IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

3D Reasoning from Blocks to Stability

Zhaoyin Jia, Student Member, IEEE, Andrew C. Gallagher, Senior Member, IEEE,
Ashutosh Saxena, Member, IEEE, and Tsuhan Chen, Fellow, IEEE

Abstract—Obijects occupy physical space and obey physical laws. To truly understand a scene, we must reason about the space
that objects in it occupy, and how each objects is supported stably by each other. In other words, we seek to understand which
objects would, if moved, cause other objects to fall. This 3D volumetric reasoning is important for many scene understanding
tasks, ranging from segmentation of objects to perception of a rich 3D, physically well-founded, interpretations of the scene.

In this paper, we propose a new algorithm to parse a single RGB-D image with 3D block units while jointly reasoning about
the segments, volumes, supporting relationships and object stability. Our algorithm is based on the intuition that a good 3D
representation of the scene is one that fits the depth data well, and is a stable, self-supporting arrangement of objects (i.e.,
one that does not topple). We design an energy function for representing the quality of the block representation based on
these properties. Our algorithm fits 3D blocks to the depth values corresponding to image segments, and iteratively optimizes
the energy function. Our proposed algorithm is the first to consider stability of objects in complex arrangements for reasoning
about the underlying structure of the scene. Experimental results show that our stability-reasoning framework improves RGB-D
segmentation and scene volumetric representation.

<+

1 INTRODUCTION

D reasoning is a key ingredient for scene un-

derstanding. A human perceives and interprets a
scene as a collection of 3D objects. Rather than groups
of ‘flat’ color patches, we perceive objects in space
with perspective. In static scenes, we understand that
objects occupy volumes in space, are supported by
other objects or the ground, are typically stable (i.e.,
not falling down or toppling), and occlude farther
objects. These physical properties are usually not con-
sidered in traditional object recognition.

In this paper, we propose a framework for 3D
segmentation and scene reasoning with volumetric
blocks that incorporates the physical constraints of
our natural world. Our algorithm takes RGB-D data
as input, performs 3D box fitting of proposed object
segments, and extracts box representation features

(b)

(such as box intersection and stability inference) for
a physics-based scene reasoning. Our final output is
the object segmentation of the scene, and its block
representation (shown in Fig. 1 (d)).

Past works for producing 3D interpretations repre-
sent the world as point-wise depth-grid [1], as a “pop-
up” model [2], as piece-wise planar segments [3], [4],
or as blocks constrained to rest on the ground [5].
However, inferring a 3D interpretation is only part of
the picture, a good scene interpretation should also

o Zhaoyin Jia, Andrew Gallagher and Tsuhan Chen are with the School
of Electrical and Computer Engineering, Cornell University, Ithaca,
NY 14850.

E-mail: {232, acg226, tc345}@cornell.edu

o Ashutosh Saxena is with the Computer Science Department, Cornell
University, Ithaca, NY 14853.

E-mail: asaxena@cs.cornell.edu

t This work was first presented at Computer Vision and Pattern Recog-
nition (CVPR), 2013 as an oral.

(d)

Fig. 1: (a) The input RGB-D image. (b) Initial segmentation from RGB-D data.
(c) A 3D bounding box is fit to the 3D point clouds of each segment, and
several features are extracted for reasoning about stability. Unstable boxes
are labeled in red. (d) The segmentation is updated based on the stability
analysis and produces a better segmentation and a stable box representation.

follow physical rules: assuming the image captures
a static scene, objects should be placed stably. If we
attempt to segment the scene purely based on appear-
ance or shape, we may end up with segmentations
that do not make physical sense, as shown in Fig. 1
(b). Reasoning about stability brings physics into our
model, and encourages more plausible segmentations
and block arrangements, such as the example pre-
sented in Fig. 1 (d).

The challenge is that objects can be arranged in
complicated configurations. While some recent work
considers notions of support (e.g., [5], [6], [7]), they are
limited to single support or isolated objects on a flat

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

surface. Although these methods work well on larger
structures such as furniture and buildings, they do not
apply to more complicated stacking arrangements of
objects that can occur, for example, on desks or other
cluttered situations.

In our algorithm, we first fit a 3D box to the
point-cloud of each segment, and then extract several
features for further reasoning about the scene: 1) we
define the box fitting error based on the 3D points
and box surfaces; 2) we ensure that 3D points lie on
the visible surfaces of the boxes given the camera po-
sition; 3) we find space violations when neighboring
boxes intersect one another; 4) we propose supporting
relations and the stability of the scene given the boxes.
This evaluation of the box representation allows us to
refine the segmentation based on these box properties
through a process whose parameters are learned from
labeled training images.

The block representation provides us many useful
features, such as the box fitting error and the object
stability, and we learn the importance of each feature
through supervised learning. We design an energy
function to describe the quality of the segmentation
given a RGB-D image (composed of a color image
and its corresponding depth image). By minimizing
this energy function value, we achieve a better scene
segmentation and volumetric block representation.
For minimization, we use a sampling algorithm that
incorporates randomized moves including splitting
and merging current segments.

We experiment on several datasets, from a synthetic
block dataset to the NYU dataset of indoor scenes. We
also propose a new Supporting Object Dataset (SOD)
with various configurations and supporting relations,
and a Grocery Dataset (GD) extended on SOD in
order to demonstrate more application scenarios. Ex-
perimental results show that our algorithm improves
RGB-D segmentation. Further, the algorithm produces
a 3D volumetric model of the scene, and high-level
information related to stability and support.

To summarize, our major contributions are:

1) A volumetric representation of the RGB-D seg-
ments using blocks.

2) The use of physics-based stability for modeling
an RGB-D scene.

3) A learning-based framework for inferring object
segmentation in an RGB-D scene.

4) New supporting objects datasets including seg-
mentation labels and support information.

The rest of the paper is organized as follows: we
discuss the related work in Section 2. An overview
of the approach is presented in Section 3. We then
present our approach for single box fitting in Section
4, and the features to model the pairwise box relations
in Section 5. We present the stability reasoning process
in Section 6. We introduce our energy function for
segmentation in Section 7, including the sampling al-

gorithm with splitting and merging. The experimental
results are presented in Section 8. We conclude the
paper and discuss future work in Section 9.

2 RELATED WORK

3D Understanding from Color Image: Object seg-
mentation on a color image is one of the most studied
computer vision problems, and many methods have
been proposed, e.g., [8], [9], [10] These methods group
pixels into objects by clues such as color, texture or
semantic classification results. They operate on a 2D
image, but it is a natural next step to incorporate 3D
understanding into object segmentation.

The first attempts for geometric inference from a
single color image were proposed in [1], [3] and [4] for
estimating the depth of each segment using only color
features. Usually, a ground plane is detected, and then
the depth of a segment that stands on the ground
can be estimated by the touching position. The results
appear either as “pop-up images” [2]: segments stand
like billboards in different depth layers and have
empty space behind them, or as a “point-wise depth-
grid” [1] or “piecewise planar segments” [4]: pixels
or super-pixels are predicted as 2.5D depths. The
limitation is obvious: these models do not align with
our understanding of the scene, where each object
actually occupies a volume in 3D, which we explore
in this work (Fig. 1 (d)).

To overcome this limitation, Gupta et al. [5] propose
a block-world representation to fit 2D color segments.
This block world assumption has been proposed early
in 1965 [11]. Following this assumption, Gupta et al.
represent the segments in outdoor scenes by one of
eight predefined box types representing a box viewed
from various positions. Although buildings in these
outdoor scenes may fit nicely into one of the block
categories, this assumption is not true for general
images of stacked objects, where the orientations of
objects are not limited to eight. Zheng et al. [12]
also use blocks representation for objects, but required
interactive human labelings for non-box objects. Xiao
et al. [13] detect 3D cuboids with arbitrary orienta-
tions solely in RGB images, Bleyer et al. [14] show
box fitting for improved stereo, and Jiang et al. [15]
propose a linear programming for fitting cuboids in
depth images. In this work, we use RGB-D data and
fit boxes with depth information for volumetric and
stability reasoning.

In addition, researchers have studied indoor envi-
ronment reasoning on color images, where the 3D
geometric inference can be approximated as a Man-
hattan World [16] [17] [18] [19]. Bao et. al in [20] com-
bine object detection with supporting layer inference
to achieve 3D scene understanding. Further, the 3D
structure of indoor scenes has been studied through
affordances, as in [21] [22] and [23]. Indoor images
have the strong clues of lines and planes as well as a

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

sampling with merging/splitting

cb‘l:bl:%% c> E(S) c:>|:-‘* qj

Box fitting and support/
stability reasoning

RGBE-D input Initial segmentation

Learning scores using
features on boxes

Final segmentation and
box fitting

Fig. 2: An overview of our algorithm.

fixed composition of ceiling, wall and ground. These
approaches posit that indoor spaces are designed by
humans, so furniture items and objects are arranged
in ways to facilitate usefulness of these spaces by
humans. These approaches incorporate higher level
understanding of between the scene and human in-
teractions, and are complementary to ours.

RGB-D Scene Understanding: Previous work has
shown that integrating depth with color information
improves the performances of many vision tasks, such
as segmentation (in [7]), contour detection (in [24]),
object recognition (in [25], [26], and [27]), scene label-
ing (in [28], [29], [30] and [31]), and activity detection
(in [32], [33] and [34]). These algorithms usually treat
depth as another information channel without explic-
itly reasoning about the space that an object occupies.
For example, when an object is partially observed
from a single viewpoint, it remains hollow inside. In
this way, segmentation and supporting inference are
transformed into a classification problem in a 2.5D
space, where the depth information of each visible
pixel is available, but not the full 3D voxels of the
objects that occupy the space. Koppula et al. [28], [30]
considered 3D point-clouds but not fully volumetric
reasoning. In contrast, we explicitly reason about full
3D models by fitting boxes to objects. This leads to a
more natural interpretation of the scene, facilitated by
better segmentation and support inference.

Support and Stability: Brand et.al. in [35] and [36]
propose the vision system “SPROCKET” to analyze
geared machines with basic knowledge of physics,
such as friction and attachment. However their set-
tings are constrained and difficult to be applied into
general vision problems. Recently Grabner et.al. [37]
analyze the interaction between humans and objects
such as chairs in 3D space. The algorithm finds object
support, and shows that a 3D model can predict well
where a chair supports the person. This also helps
chair detection. However, in this paper, we perform a
more general analysis of the 3D objects in the scene
through box fitting and stability reasoning.

Jiang et al. [6] [38] reason about stability for object
arrangement, but their task is different from ours:
given a few objects, their goal is to place them in the
environment stably.

In other recent work, Silberman et al. [7] identify
which image segments support which other segments.
However, reasoning about support and stability are

two different things. Past work on support pre-
supposes that segmentations are already stable, and
implicitly assumes that all regions need only one re-
gion to support them, without checking any physics-
based model of stability. We use stability reasoning to
verify whether a given volumetric representation of a
scene could actually support itself without toppling,
and adjust the segmentation accordingly.

In concurrent work, Zheng et al. [39] reason about
stability in a depth image. They use geometric prim-
itives, including voxels, to represent object volumes,
and merge together neighboring voxels until stability
is achieved. Their approach focuses only on the depth
domain. In contrast, our work fuses both color and
depth features. We model each object with cubic
volumes and combine this representation with color
information for reasoning about support, stability and
segmentation in one framework.

We use a simple model for evaluating the stabil-
ity of our block arrangements, although more com-
plicated physics-based simulators [40] could be em-
ployed. One approach could be to consider all pos-
sible reasonable segmentations, and plug each into a
simulator. However, this would result in an exponen-
tial number of evaluations, and would still be suscep-
tible to noise and other unknown physical parameters
(e.g., coefficients of friction). Our approach for stabil-
ity evaluation is based on a simple Newtonian model:
the center of gravity of the objects must project within
its region of support. This simple model is justified by
the ideas of intuitive physics [41] that humans even
have a sense of stability at a glance. Our algorithm is
not a perfect reflection of the physical world, but it
is accurate enough to achieve our goal of improving
parsing 3D scenes.

3 APPROACH OVERVIEW

Our input is an initial RGB-D segmentation, generated
from Silberman et al. [7]. First, we fit a 3D bounding
box to the 3D point-cloud points corresponding to
each segment. Next, we compute features for sin-
gle boxes and between pairs of boxes and propose
supporting relations, perform stability reasoning, and
adjust the box orientation based on the supporting
surfaces. Finally, we model the segmentation with
an energy function based on learned regressors that
are trained using these features. The segmentation is
optimized by minimizing this energy function using

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

- -
- - s
- -

(a) (b)

Fig. 3: (a) A bounding box fit based on minimum volume may not be a good
representation for RGB-D images, where only partially observed 3D data is
available. (b) A better fit box not only occupies a small volume, but also has
many 3D points near the box surface. Data points are projected to 2D for
illustration.

randomized splitting and merging. The output is
the segmented RGB-D image along with volumetric
representation using the fitted boxes and support
information. See Fig. 2 for an overview.

4 SINGLE BOX FITTING

In this section, we describe the procedure for repre-
senting a segment from an RGB-D image with a box.
RGB-D data is observed from only one viewpoint, and
fitting 3D bounding boxes with minimum volumes
[42] may fail to produce box representations that align
well with the actual objects in the scene. Fig. 3 (a)
gives an illustration. A minimum volume box covers
all the data points but might not give the correct
orientation of the object, and fails to represent the
object well. A well-fit box should have many 3D
points near box surfaces, as shown in Fig. 3 (b).! We
propose a RANSAC-based algorithm (details below)
to fit boxes to the point cloud.

s -

o a ‘

RGB-D RGB-D
Camera Camera

(@) (b)
Fig. 4: (a) To fit the 3D points, we use RANSAC to find the first plane S;.
(3D points are projected on 2D for a simpler illustration, and the plane S;
is presented as red line). (b) For the 3D points that do not belong to S, we
fit another plane S3 to them, enforcing that S> is perpendicular to S;.

4.1

The orientation of a 3D bounding box is determined
by two perpendicular normal vectors (the third nor-
mal is perpendicular to these two vectors). The idea
is to find the two principle orientations of the 3D
bounding box so that the 3D points are as close as

Minimum surface distance

1. Recent related work [43] considered cylinder fitting of 3D
points to the surface but also did not consider visibility.

possible to the box surfaces. Given a set of 3D points
{P;} and a proposed 3D box, we calculate the distance
of each point to the 6 surfaces of the box, and assign
each point to its nearest-face distance {D,,;,,(P;)}. The
objective for our box fitting algorithm is to minimize
this sum for all the 3D points:), Dypin(F;).

The input to this step is the 3D points within one
segment. First, we use RANSAC to find a plane to fit
all the 3D points, providing the first surface S;, shown
in Fig. 4 (a). Next, we collect the outlier 3D points that
do not belong to S;, and then fit a plane, S, to them
also using RANSAC. In experiments, we empirically
set this threshold to 2cm, i.e. a point does not belong
to a surface if its distance to this surface is larger than
2 cm. RANSAC for finding the normal is repeated for
10 times. We constrain that the surface orientation of
Sy is perpendicular to S;, shown in Fig. 4 (b).

The above steps give the orientations that align with
many points. The minimum volume is determined
by finding the extent of the 3D points given the
box orientation. Note that there are usually noisy
depth points: If a segment mistakenly includes a few
points from other segments in front or behind, a large
increase of the box volume can occur. Therefore, we
allow for up to 5% outliers in the 3D points, requiring
that > 95% of a segment’s 3D points are enclosed
within its box.

With the final 3D bounding box, the sum of the
minimum surface distance of the point, >, Dyin, is
calculated. The whole process is repeated M times
(M = 15 in our experiment setting) and the best fitting
box (smallest distance), D,,,) is chosen.

Algorithm 1 Minimum Surface Distance Box Fitting

Given 3D Points {P;}, M

Fit a plane S; to P, find outliers P> not belonging to S;.
Fit a plane S> to P, such that S» is perpendicular to S;.
Given S; and S, find the extend of the 3D box by
minimum volume. Calculate), Dmn.

Repeat M times to find the best fitting box.

4.2 Visibility

We identify the box surfaces that are visible to the
camera. If the objects in the scene are mostly convex,
then most 3D points should lie near visible box sur-
faces instead of hidden faces.

Fig. 5 illustrates the visibility feature for our box
fitting. Surface visibility is determined by the position
of the camera center and the surface normal. We
define the positive normal direction of a surface as
the normal pointing away from the box center, and
then a surface is visible if the camera center lies at its
positive direction. Each box has at most three visible
surfaces. We compute the percentage of the points that
belong to visible surfaces, and use this as the feature
for later processing.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

%0 i.\-‘&o%&

Z+ »~ Z+ ’l“‘ P
|
|
|
|
|
|
|
|

.
~

v AGB-D
Camera
(a) (b)

Fig. 5: Given the camera position and a proposed bounding box, we deter-
mine the visible surfaces of the box, shown as a solid parallel black line to
the box surface. (a) This box may give a compact fit, but most of the points
lie on the hidden surfaces. (b) With a better box fit, most of the points lie on
the visible surfaces of the two boxes.

5 PAIRWISE BOX INTERACTION

We examine two pairwise relations between nearby
boxes: box intersection and box support. These fea-
tures are important because they encode agreement
between neighboring segments and provide addi-
tional clues for refining the box representation.

5.1 Box intersection

Box intersection gives an important clue for volume
reasoning. Ideally, a box fitted to an object should
contain the object’s depth points, and not intrude
into neighboring boxes. If a proposed merging of two
segments produces a box that intersects with many
other boxes, it is likely an incorrect merge. Fig. 6
shows an example.

(a) (b)
Fig. 6: (a) Well-fit boxes should not intersect much with neighboring boxes.
(b) If two segments are merged incorrectly, e.g., the two books in the image,
then the new box fit to the segment is likely to intersect with neighboring
boxes, e.g., the box shown in red.

We explicitly compute the box intersection, and the
minimum separation distance between box pairs and
direction. Since 3D bounding boxes are convex, we
apply the Separating Axis Theorem (SAT) [44], used in
computer graphics for collision detection. We present
a 2D illustration for finding the distance of the box
intersection in Fig. 7. The distance D shown in Fig. 7
(b) is the minimum moving distance to separate two
intersecting boxes.

Extending this algorithm to 3D bounding boxes is
straight-forward: since three surface orientations of a
box are orthogonal to one another, we examine a plane
parallel to each surface, and project the vertexes of
the two boxes to this plane. We compute the convex
hull of the projection of each box, checking whether
the two convex hulls intersect to find the minimum
separating distance D.

i 2

! &
. | S
! i g
: i 1
|) ! =3
| : =
| 4D i
I———

Axis Orientation

(@) (b)

Fig. 7: Separating Axis Theorem in 2D: (a) in order to separate two boxes, we
choose an axis perpendicular to any of the edges, and project all the vertices
to this rotated axis. (b) If two bounding boxes are separate, there exists an
axis that has a zero overlap distance (D in the image). We examine all the
possible axiss (in this case four possibilities, two for each box), and choose
the minimum overlap distance. This gives the orientation and the minimum
distance required to separate two boxes.

This process gives both separating distance and the
orientation 0., to separate the two boxes with the
minimum distance. 6,., is used when determining
the pairwise supporting relations between boxes. For
non-intersecting boxes, we choose the orientation and
the distance that maximally separate the two boxes as
their intersection features.

5.2 Box supporting relation

In order to address various object-object support sce-
narios, we define three supporting relations between
the boxes: 1) surface on-top support (an object is
supported by a surface from below); 2) partial on-
top support (an object is tilted and only partially
supported from below); 3) side support. Examples are
shown in Fig. 8 (a) to Fig. 8 (c).

To classify supporting relations, we detect the
ground and compute the ground orientation follow-
ing [7]. We define the 3D axis as the follows: the xz-
plane is parallel to the ground plane, and y = —1
is the downward gravity vector. We align the point-
cloud with this axis.

Given the box representation of the scene, we clas-
sify pairwise supporting relations with the following
set of rules: 1) we use the separating orientation 6.,
to distinguish between ‘on-top’ support and ‘side’
support: an ‘on-top” support has a separating direc-
tion nearly parallel to y-axis (< 20°), while a ‘side’
support has a separating direction close to paral-
lel to the zz-plane (ground plane); 2) for ‘on-top’
supporting relations, there are two possibilities: an
even on-top support, shown in Fig. 8(a), and a tilted
on-top support, shown in Fig. 8(b). We distinguish
these two types by examining the two closest surfaces
of the pairwise boxes. If these two surfaces have
a large angle difference (>20°) between them, and
have different orientations to the ground plane, then
we classify it as a partial ‘on-top” support, ie., the
object on top is tilted. Otherwise as a ‘surface on-top’
support.

Reasoning about stability requires that we compute
centers of mass for object volumes, and determine

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

(b)

; ; N
(©) (d) (e) () (8)

Fig. 8: (a) to (c): three different supporting relations: (a) surface on-top support (black arrow); (b) partial on-top support (red arrow); (c) side support (blue
arrow). Different supporting relations give different supporting areas as plotted in red dashed circles. (d) to (e): stability reasoning: (e) considering only the
top two boxes, the center of the gravity (in black dashed line) intersects the supporting area (in red dashed circle), and appears (locally) stable. (¢) When
proceeding further down, the new center of the gravity does not intersect the supporting area, and the configuration is found to be unstable. (f) to (g)
supporting area with multi-support: (f) one object can be supported by multiple other objects. (g) The supporting area projected on the ground is the convex

hull of all the supporting areas.

areas of support (i.e., regions or points of the object
that are supported, either on side or beneath). Stability
requires that the projection of the center of mass of the
object along the gravity vector falls within the region
of support. We use an object’s supporting relation
to find the supporting area projected on the ground,
and different supporting relations provide different
supporting areas. For ‘surface on-top’ support, we
project the vertexes of the two 3D bounding box to the
ground, compute the convex hull for each projection,
and use their intersection area on the ground plane
as the supporting area. For “partial on-top” and ‘side’
support, we assume there is only one edge touching
between two boxes, and project this touching edge on
the ground plane as the supporting area. Examples of
the supporting areas are shown as red dashed circles
in Fig. 8(a) to Fig. 8(c).

6 GLOBAL STABILITY

Box stability is a global property: boxes can appear to
be supported locally, but still be in a globally unstable
configuration. Fig. 8(d)-(e) provide an illustration.

We perform a top-down stability reasoning by it-
eratively examining the current gravity center and
supporting areas. To determine the direction of the
gravity, we first find the ground plane following the
heuristics proposed in [7]: many surfaces in an indoor
scene will follow the three orthogonal directions, and
we choose the one that is closest to ¥ = 1 in the
camera coordinates as the ground plane normal. The
negative direction of the ground plane normal is used
as the gravity direction.

The top-down stability process is shown in Fig. 8.
For simplicity we assume each box has the same
density. This assumption is usually valid for daily
objects, e.g. books, boxes, or bottles. They have similar
densities, and can either support other objects or be
supported.

We begin with the top box by finding its center of
mass, and check whether its gravity projection inter-
sects the supporting area. If so, we mark the current
box stable, and proceed to another box beneath for
reasoning, this time finding the center of mass of
the set of boxes already found to be stable with the
one under consideration. Assuming constant density,
the center of mass P. = [z,y, 2] for a set of boxes is

(b)

Fig. 9: (a) Near-touching objects, e.g., objects A and C do not necessarily
support one another. (b) After stability reasoning, we find that object A can
be fully supported by object B beneath it through a surface on-top support.
Therefore, we delete the unnecessary side support between A and C.

calculated by averaging the volume V; of each box i:

We iteratively update the center of mass by adding
the boxes from top to bottom until the ground is
reached. If we found that the current supporting area
does not support the center of mass, we label the
current box (or collection of boxes) unstable, shown in
Fig. 8 (e). For the set of boxes with multiple supports,
we compute the convex hull of the multi-supporting
areas as the combined supporting area, shown in
Fig. 8 (f) to Fig. 8 (g).

Support reasoning: Stability reasoning helps delete
unnecessary supports. For example, side-to-side nearly
touching objects do not necessarily support one an-
other. We trim these unnecessary supporting relations
by examining the support relations in the order: sur-
face on-top, partial on-top and side support. If the
object has a ‘surface on-top” support and the configu-
ration can be stable, then additional support relations
are unnecessary and can be trimmed. If not, we find
a minimum combination of the on-top supports (both
surface and partial) and at most two side supports
examine whether the object can be stable. If so, all
other support relations for the object are deleted. One
example is shown in Fig. 9.

Box fitting: Stability reasoning and supporting rela-
tions are used to refine the orientation of a box. If
the box is fully supported through a ‘surface on-top’
relation, then we re-fit the 3D bounding box of the
top object, confining the rotation of the first principle
surface S; to be the same as the supporting surface.
One example is illustrated in Fig. 10. We perform this

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

|l

B

(@) (b)
Fig. 10: (a) 3D oriented bounding boxes can be ill-fit because of noise, and
this may lead to incorrect support relation inference. For example, between
object A and B, a partial on-top support is proposed, although it should
have been a surface on-top support. (b) After stability reasoning, we adjust
the higher box if it is only supported from beneath, and then correct the
support relation accordingly.

adjustment on box-fitting every time after inferring
the supporting relation and stability. This improves
the 3D interpretation of the scene.

6.1 Integrating box-based features for segmenta-
tion

To incorporate all the box-based features, one baseline
we implement is to start with an over-segmentation,
and merge the pairwise segments based on learning
(another possible implementation would be to start
with an under-segmentation and perform splitting on
each segment). We begin with initial segments gen-
erated with features from [7]. During training we use
the ground-truth segmentation and label the segments
that should be merged as y = 1, and the others as
y = 0. We extract a set of features = based on the box
fitting, pairwise box relation, and the global stability.
For example, to compute one type of features (surface
distance) for a merge, we record the minimum surface
distances of two neighboring boxes before merging (2
dimensions, noted as B), and the minimum surface
distance of the box after merging (1 dimension, noted
as A), as well as the difference of this criterion before
and after merging (1 dimension for each box before
merging, 2 dimensions in total, denoted as D).

For this baseline model (labeled as Stability in the
following sections), we train an SVM regression y =
w?, x based on the features z and labels y. During
testing, we greedily merge the neighboring segments
based on the output prediction of the regression f, fit
a new bounding box for each newly merged segment,
recompute the stability reasoning, and re-extract the
features for regression. We repeat the above steps until
the classifier does not classify any pair of segments as
a pair that should be merged. Note that this baseline
merges pairs of segments, has no backtracking, and
must begin with an over-segmentation of the image.

7 A LEARNED ENERGY FUNCTION

In this section, we improve the baseline model
(Stability) from the previous section by introducing
an energy function with unary and pairwise terms
based on the volumetric boxes, their support relations,
and stability (this method is labeled as R-Samp for

Randomized Sampling in the following sections). This
model provides the framework for exploring the space
of an energy function that represents the goodness-of-
fit of a particular box representation and correspond-
ing segmentation for a scene with the corresponding
RGB-D input. We define two different moves, splitting
to split a segment, and merging to merge two adjacent
segments. These moves allow us to traverse the space
over which the energy function is defined. We explore
the space with a partical-based filter to discover a
local minimum that, hopefully, corresponds to a good
segmentation and box representation of the scene.

We use s; to represent one individual segment
in a segmentation, and denote a segmentation as
S = {s1,..,sn} with N segments and M pairs of
neighboring segments. We define a pool of segmenta-
tions as {5}, which includes a set of possible different
segmentations given the RGB-D input. {S},; indi-
cates the space of all possible segmentations. Given
one particular segmentation S, we define the energy
function:

BS) = 5 S o)+ 57 Y vlsis)s @

where ¢(s;) is a regression score of a segment s; de-
scribing the quality of this segment, and it is learned
using single box features including box fitting errors,
volumes, and stability, described as z; in the top of
Table 1. Formally, ¢(s;) is defined as:

P(si) = wzxiv ®)

where w; is the learned regression parameters.
Similarly, (s;,s;) is a regression score of two
neighboring boxes. It is learned using pairwise box
features including box intersection distance, pairwise
support relations, and pairwise box features, x;;, de-
scribed in the bottom of Table 1. ¢(s;, s;) is formally
defined as:
1/)(52',8]') ZU/;F»TU, 4)

where w, represents the regression parameters.

7.1 Single and pairwise potentials

In the following section we further explain the train-
ing and testing processes for our single and pair-
wise potentials that comprise our energy function.
The input at this step is a mid-step segmentation S,
including N segments and M pairs of neighboring
segments. This initial segmentation can be generated
using the algorithm proposed in the literature, e.g. [7],
or the previously proposed algorithm Stability.
First, we learn the quality of each single segment s;
through a SVM regression as the single box potential
¢(s;). This is done through a supervised learning
process on a held-out training set, and we generate
the positive and negative training samples as follows:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

TABLE 1: Features for single and pairwise potentials. The “relative” feature
values are the features divided by the volume of the box, instead of the
absolute value.

Single potential ¢(s;) features z; dim
Box orientation with respect to the ground 1
Mean and variance of the minimum surface dis- 2
tance

Mean and variance of the relative minimum sur- 2

face distance (divided by box volume)

3D point density over volume 1
Percentage of the visible points 1
Number of intersecting boxes 1
Global Stability 1
Stabilities of the objects 1
Average (and relative) intersecting distance of the 2
boxes
Distance (and relative distance) of the projected 2
gravity center to the supporting area center
Distance (and relative distance) of the projected | 16
gravity center to the projected vertexes

Pairwise potential ¢(s;, s;) features z;; dim
Number of intersection of each box 2
Relative of collision of each box (divided by each 2

box volume)

Stability of each box 2
Pairwise supporting relations 1
Is one supporting another 1
Pairwise volume center distance 1
Projected gravity center to the supporting area 1
center (if supported)
RGB-D features proposed in [7] 51

in the training images, we first use the ground-truth
segmentation from human labeling as the positive
training samples. We also make some random mod-
ifications from these ground-truth segmentations by
splitting and merging, providing more positive and
negative training instances. Then, we compute the
segmentation score (the intersection-over-union ratio)
of each segment s; to the ground-truth segment s; 4:
score(s;) = max Intefsect(si, S1.01))
it Union(s;, sj gt)
and consider a segment s; as positive training sample
if score(s;) > 90%, otherwise this segment is a nega-
tive training sample. After getting the training label, a
3D bounding box is then fit to this segment, and then
the proposed box-related features x; are computed for
training.

During testing, we fit a 3D bounding box to each
segment s;, compute the features z;, and perform the
regression in Eq. 3 to calculate the single box potential
value ¢(s;). Fig. 11 (c) presents one example of our
single box potentials during testing. The boxes of the
segments are color-coded in a way that the lower
potential value ¢(s;) of segment s; is, the more blue
its corresponding box is. It shows that our proposed
single box potential value captures the segment qual-
ity and classifies the ill-fit boxes, e.g., the boxes with
yellow and red colors.

The pairwise potential is trained and tested follow-
ing the similar manner: multiple randomly generated
segmentations as well as the ground-truth ones are
processed during training. A boundary is considered

(a) (b)

() (d)

Fig. 11: (a) Input image. (b) Mid-step segmentation during testing. (c) and
(d) are exemplar testing results for (c) single potential ¢(s;) and (d) pairwise
potential v (s;, s;). The color of the boxes and boundaries is coded as the
better quality the segments are, the more blue the boxes and boundaries are,
with lower potential values. Our proposed features capture the quality of
each segment and boundary.

a positive training instance if the two segments it lies
between both have segmentation scores (proposed in
Eq. 5) larger than 90%. During testing, 3D bounding
boxes are also first fit to all the segments, and then the
pairwise features described in Table 1, bottom part,
are computed. We perform regression (s;, s;) on the
pairs of the segments sharing a boundary. Fig. 11(d)
presents one example of pairwise potentials (s;, s;).
This potential gives a good indication of which pairs
of segments, if merged, might produce a reduction to
the global energy function.

7.2 Minimizing through splitting and merging

During testing, our goal is to minimize this energy
function and find the optimal segmentation S* that
has the minimum energy value:

S* :argmgnE(S’). (6)

Note that this energy function is non-convex, and the
space of possible segmentations {S},; is very large,
therefore it is infeasible to perform an exhaustive
search to find the global minimum.

To explore the space, we adopt a Randomized Sam-
pling (R-Samp) [45] approach to this problem, where
we design appropriate moves to explore the space.
We start with an initial segmentation, and move to a
new set of segmentations by either: (a) splitting one
segment into two smaller segments, or (b) merging
two neighboring segments into one segment. We use
the potentials ¢(s;) and 1(s;,s;) to indicate which
segments should be split or merged while designing

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

(a)
(b) (c)

Fig. 12: (a) We pre-compute all the possible boundaries given RGB-D image.
(b) The selected segment before splitting. (c) The selected segment after
splitting. The splitting move is constrained to split one segment into two.

the sampling moves. We keep a pool of possible
segmentations as the particles to explore this energy
space, and keep track of the ones with the minimum
energy values as we iterate for optimization.

Splitting: The single box potential ¢(s;) indicates
the quality of each individual segment. This value
guides the splitting moves so that we explore the
segmentation space in a more efficient manner.

We calculate the single box potential for all the
segments in the current segmentation, and then ran-
domly choose one segment s; to split based on its
potential ¢(s;): the higher ¢(s;) is, the more likely s; is
going to be selected for splitting, because it represents
a worse segmentation quality for s;, and thus s; needs
to be modified. The final likelihood of selecting one
segments is linearly mapped from ¢(s;) by converting
¢(s;) into probabilistic prediction [46].

Specifically, we split one segment s; as follows: we
pre-compute a boundary map of all the possible edges
given the RGB-D images using [7]. One example is
shown in Fig. 12(a): all the possible boundaries are
presented in this boundary map, including the false
ones. This map provides us the basis for splitting
one segment. Then given the selected segment s;,
this segment is forced to be split into two segments
based on the boundary map, as illustrated in Fig. 12(b)
and Fig. 12(c). The boundaries within s; are merged
from lower values to higher values based on the pre-
computed boundary map, until only two segments
remain in s;.

Merging: We merge the segments with a similar
principle: first we compute all the pairwise potentials
1¥(s4,55) given the current segmentation, and then we

randomly sample a pair of segments based on their
pairwise potential value: if two segments s; and s;
have a higher pairwise potential 9(s;, s;), they have
a higher chance to be selected for merging, because
1(s;, sj) indicates a worse quality boundary between
two segments. After the boundary and its pair of
segments are chosen, we merge the neighboring two
segments by deleting the boundary between them and
group all the pixels into one segment.

Minimization: The energy function in Eq. 2 is devised
in the way that the smaller the value is, the better
segmentation is. We find a better segmentation with
a lower energy value by maintaining a segmentation
pool {S}, and repeatedly finding the segmentations
with smaller energy values within this pool. Splitting
and merging compose our basic moves for minimiza-
tion. Given one initial segmentation, we propose 2N
(we use N = 5) new segmentations by N splitting
moves and N merging moves, and then re-evaluate
all segmentations using Eq. 2. We take the K (we use
K = 5) segmentations with the smallest energy val-
ues for the next iteration, and discard the remaining
segmentations. We repeat this step again, so that the
top K segmentations will branch, producing KN new
moves, and then be evaluated together to choose the
top K segmentations for the next step. We repeat this
sampling step until we reach the maximum number
of iterations M. In practice, this algorithm optimizes
our energy function to a reasonable local minima in
about 10-15 iterations. The details of the algorithm are
presented in Alg. 2.

Algorithm 2 Energy Minimization

Given constants N, K, and M.
Initialize segmentation pool {S} with initial segmentation
init-
for each segmentation S; in the pool {S} do
Compute ¢(s;) and (si, s;) for S;.
Sample one segment s; by ¢(s;) and split it, producing
new segmentation .S
Add S; to {S}, repeat N times sampling of one seg-
ment.
Sample one pair of segments by (s;,s;) and merge
them, producing new segmentation S;
Add Sj to {S}, repeat N times sampling of a segment
pair,
end for
Evaluate the energy function E for all the segmentations
in {S}.
Keep top K segmentations in {S} with smallest E(S).
repeat M times

Output S},,,, with the minimum energy value E(S) in
the {S}.

Experimental Illustration: Now we illustrate that our
energy minimization approach improves performance
over iteration steps in Fig. 13, for the three different
datasets that we experiment on (see next section). The
overall average segmentation performance is shown
as blue curve and the average energy function value

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Fig. 14: The segmentation results improve along with more iterations of the proposed algorithm R-Samp. Given the color image (a), and the depth image
(b), the initial segmentation (c) may have some mistakes. Some of these mistakes are corrected during middle steps as iteration goes on, shown in (d). In
the final iteration, the segmentations are corrected into more reasonable ones, presented in (e).

NYU Datase

8= Segmentation Accuracy
= Energy Value

Support Object Dataset Grocery Datase

8- Segmentation Aceuracy|
== Energy Value

8= Segmentation Accuracy
== Energy value

B 4 B 10 2 0 2 s

3 Y
Iteration Steps

(©

<
tteratidh steps 4 hermtidh steps ®

(a) (b)

Fig. 13: Segmentation results of our proposed sampling algorithm (R-Samp)
over each iteration on the SOD dataset (a), GD dataset (b) and NYU-2
dataset (c). As the energy value decreases through the minimization steps,
the accuracy of the segmentation increases.

is shown as green curve. It shows that the accuracy
of the segmentation increases as we minimize the
energy function through our R-Samp sampling pro-
cess. Therefore, it provides evidence that our energy
function accurately represents the quality of the seg-
mentation.

Fig. 14 presents a particular sequence of the top seg-
mentations (smallest energy values) at each step as we
minimize the energy function. Our moves of splitting
and merging improve the overall segmentation.

8 EXPERIMENTS

We perform experiments on four different types of
datasets: a block dataset, a supporting object dataset
(SOD), a grocery dataset, and a public dataset of
indoor scenes proposed in [7]. We evaluate the box
fitting accuracy, the support relation prediction, and
the segmentation performance.

8.1

First we describe the datasets we have applied for
evaluating our proposed algorithms.

Block dataset: We apply our algorithm to a toy
block dataset. This dataset has 50 RGB-D images
of blocks (see Fig. 15 and 16). For each block, we
manually provide the ground-truth segment labels,
as well as the orientations of two perpendicular sur-
faces®. Ground-truth surface orientations are labeled
by manually clicking at least 8 points on the same
surface, and fitting a plane to these labeled 3D points.
Supporting relations of each block are also manually
labeled.

Datasets

2. The third surface orientation is perpendicular to the first
two, and thus determined after providing the first two surface
orientations.

TABLE 2: Average angle error on the bounding box orientation given ground-
truth segmentations.

Block Dataset
Min-vol 15.41°
Min-surf 9.75°
Supp-surf 7.02°

Supporting object dataset: Many of the daily ob-
jects can be approximated as 3D volumetric blocks
with similar densities, following our stability reason-
ing assumption. Thus we collect a new Supporting
Object Dataset (SOD) composing of 307 RGB-D im-
ages. Various daily objects are randomly placed in
scenes in different configurations of support. For each
object, we manually label the segment and the objects
supporting it. (See Fig. 19.)

Grocery dataset: One possible application scenario
of our proposed algorithm is a supermarket, where
many objects are contained in regular boxes. We col-
lect an extended Grocery Object dataset (GD) based
on the Support Object Dataset (SOD) to demonstrate
this application. This dataset mimics the environment
of a grocery store, and includes a variety of com-
mon grocery objects, such as cereal boxes, shampoo
bottles, etc. The dataset contains 609 RGB-D images
with human-labeled ground-truth segmentation. (See
Fig. 20.)

NYU indoor dataset: Finally we evaluate segmenta-
tion performance on the newly released RGB-D NYU-
2 indoor dataset [7].

() () ©

Fig. 15: Fitting results on the block dataset. (a): Min-vol. (b): Min-surf. (c):
Supp-surf. Blocks with large fitting error in orientation are labeled as a red

u
X"

Fig. 16: The predicted supporting relations on block dataset. Three different
types of the supporting relations are colored in black (surface-top), red
(partial-top), and blue (side). The ground plane center is plot as a green
dashed circle.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Fig. 17: We qualitatively show our box fitting algorithm (left) on daily
objects with ground-truth image segmentation and the supporting relation
prediction after stability reasoning (right). Boxes for large surfaces (like the
back wall and the ground) are not displayed for better visualization. The
ground plane is plotted as a green dashed circle for showing the support
inference results.

Fig. 18: Qualitative result of box fitting (left) and supporting relation inference
(right) on indoor scenes. For better visualization, boxes that are too large
(wall, ground) or too small are not displayed.

8.2 Box fitting and support relation prediction

First, we evaluate our box fitting algorithm. The fol-
lowing algorithms are compared:
Min-vol: the baseline algorithm from [42] of fitting
minimum volume bounding box.
Min-surf: the proposed box fitting algorithm of find-
ing the minimum surface distance.
Supp-surf: use our proposed algorithm Min-surf to
find the initial boxes, and adjust the orientation of the
box based on the supporting relations and stability.
We compare the orientation of the bounding box
from each algorithm to the ground-truth, and calcu-
late the average angle difference. Table 3 shows that
our proposed minimum surface distance provides a
better box fitting compared to the minimum volume
criteria, reducing the errors in angle from 15.41° to
7.02°, a 40% improvement. With stability reasoning,
the fitting decreases error by another 2° in absolute
value, a 15% improvement.
We then analyze the performance of our stability

TABLE 3: Supporting relation accuracy for different datasets.

Block SOD
Neighbor 80.59% | 52.88%
Stability Reason | 91.68% | 72.86%

TABLE 4: Pixel-wise segmentation score.

SOD GD NYU

[7] 60.2% | 65.9% | 60.1%
S/P 64.7% | 68.1% | 60.8%
Stability | 66.7% | 69.2% | 61.0%
R-Samp | 70.0% | 72.3% | 61.7%

reasoning. We compare with the ground truth sup-
porting relations, and count an object as correct if all
its supporting objects are predicted. We compare our
proposed algorithm (Stability Reason) that reasons
about the stability of each block and deletes the false
supporting relations with the baseline (Neighbor) that
assumes one block is supported by its neighbors, i.e.,
the initialization of the supporting relations.

Table 3, left column reports the supporting relation
accuracy for this block dataset. Since the segments in
the dataset are perfect blocks, the neighboring rule
gives a high accuracy at over 80% for predicting
support. However, our proposed stability reasoning
improves the supporting relation accuracy by an ab-
solute 10%, achieving over 90% of accuracy. Exem-
plar images of the predicted supporting relations are
shown in Fig. 16.

We measure the prediction of the supporting re-
lations with the ground truth segmentation for sup-
port relation dataset. The results of using the base-
line Neighbors and our stability reasoning Stability
Reason are shown in Table. 3, right column. In this
dataset with irregular shaped objects and complicated
support configurations, using the touching neighbors
to infer supporting relations has an accuracy of 52%.
Stability reasoning gives an absolute 20% boost, reach-
ing over 72% accuracy. Fig. 17 presents the exemplar
results of our box fitting and support prediction from
the supporting object dataset.

8.3 Segmentation evaluation

We also evaluate the segmentation performance with
our proposed features based on box properties. We
randomly choose half of the images for training, and
the other half for testing. We follow the procedure
in [7] and use their color and depth features as the
baseline. Then we add our features using the single
and pairwise box relations (S/P), and our full feature
set with stability reasoning (Stability) with the model
proposed in Section 7. Finally we perform our final
model based on the energy function with randomized
sampling allowing both merging and splitting (R-
Samp). The segmentation accuracy is scored by pixel-
wise overlapping with the ground-truth segments,
proposed in [3] and [7].

Supporting Object Dataset: Table 4, first column,
shows the performance comparison with different fea-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

ture sets for our proposed Supporting Object Dataset
(evaluating only on the object segments because the
background is shared across the images). Reasoning
about each object as a box gives around 4% boost
in segmentation accuracy, and adding the stability
features further improves the performance by 2%. Our
final energy model with randomized sampling gives
the best results with another 3% improvement. Testing
results with block fitting are shown in Fig. 19. In
general, the final algorithm (R-Samp) performs better
as we further iterate the sampling steps.

Grocery Dataset: we also evaluate the segmentation
accuracy on the Grocery Dataset, and compared it
with the baseline algorithm proposed in [7]. Full
quantitative results of different algorithms are pre-
sented in Table 4, middle column. The results show
that our proposed new feature set increases the seg-
mentation accuracy, and the final sampling algorithm
(R-Samp) with merging and splitting moves gives the
best result. Some example testing images with final
block representations are presented in Fig. 20. Our fi-
nal algorithm produces more reasonable segmentation
results as well as the volumetric block representations.
This provides a richer interpretation of the object in
the scene.

NYU-2 indoor dataset: Finally we evaluate seg-
mentation performance on the newly released RGB-D
NYU-2 indoor dataset [7], and report the performance
in Table 4, right column. This dataset is proposed
for scene understanding, rather than object reason-
ing, and many large surfaces, such as counters and
drawers, and are sometimes labeled as two or more
distinct objects, i.e., one for each surface, instead of
one for the entire object. Although these conditions
limit the evaluated performance of our proposed algo-
rithm, adding the proposed features still improves the
segmentation performance. The performance of our
sampling algorithm (R-Samp) gives the best results,
also the performance improves throughout iteration
steps. (See Fig. 13.)

We find that although proposed for modeling small
object interactions, this block representation and sta-
bility reasoning framework can also be extended to
some indoor scenarios, e.g., for furniture sitting on
the ground or supported on the wall. We qualitatively
present the box fitting and supporting inference result
with ground-truth segmentation for a indoor bedroom
scenario in Fig. 18.

Some exemplar segmentation testing results are
presented in Fig. 19 and Fig. 20.

Speed: Our algorithm is implemented in Matlab,
and the processing time for one RGB-D image takes
three to five minutes, including watershed initializa-
tion, extracting g-Pb boundaries, color and depth fea-
tures, and bounding box fitting. Overall the process-
ing time is in about the same degree in comparison
to the literature [7].

9 CONCLUSIONS AND FUTURE WORK

In this paper, we propose analyzing RGB-D images
through physically-based stability reasoning. We be-
gin with box fitting on partially observed 3D point
clouds, and then introduce pairwise box interaction
features. We explore global stability reasoning on pro-
posed box representations of a scene. Segmentations
associated with unstable box configurations are not
physically possible and are subsequently modified for
consideration in later iterations. Stability reasoning
produces better estimates of supporting relations (by
requiring enough support to provide stability for each
object) and improved box orientation estimates (by
knowing when objects are fully or partially supported
from below). Experiments show that our proposed
algorithm works for both synthetic and real world
scenes, and leads to improvements in box fitting,
support detection, and segmentation.

We believe that physics-based stability reasoning in
segmentation could be useful in several applications
with RGB-D data, for example, activity detection,
object detection and tracking, scene modeling, appli-
cations to robotics, and so on. We mention a few
possible future directions that can be extended based
on the algorithm proposed in this paper.

3D oriented block fitting with color image: The block
fitting algorithm in this paper solely relies on the 3D
point clouds. However as presented in contemporary
work [13], color channel provides informative edge
clues, which can be incorporated together with point-
clouds for improving the bounding box fitting.

Extending primitive shapes: Although blocks are
good approximations for many convex objects, there
are cases when they limit the performance of scene
reasoning. For example, a basketball may be failed
to be presented as a 3D oriented bounding box, and
therefore its stability cannot be correctly estimated
using the simple blocks that we propose. Extending
the primitive shapes from blocks to cylinders (e.g.,
[43]) spheres, or non-parametric shapes, along with
corresponding advancements to the stability reason-
ing module, may improve the support and stability
reasoning, as well as the final object segmentation.

Combining with semantic classification: Previous
work has shown that combining different tasks im-
proves performance of individual vision tasks [47],
[48]. We believe that combining the block representa-
tion with semantic classification will further improve
the 3D scene understanding. Concave objects, such
as chairs, are not well represented by a single box.
In these situations, we can use multiple boxes to
build the objects. Scemantic classification can also be
performed on other attributes, e.g. estimate the block
density. To prevent the system from over-fitting, we
could detect objects as a pre-processing step, and
then propose potential category hypothesis for the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Fig. 20: Segmentation and box fitting results of our proposed algorithm on the Grocery Dataset (GD) testing images.

target objects. After that, we can choose the correct
number of blocks to approximate the object better.
Hidden support: In this work we assume all the

support relations are visible in the scene. However it
is possible to analyze the hidden supports that are
invisible or occluded. There are possible clues that
enable us to do this: for example, if one box is tilted
with no other neighboring support, it is likely that
the object is supported by an invisible object, e.g., a
glass, or the supporting object is completely occluded.
Analyzing the hidden support will unify the stability
reasoning with the concept of occlusion.

Completing the physical model: For reasoning about
stability, our model makes broad assumptions about
objects in the scene. We assume objects are constant
density and that objects are supported when their cen-
ter of gravity projects into the convex hull of support,
effectively ignoring friction. Further, we only reason
about stability in a top-to-bottom fashion. Other, more
sophisticated physical modelers (e.g., [40], Bullet [49]
or Open Dynamics Engine [50]), though computation-
ally more expensive, could be also used. We expect
they would provide a more complete analysis of the
physics and lead to better RGB-D segmentations.

Applications to Robotics: For a robot performing ma-
nipulation tasks, perceiving such a physically correct
interpretation of a scene is very useful. In this paper,
we have tested our approach on the grocery dataset.
In future work, a robot planning algorithm (e.g., [51])
could use our segmented output for making a grocery
checkout robot.

ACKNOWLEDGEMENT

We thank Daniel Jeng for useful discussions about
stability reasoning. This work is supported in part
by NSF DMS-0808864 and Qualcomm, and by NSF
Career award (to Saxena).

REFERENCES

[1] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from
single monocular images,” in NIPS, 2005.

(2]
(3]
(4]
(5]

6]
(71

(8]

(9]

(10]
(1]
(12]

(13]
(14]

[15]
[16]

[17]

(18]
(19]

[20]

[21]

[22]
[23]
[24]

[25]

H. D, A. A. Efros, and M. Hebert, “Recovering surface layout
from an image,” IJCV, vol. 75, no. 1, pp. 151-172, 2007.

D. Hoiem, A. N. Stein, A. A. Efros, and M. Hebert, “Recovering
occlusion boundaries from a single image,” in ICCV, 2007.

A. Saxena, M. Sun, and A. Y. Ng, “Make3D: Learning 3D scene
structure from a single still image,” PAMI, vol. 31, no. 5, 2009.
A. Gupta, A. A. Efros, and M. Hebert, “Blocks world revisited:
Image understanding using qualitative geometry and mechan-
ics,” in ECCV, 2010.

Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to place
new objects in a scene,” IJRR, vol. 31, no. 9, 2012.

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor
segmentation and support inference from RGBD images,” in
ECCV, 2012.

P. Arbelaez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and
J. Malik, “Semantic segmentation using regions and parts,” in
CVPR, 2012.

P. Arbelaez, M. Maire, C. Fowlkes, and]. Malik, “Contour
detection and hierarchical image segmentation,” PAMI, 2011.

S. Maji, N. Vishnoi, and J. Malik, “Biased normalized cuts,” in
CVPR, 2011.

L. G. Roberts, “Machine perception of 3-D solids,” in Optical
and Electro-Optical Info. Proc., 1965, pp. 159-197.

Y. Zheng, X. Chen, M. Cheng, K. Zhou, S. Hu, and N. J.
Mitra, “Interactive images: cuboid proxies for smart image
manipulation,” ACM Trans. Graph, vol. 31, no. 4, p. 99, 2012.

J. Xiao, B. C. Russell, and A. Torralba, “Localizing 3D cuboids
in single-view images,” in NIPS, 2012.

M. Bleyer, C. Rhemann, and C. Rother, “Extracting 3D scene-
consistent object proposals and depth from stereo images,” in
ECCV, 2012.

H. Jiang and J. Xiao, “A linear approach to matching cuboids
in rgbd images,” in CVPR, 2013.

E. Delage, H. Lee, and A. Y. Ng, “A dynamic bayesian network
model for autonomous 3d reconstruction from a single indoor
image,” in CVPR, 2006.

A. Hlint, D. W. Murray, and L. Reid, “Manhattan scene under-
standing using monocular, stereo, and 3D features,” in ICCV,

V. Hedau, D. Hoiem, and D. A. Forsyth, “Recovering free
space of indoor scenes from a single image,” in CVPR, 2012.
D. C. Lee, A. Gupta, M. Hebert, and T. Kanade, “Estimating
spatial layout of rooms using volumetric reasoning about
objects and surfaces,” in NIPS, 2010.

S. Bao, M. Sun, and S. Savarese, “Toward coherent object
detection and scene layout understanding,” Image and Vision
Computing, vol. 29, no. 9, 2011.

D. F. Fouhey, V. Delaitre, A. Gupta, A. A. Efros, I. Laptev, and
J. Sivic, “People watching: Human actions as a cue for single
view geometry,” in ECCV (5), 2012.

Y. Jiang, M. Lim, and A. Saxena, “Learning object arrange-
ments in 3d scenes using human context,” in ICML, 2012.

A. Gupta, S. Satkin, A. A. Efros, and M. Hebert, “From 3D
scene geometry to human workspace,” in CVPR, 2011.

X. Ren and L. Bo, “Discriminatively trained sparse code gra-
dients for contour detection,” in NIPS, 2012.

A. Janoch, S. Karayev, Y. Jia,]J. T. Barron, M. Fritz, K. Saenko,
and T. Darrell, “A category-level 3-D object dataset: Putting
the kinect to work,” in ICCV workshop, 2011.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[26] Y. Jiang, H. Koppula, and A. Saxena, “Hallucinated humans
as the hidden context for labeling 3d scenes,” in CVPR, 2013.

[27] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical
multi-view RGB-D object dataset,” in ICRA, 2011.

[28] H. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic
labeling of 3D point clouds for indoor scenes,” in NIPS, 2011.

[29] N. Silberman and R. Fergus, “Indoor scene segmentation using
a structured light sensor,” in ICCV Workshops, 2011.

[30] A. Anand, H. Koppula, T. Joachims, and A. Saxena, “Contextu-
ally guided semantic labeling and search for 3d point clouds,”
IJRR, 2012.

[31] X. Ren, L. Bo, and D. Fox, “RGB-(D) scene labeling: Features
and algorithms,” in CVPR, 2012.

[32] H. S. Koppula and A. Saxena, “Learning spatio-temporal
structure from rgb-d videos for human activity detection and
anticipation,” in ICML, 2013.

[33] H. Koppula, R. Gupta, and A. Saxena, “Learning human
activities and object affordances from rgb-d videos,” IJRR,
2013.

[34] H. Koppula and A. Saxena, “Anticipating human activities
using object affordances for reactive robotic response,” in RSS,
2013.

[35] M. E. Brand, P. R. Cooper, and L. A. Birnbaum, “Seeing
physics or, physics is for prediction,” in Physics Based Modeling
Workshop in Computer Vision, 1995.

[36] M. Brand, “Physics-based visual understanding,” Computer

Vision and Image Understanding, vol. 65, no. 2, 1997.

H. Grabner, J. Gall, and L. J. V. Gool, “What makes a chair a

chair?” in CVPR, 2011.

[38] Y. Jiang and A. Saxena, “Infinite latent conditional random
fields for modeling environments through humans,” in RSS,
2013.

[39] B. Zheng, Y. Zhaoy, J. C. Yuy, K. Ikeuchi, and S. Zhu, “Beyond
point clouds: Scene understanding by reasoning geometry and
physics,” in CVPR, 2013.

[40] D. Baraff, “Physically based modeling: Rigid body simula-
tion,” Pixar Animation Studios, Tech. Rep., 2001.

[41] M. McCloskey, “Intuitive physics,” Scientific American, vol. 248,
no. 4, pp. 114-122, 1983.

[42] C. Chang, B. Gorissen, and S. Melchior, “Fast oriented bound-
ing box optimization on the rotation group SO(3, R),” ACM
Transactions on Graphics, vol. 30, no. 5, 2011.

[43] D. Ly, A. Saxena, and H. Lipson, “Co-evolutionary predictors
for kinematic pose inference from rgbd images,” in GECCO,
2012.

[44] S. Gottschalk, “Separating axis theorem,” Tech Report, 1996.

[45]]J. Chang and]J. W. Fisher, “Efficient MCMC sampling with
implicit shape representations,” in CVPR, 2011.

[46] R. C. W. C. Lin, “Simple probabilistic predictions for support
vector regression,” in Tech Report, 2004.

[47] L.-J. Li, R. Socher, and L. Fei-Fei, “Towards total scene un-
derstanding:classification, annotation and segmentation in an
automatic framework,” in Computer Vision and Pattern Recog-
nition (CVPR), 2009.

[48] C. Li, A. Kowdle, A. Saxena, and T. Chen, “Towards holistic

scene understanding: Feedback enabled cascaded classification

models,” PAMI, vol. 34, no. 7, pp. 1394-1408, 2012.

“http:/ /bulletphysics.org,” in Bullet.

“http:/ /www.ode.org/,” in Open Dynamics Engine.

[37]

[49]
[50]

[51] A.]Jain, B. Wojcik, T. Joachims, and A. Saxena, “Learning trajec-
tory preferences for manipulators via iterative improvement,”
in NIPS, 2013.

Zhaoyin Jia is a Software Engineer with
Google X, working on self-driving car project.
He earned the PhD degree in Electrical and
Computer Engineering from Cornell Univer-
sity in 2013. His thesis is focused on fusing
depth information with RGB color image for
a better scene understanding. He was a re-
search intern in Eastman Kodak, 2011 and in
Facebook, 2012, converting computer vision
algorithm into applications. His research in-
terest includes RGB-D image understanding,
3D reconstruction, robotics, egocentric vision and mobile vision.

Andrew Gallagher is a Senior Software
Engineer with Google, working with geo-
referenced imagery. Previously, he was a
research scientist at Cornell University’s
School of Electrical & Computer Engineer-
ing, and part of a computer vision start-
up, TaggPic, that recognized precise camera
geo-locations from images. He earned his
Ph.D. in ECE from Carnegie Mellon Univer-
sity in 2009. He was a research scientist for
the Eastman Kodak Company until 2012, de-
veloping computational photography and computer vision algorithms
for digital photofinishing, such as dynamic range compression, red-
eye correction and face recognition. Andy is interested in a wide
variety of data analysis problems, and has developed algorithms for
detecting image forgeries, assembling jigsaw puzzles, recognizing
people and social relationships in images, and deciding what NFL
teams should do on fourth down.

Ashutosh Saxena is an assistant professor
in the Computer Science department at Cor-
nell University. His research interests include
machine learning, robotics and computer vi-
sion. He received his Ph.D. in 2009 from
Stanford University, and his B.Tech. in 2004
from IIT Kanpur, India. He has won best
paper awards in 3DRR, RSS and IEEE ACE.
He was named a co-chair of IEEE technical
committee on robot learning. He has also
received Sloan Fellowship in 2011, Google
Faculty Award in 2011, Microsoft Faculty Fellowship in 2012, and a
NSF Career award in 2013.

Ashutosh has developed robots that perform household chores
such as unload items from a dishwasher, arrange a disorganized
house, checkout groceries, etc. He has developed machine learning
algorithms for perceiving environments from RGB-D sensors such as
scene understanding, activity detection and anticipation. Previously,
Ashutosh has developed Make3D (http://make3d.cs.cornell.edu), an
algorithm that converts a single photograph into a 3D model. His
work has received substantial amount of attention in popular press,
including the front-page of New York Times, BBC, ABC, Discovery,
FOX News, and Wired Magazine.

Tsuhan Chen has been with the School
of Electrical and Computer Engineering at
Cornell University since 2009, where he is
the Director of the School, and the David E.
Burr Professor of Engineering. From 1997 to
2008, he was with the Department of Electri-
cal and Computer Engineering at Carnegie
Mellon University, as Professor and Asso-
ciate Department Head. From 1993 to 1997,
he worked at AT-T Bell Laboratories, New
Jersey. He received his M.S. and Ph.D. in
electrical engineering from the California Institute of Technology,
in 1990 and 1993, respectively. He received his B.S. in electrical
engineering from the National Taiwan University in 1987.

Tsuhan served as the Editor-in-Chief for IEEE Trans. on Multi-
media in 2002-04. He also served on the Editorial Board of IEEE
Signal Proc. Magazine, and as Associate Editor for IEEE Trans.
on Circuits and Systems for Video Technology, |IEEE Trans. on
Image Processing, IEEE Trans. on Signal Processing, and |IEEE
Trans. on Multimedia. He co-edited a book titled Multimedia Systems,
Standards, and Networks. Tsuhan received the Charles Wilts Prize
at the California Institute of Technology in 1993. He was a recipient
of the NSF CAREER Award in 2000. He received the Benjamin
Richard Teare Teaching Award in 2006, and the Eta Kappa Nu Award
for Outstanding Faculty Teaching in 2007. He was elected to the
Board of Governors, IEEE Signal Proc. Society, 2007-09, and a
Distinguished Lecturer, IEEE Signal Proc. Society, 2007-08. He was
elected as the Vice President of ECE Department Head Association
in 2012, and currently serves as the President. He is a member of
the Phi Tau Phi Scholastic Honor Society, and Fellow of IEEE.

