The Face Tracking SDK

Version 1.0, July 1999

Carnegie Mellon University

Contact: jhuangfu@ece.cmu.edu

This Face Tracking SDK is a dynamic link library (dll) written in C++. You can link the library to your own program and call the functions provided by the library to perform face tracking in a color image sequence. The core function of the library is FtTrackNextFrame (RECT &FaceRect, unsigned char *ImgData), in which you need to tell the function the location of the face in the previous image frame and provide the image data buffer. The function will update the face location parameters using the information in the current image frame. Note that the face location in the previous frame is stored in the variable FaceRect of type RECT, and the function will update the content of this variable. The pointer ImgData points to a memory buffer containing one image frame in the format of RGBRGB…, with each pixel taking up three bytes.

To use the library, you first need to include the header file named FaceTrack.h into your program. Then you can call the functions provided by the library in your own program. When your program runs, it will dynamically link to the library which is stored at the same directory or in a directory in the system path.

In your program, you first need to create an object of the type CfaceTrack. It has three main member functions for you to use:

· FtInitialization, which does some initialization work such as allocating memories, creating a binary mask, etc.

· FtTraining, which calculate the color distribution of the face pixels, and of the background pixels. This distribution information will be used later in the FtTrackNextFrame function to update the face location.

· FtTrackNextFrame, which uses the face location in the previous frame, the image frame data as the input, and update the face location parameters.

Here’s an example program segment:

{

CfaceTrack
FTrack; /*define a face tracking object*/
FTrack.FtInitialization (640, 480); /* set the image size to 640x480 */

unsigned char ImgData = ReadAFrame(); /* read a frame from image sequence this ReadAFrame function is not defined by the library and should be implementd by the user */

RECT FaceRect = GetFacePosition (); /* get face position, only needed at the very first frame this GetFacePosition function is not defined by the library and should be implementd by the user */

FTrack.FtTraining (FaceRect, ImgData); /* train classifier using current frame */
BOOL bSuccess = TRUE;

while (bSuccess && !IsSequenceEmpty())

{

ImgData = ReadAFrame(); /* read a new frame */

bSuccess = FTrack.FtTrackNextFrame (FaceRect, ImgData);

/* update the parameters */

if (bSuccess)

{

/* TODO: user can add the any other functions here with the given face location*/

}

}

}

1. The specifications of the three functions

· BOOL FtInitialization (int ImgWidth, int ImgHeight, BOOL RestrictAspectRatio=TRUE, TEMPLATE_TYPE TemplateType=Ft_ELLIPSE)

Return Value:

FALSE if not enough memory to allocate the internal buffers; otherwise the return value is TRUE;

Parameters:

ImgWidth

The width of the input image

ImgHeight

The height of the input image

RestrictAspectRatio

If the aspect ratio of the template is over some threshold, it's very possible that the algorithm has lost tracking the face. So we need to retrain the model. FALSE if we want to disable the aspect ratio restriction. The default value is set to TRUE.

TEMPLATE_TYPE

Given the face position in the previous frame, we use a template to locate the face in current frame. This parameter defines the shape of the template. It can be one of the following values:

Ft_ELLIPSE

Ft_PARABOLA

Ft_RECTANGLE

The default template shape is ellipse.

Remarks:

The user must call this function before any tracking operations. This function will allocate the necessary buffers for face tracking algorithm, including the face mask, the likelihood map, the probability look-up table and some others. All the global flags are also initialized in this function.

User can call this function many times if he wants to change some parameters such as the image size or the template shape. It is highly recommended that user call FtTraning() again after these parameters are changed.

· BOOL FtTraining (RECT FaceLocation, unsigned char *ImgData)
Return Value:

FALSE if the tracker has not been initialized; otherwise the return value is TRUE.

Parameters:

FaceLocation

The face location of the training image. The face location is described by a rectangle which can be specified by user selection or given by some standard face detection library.

ImgData

Pointer to the image data. Note: This function assumes that the image is stored in packed multi-band format, in which the image is a two-dimensional array of “chunky” pixels, each containing all components of the pixel (e.g. RGBRGBRGB…).

Remarks:

After the tracker has been initialized, the user should call this function to generate a classifier using for tracking face in successive image frames.

· BOOL FtTrackNextFrame (RECT &FaceRect, unsigned char *ImgData)
Return Value:

FALSE if tracking fails; otherwise the new face position is stored in FaceRect .

Parameters:

FaceRect

Indicates the face position in the previous frame before calling this function. If the return value is TRUE, new face position is stored in FaceRect.

ImgData:

Pointer to the image data. Note: This function assumes that the image is stored in packed multi-band format, in which the image is a two-dimensional array of “chunky” pixels, each containing all components of the pixel (e.g. RGBRGBRGB…).

Remarks:

After the tracker has been initialized and the classifier has been generated, user will call this function to get the face position in each frame. Before calling this function, user should provide the face position in previous frame and the current image data.

2. type definition

· enum TEMPLATE_TYPE

{

Ft_RECTANGLE,

Ft_ELLIPSE,

Ft_PARABOLA

};

· typedef struct tagTEMPLATE

{

int x1;

//left

int y1;

//top

int x2;

//right

int y2;

//bottom

int center;

//vertical center

}FACE_RECT;

· typedef struct tagGAUSS

{

double c;

double c_acc;

//acumulate

double mean[3], mean_acc[3];

double cov[3][3], covinv[3][3];

double cov_acc[3][3];

double gconst;

}GAUSS;

· typedef struct tagSTATE

{

int nels;

GAUSS mix[2];

}STATE;
3. The complete class definition

class AFX_EXT_CLASS CFaceTrack

{

public:

double *FtGetTemplate() const

{

return (double*)m_fTemplate;

}

public:

//constructor

CFaceTrack();

//destructor

virtual ~CFaceTrack();

public:

//high level member functions (end-users can care about only the following three functions)

BOOL FtInitialization (int ImgWidth, int ImgHeight, BOOL RestrictAspectRatio=TRUE,

TEMPLATE_TYPE TemplateType=Ft_ELLIPSE);

BOOL FtTraining (RECT FaceLocation, unsigned char *ImgData);

BOOL FtTrackNextFrame (RECT &FaceRect, unsigned char *ImgData);

//low level member functions

//fill the mask with current template shape

void FtFillMask (int ImgWidth, int ImgHeight, unsigned char *pMask, double *Template,

FACE_RECT FaceRect, int flag);

//calculate the template shape parameters

void FtFillTemplateParabola();

void FtFillTemplateEllipse();

void FtFillTemplateRectangle();

//split the color channels

void FtSplitColorChannel (int ImgWidth, int ImgHeight, unsigned char *pImgData, unsigned char *pRGBSplitImg[3]);

//train the Gaussian Mixture Model

void FtTrainGMM (unsigned char *pRGBSplitImg[3], unsigned char *pMask);

void FtInitMixMean (unsigned char *pRGBSplitImg[3], unsigned char *pMask);

void FtInitMixVar (unsigned char *pRGBSplitImg[3], unsigned char *pMask);

void FtFillMixAcc (unsigned char *pRGBSplitImage[3], unsigned char *pMask);

void FtFillMixConvinv (GAUSS *tmix);

void FtZeroMixAcc ();

//fill the look-up table with the training result

void FtFillLUTTable();

double FtGetProbability (int rin, int gin, int bin, GAUSS *mix);

//track the face in the current frame

void FtUpdateTemplate (FACE_RECT &CurFaceRect, FACE_RECT &PreFaceRect, int iStep, int flag);

//given each pixel in current frame, calculate its likelihood value

void FtUpdateLikelihoodMap (unsigned char *ImgData, int ImgWidth, int ImgHeight);

//search strategy

double FtTargetFunction(int *FaceRect, int *delta, int scale, int flag);

protected:

int m_nImgWidth;

//the width of the image

int m_nImgHeight;

//the height of the image

DWORD m_nTableSize;

//the sampling rate of the color space

//note that m_nTableSize is the byte size of the LUT table here

BOOL m_bRestrictAspectRatio;
//whether restrict the aspect ratio of the tracking result

BOOL m_bIsInitialized;

//indicates if the internal variables have been allocated

unsigned char *m_pRGBSplitImg[3];
//the image stored in RGB plane format

unsigned char *m_pMask;

//the mask which indicates the foreground and background region

float *m_pLUT;

//the probability look up table (LUT)

double *m_pLikelihoodMap;

//the likelihood map

double *m_pom[2];

double *m_pmo[2];

double *m_po;

TEMPLATE_TYPE m_TemplateType;
//the shape of the template to fit the face region

FACE_RECT m_CurFaceRect;

FACE_RECT m_PreFaceRect;

double m_fTemplate[101];

//template equation

STATE m_StateInfo[2];

};

