieve better performance. From our experimental results [51], significant improvements are 

observed on recognizing face images with different variations, such as pose, expression and 

illumination variations.   

We believe this idea of updating-during-recognition can also be applied to the face 

mosaic models. Due to the limitation of training images, our face mosaic model might only learn 

part of facial pose variation, or it only learns pose variation under the same expression. In this 

case, by taking more images from the test sequence, which contains pose variation or expression 
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that have not been seen, our mosaic model can be enhanced and eventually results in a better 

recognition system. 

 In this chapter, we first present the theory of updating eigenspaces. Then we present the 

experimental results of updating the mosaic model for face recognition application. 

 

6.1 Eigenspace updating with decaying memory 
 

We present three methods of performing eigenspace updating with decaying memory. 

When the dimension of the feature space is not high, we will use the updating based on the 

covariance matrix. Otherwise we will use the updating based on the inner-product matrix. Since 

the mosaic model is trained from the texture maps with missing data, the third algorithm will deal 

with the special case of updating the PCA model with missing data. 

 

6.1.1 Updating based on the covariance matrix 
 

Suppose there is a random process { nx }, where n is the time index, nx  is a column 

vector in a d -dimensional space, of which we want to find the eigenspace. Each sample will be 

available sequentially over time. If this random process is stationary, we can estimate its mean by 

the following equation: 

    
n

nn 11ˆ
xxx

m
+++

= − L
                      

If nx  is a non-stationary random process, which implies that it has a time-varying mean 

nm̂ , we propose to estimate the mean at time n  as: 
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where mα  is the decay parameter. It controls how much the previous samples contribute to the 

estimation of the current mean. Since mα  is in the range of 0 to 1, we have: 

                   
m

mm α
αα

−
=⋅⋅⋅+++

1

1
1 2                                   (14) 

Using (14) in (13), the resulting equation can be simplified to: 

nmnmn xmm )1(ˆˆ
1 αα −+= −                                   (15) 

This equation reveals that based on the current sample and the previously estimated 

mean, we can obtain the new estimated mean in a recursive manner. How to choose mα  mainly 

depends on the knowledge of the random process. Note that mα  controls how fast we want to 

forget about the old samples.  Therefore, if the statistics of the random process change fast, we 

choose a small mα . If the statistics change slowly, a large mα  may perform better.  

After the mean of the random process is estimated, we can estimate the covariance 

matrix, nĈ , at each time n  by: 
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where vα  is also a decay parameter, which is chosen based on how fast the covariance of a 

random process is changing. Now we can rewrite nĈ  in a similar manner as nm̂ : 

T
nnnnvnvn )ˆ)(ˆ)(1(ˆˆ

1 mxmxCC −−−+= − αα                                         (16) 

Since we obtain nĈ  at time n , we can perform PCA for nĈ  and obtain the 

corresponding eigenvectors. We keep N  eigenvectors corresponding to the N  largest 

eigenvalues. In the recursive updating process, we only need to store the mean vector nm̂  and the 

covariance matrix nĈ . All the previous training samples can be discarded. 
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6.1.2 Updating based on the inner-product matrix 
 

In many applications, PCA is applied directly in the image domain, such as face 

recognition. Suppose the face image has a size of 32 by 32, then the covariance matrix of an 

image set would be 1024 by 1024. It is very inefficient to store and update it using the algorithm 

introduced in Section 6.1.1. To solve this problem, we propose an updating algorithm based on 

the inner-product matrix. 

Suppose at time n , we already have performed PCA for the random process at time 

1−n . Thus we have eigenvectors, )(
1

i
n−φ , and eigenvalues, )(

1
i

n−λ , of the covariance matrix, 1
ˆ

−nC . 

We can write: 

            
Td

n
d

n
d

n

T

nnn

T

nnnn
)(
1

)(
1

)(
1

)2(
1

)2(
1

)2(
1

)1(
1

)1(
1

)1(
11

ˆ
−−−−−−−−−− +⋅⋅⋅++= φφφφφφC λλλ                    

where eigenvalues, )(
1

i
n−λ , are sorted in the decreasing order and the superscript )(i  indicates the 

order of eigenvalues. By retaining only the first Q  eigenvectors (with the largest eiegnvalues), 

we can approximate 1
ˆ

−nC  as 
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The criteria for choosing Q  vary, and depend on practical applications. We have tried 

three methods: (a) Fix Q  to be a constant value; (b) Set a minimum threshold, and keep the first 

Q  eigenvectors whose eigenvalues are larger than this threshold; (c) Keep the eigenvectors 

corresponding to the largest eigenvalues, such that a specific fraction of energy in the eigenvalue 

spectrum is retained. These methods will result in different computational complexity for the 

updating algorithm. 

Now we can use (15) to estimate the mean at time n . By replacing 1
ˆ

−nC  in (16) with 

(17), we can obtain    
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An equivalent formulation as above is that 
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Based on the nB  matrix, an inner-product matrix can be formulated as 

       n
T
nn BBA =      

Furthermore, nA  can be described by the following equations: 
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Since the matrix nA  is usually a small matrix with the size of 1+Q  by 1+Q , we can 

determine its eigenvectors nψ  by a direct method, which satisfies 
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By pre-multiplying (20) with nB , we can obtain the eigenvectors of matrix nĈ  as 

follows: 
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where the term 2

1
)( −i

nλ  is to make the resulting eigenvector to be a unit vector. Now we summarize 

the iterative updating algorithm outlined in this section: 

 

Initialization: 

1. Given the first two samples 0x , 1x , estimate the mean, 1m , by (15), and construct the 

matrix  

[ ])ˆ()ˆ( 11101 mxmxB −−= vα     



  98 

2. Based on (20) and (21), we can get the eigenvector, 1φ , and the eigenvalue, 1λ . 

Iterative updating: 

1. Get a new sample nx . 

2. Estimate the mean, nm̂ , at time n  by (15), and get the nB  matrix from (18). 

3. Form the matrix nA  by (19) and calculate its eigenvectors, nψ , and eigenvalues, nλ , by 

a direct method. 

4. Sort the eigenvalues nλ , and retain Q  corresponding eigenvectors. 

5. Obtain the eigenvectors, nφ , at time n  by (21). 

We have mentioned three methods of choosing Q . If we use the second and the third 

methods, Q  will increase as more and more training samples arrive till it reaches the intrinsic 

dimensionality of previous training samples. Due to the approximation in (17), among the Q  

eigenvectors, typically the first few eigenvectors are more precise than the others. Therefore, in 

practice if we need N  eigenvectors for building an eigenspace, we would keep Q  to be a number 

larger than N . 

 

6.1.3 Updating eigenspace with missing data 
 

In some applications, the training vector nx  contains the missing data. In this case, the 

updating of the eigenspace needs to be re-stated as following: Given a new sample nx  and its 

corresponding mask na , update the existing eigenspace 1
ˆ −nm , 1

ˆ −nφ , and 1−nw  to be nm̂ , nφ̂ , and 

nw . 

 Similar to what we present in Section 6.1.1, this updating can be formulated in the 

following three steps. First, the mean 1
ˆ −nm  is updated based on the current weighting vector 
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and the masked test sample. Notice the division is element-wise. Also the weighting vector 1−nw  

is updated by the new mask vector. 

                                 )ˆ(
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Then the covariance matrix is updated by combining the previous covariance and the 

current new masked sample. The weighting matrix is updated by the out-product matrix of the 

new mask vector. 
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T
nnnn aaWW += −1  

Finally, by performing eigen-analysis for the estimated covariance matrix nĈ , we can 

obtain the new eigenvectors nφ̂ . 

Here we might meet the same problem as the updating of the normal eigenspace (without 

missing data). That is, for some applications, we are dealing with high dimension training 

samples and thus the covariance nĈ  is expensive to compute and update. Due to the fact that we 

need to perform the element-wise operation in (23), we could not borrow the same idea as in 

Section 6.1.2, which updates the inner-product matrix, instead of the covariance matrix. Thus in 

practice, we might keep all training sample nx  and their corresponding masks na .  

 

6.2  Experimental results of updating the mosaic model 
 

Given a set of face images from L  subjects for training, each subject has one individual 

mosaic model trained from his/her own training images. When a test image arrives, it is 
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compared with every individual mosaic model and assigned to the one that gives the minimal 

similarity measure.  

Now we need to decide whether to update the mosaic model of the recognized subject, 

using the test image. We use the twin-threshold scheme for making the decision. First, by 

comparing the minimal similarity with a pre-defined threshold, we can see whether the current 

model can represent the test image well. If it does, we do not perform updating since this test 

image does not bring enough new statistical information for the mosaic model. Second, we 

calculate the confidence measure as the difference between the similarity measure of the second 

candidate and the similarity measure of the top candidate. Then the confidence measure is 

compared with another pre-defined threshold. If the confidence measure is larger than that 

threshold, this test image will be utilized to update the assigned mosaic model using our updating 

method, as described in Section 6.1.3. Basically the larger the confidence measure, the more 

confidence we have about the current recognition result. Thus as time goes on, the mosaic model 

will include the most recent statistics of the subject’s appearance, and be able to recognize more 

“new looking” images from that subject.  

Notice that there might be chances we would do a wrong updating, i.e., the test image and 

the model being updated are not from the same subject. The wrong updating corrupts the model, 

which is very bad for recognition. However, given the fact the most of the recognition 

performance without updating can achieve 90% recognition rate, the chance of wrong updating is 

very small. 

As we mentioned before, the value of the decaying parameter mα  should be determined 

according to the statistics of the random process. If the statistics of the random process change 

fast, we choose a small mα . If the statistics change slowly, a large mα  may perform better. In 

[51], we provide an explicit formulation on how to choose mα  dynamically. In the 

implementation of updating with missing data, we do not incorporate this dynamic scheme.   
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We have tested our proposed algorithm on the FIA database. We use the same experimental 

setup as the option 3 of Section 5.4.2. There are 29 subjects in the database, with 10 sequences 

per subject as the test sequences. Each sequence has 50 frames, and the first frame is labeled 

with the ground truth data. Only one image per subject is available for training a mosaic model 

without deviation. During the test stage, if any video frame from the test sequence passes the 

twin-threshold test, we will use it to update the mosaic model of the recognized subject. Figure 

45 shows the mean of one individual mosaic model being updated during the test stage. We show 

the recognition performance of our proposed updating algorithm comparing with the one without 

updating. We can see that the mosaic model with updating greatly improves the face recognition 

from video sequences. 

 

   

   

   
 

Figure 45 The mean of the mosaic model being updated during the test stage of one subject 

   
Table 3 Recognition performance of updating the mosaic model 

 
Mosaic model without updating Mosaic model with updating 

12.07% 6.90% 
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6.3  Conclusions 
 

In this chapter we apply the updating-during-recognition scheme to using the face mosaic 

models on face recognition applications. We first present the theory for updating a normal 

eigenspace, which can be performed via the covariance matrix or the inner-product matrix. Then 

we show the similar covariance updating can also be applied in updating an eigenspace with 

missing data. In the updating-during-recognition scheme, any video frame that satisfies the twin-

threshold will be utilized to update the individual mosaic model of the recognized subject.  

In the experimental part, we show that by using the updating scheme, the face mosaic model 

can be enhanced during the test stage, and eventually improve the face recognition from video 

sequences. 
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7. Summary and Future Directions 

 

All the work in this thesis is to improve the face recognition performance in dealing with 

variations. We propose the idea of geometrical mapping in taking care of the pose variation. The 

resulting texture map from the geometrical mapping is represented as an array of local patches, 

which enables us to study the discriminative power of local patches according to different 

patches. Also, we propose to build a statistical mosaic model from multiple training images with 

the help from a geometric deviation model. Furthermore, we apply the face mosaic model in 

video-based face tracking and recognition. And also we use the updating-during-recognition 

scheme to enhance the model and recognition over time. 

The contribution of this thesis lies in the following: 

The first contribution is to use a 3D ellipsoid model to compensate the pose variation. As 

the hardest variations to deal with, previously pose variation is either modeled purely from a 2D 

representation, or via a very sophistical 3D shape model. We attempt to model the pose variation 

by relying on a simple 3D ellipsoid, which provides the benefit of automatic and efficient 

modeling comparing to the sophistical 3D shape model, and of better approximation to the true 

geometry comparing to the 2D representation.  

The second contribution is to learn a probabilistic model for comparing similarity 

measures of corresponding patches. By modeling the intra-subject and inter-subject variations 
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explicitly, we can study how the discriminative power changes according the pose variation. Also 

the Bayesian framework can be used to evaluate the similarity value of corresponding patches. 

The third contribution is to represent the mosaic model as an array of patches and as a 

subspace model instead of one plane texture map. Traditionally the mosaic is generated by 

sticking multiple images together to form one larger texture map. We propose to use a statistical 

subspace for modeling the mosaic, which certainly models much more variations comparing to 

using only one texture map. Also the patch representation for the texture map and the mosaic 

model is better than the original texture maps because the low-dimensional feature (patch) is 

easier to be modeled using the statistical tool than the high-dimensional feature (map). 

The fourth contribution is to propose the geometric deviation model in combining 

multiple images for training a mosaic model. There are two benefits of using this deviation 

models. First, it alleviates the blurring problem raised by the week geometric assumption of the 

3D ellipsoid model. Much clear and informative mosaic model can be obtained by utilizing the 

deviation model. Second, this deviation model is an indication of how much the true geometry of 

the human face deviates from the 3D ellipsoid model. For training images from one subject, this 

deviation model contains the individualized geometric information, which will certainly help the 

face recognition together with our mosaic model on facial appearances. 

The fifth contribution is to utilize the face mosaic model in pose robust video-based face 

recognition. The traditional problem with video-based face recognition is face registration, i.e., 

we should not only track the face area, but also register the face before the recognition can take 

place. Since the face mosaic is a good model for pose variation, we use it in performing face 

tracking and recognition simultaneously. 

The sixth contribution is to build a capturing system for collecting a multi-view face 

video database. In the face recognition community, there are a number of public available face 

image databases, such as FERET, ORL, PIE, etc, which have been the great sources for different 

algorithms to compare face recognition performance. However, there are not much face video 
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databases, especially the multi-view database.  We have built a capturing system on both 

hardware and software. This system is able to capture six different video sequences of human 

faces simultaneously and save into the hard disk. Three different views of face videos are 

captured synchronously. 

The final contribution is to apply the updating-during-recognition scheme for video-

based face recognition. Due the limited amount of training data, the face model normally does 

not contain enough statistical information after the training stage. By updating the mosaic model 

using part of the test data, we can enhance the modeling and recognition over time. This scheme 

is general in the sense that it can be applied to video-based face recognition based on any 

updateable models. 

 There are some interesting extensions for the work described in this thesis: 

First, we have mentioned there is one dimension on how much the recognition 

algorithms are relying on the geometric model. Our approach is in the middle along this 

dimension. If we move toward the direction of using more geometric information, hopefully the 

recognition performance is better, while the difficult of model fitting is also getting harder. Now 

the question is that where would be the best trade-off along this dimension, in terms of efficient 

and automatic recognition. 

Second, suppose we only have one front training image for one subject, can we 

estimate/anticipate what would be the profile view looks like for this subject? I think we can 

approach this problem by studying the relationship between the patches from the front view and 

the patches from the profile view. Our face mosaic has already modeled the statistical of the 

within-patch appearance, but we did not model statistical of the between-patch case. 

Third, an interesting problem in pose robust face recognition is that, if we only allow one 

training image per subject, which pose image should we use for training, in order to have the best 

recognition performance? Is that purely front view? Or 45 degree in horizontal direction? We 

wish that the answer to this question is approach-independent.  



  106 

Fourth, more and more interests are moving toward the 3D face recognition, where both 

the training and test data are 3D range face images. In this case, we can still apply the mosaicing 

idea. That is, to register different parts of range images and stick them together to form a larger 

model. The difference between this and our application is that the geometric deviation model is 

not needed since we have a perfect 3D geometric model. 
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