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ABSTRACT

Although the sketch recognition and computer vision communities
attempt to solve similar problems in different domains, the sketch
recognition community has not utilized many of the advancements
made in computer vision algorithms. In this paper we propose us-
ing a pictorial structure model for object detection, and modify it to
better perform in a drawing setting as opposed to photographs. By
using this model we are able to detect a learned object in a general
drawing, and correctly label its parts. We show our results on 4 cat-
egories.

Index Terms— sketch recognition, pictorial structures, object
detection

1. INTRODUCTION

Sketch recognition and computer vision algorithms attempt to solve
similar problems in different domains. For example, the tasks of
object detection and localization in computer vision are closely re-
lated to the task of interpreting strokes as certain objects in drawings.
In both, the goal is to take a 2D image and identify the existence
and position of a previously learned object. However, many sketch
recognition algorithms do not try to utilize the advancements made
in the computer vision field on drawings. This is mainly because
drawings are analyzed using ink data, and therefore there has been a
lot of focus on developing algorithms which take advantage of this
representation of the image.

In this paper we approach the task of object recognition in
sketches using a similar approach to Sharon et al. [1]. Although we
use the ink data from the images, we are able to integrate ideas from
Felzenszwalb et al. which detects objects in photographs, and mod-
ify them for drawings [2]. Because of the basic differences between
object appearance in photographs vs. drawings, these modifications
include the transition from pixel space to scribbles and the selection
of more appropriate features. We also account for multiple scales of
objects in a single image. This combination of ink data together with
part-based-detection allows us to solve more complicated problems
than previous works on a wider variety of drawings.

More specifically, our contribution is the use of pictorial struc-
tures for object detection in drawings. The input to the algorithm is
a general drawing made up of separate strokes (Fig. 1(a)). In each of
the drawings, one or more objects of different catagories are drawn,
in addition to strokes which do not belong to any known object. An
object detector for each category is then run on the drawing. The out-
put of each detector is a new image, in which each stroke is labeled
as part of the object, or as background (Fig. 1(b)). Each detected
object also receives a confidence score. Objects with low confidence
are removed from the output.

There are many uses for this type of algorithm. First, it can
be used in sketch retrieval applications. For example, using the al-
gorithm we would be able to search for sketches which include a
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Fig. 1. Example of the input (a) and output (b) of the algorithm.
The color legend for each catagory can be found in table 1. Note
that background strokes are successfully removed by our algorithm.
(best viewed in color)

drawing of a house. In addition, we can use it to perform seman-
tic segmentation, in which we retrieve only the strokes which are
relevant to a certain object.

The rest of the paper is organized as follows. In section 2 we pro-
vide an overview of related works. Section 3 describes the modified
pictorial structure for drawings. Section 4 describes our implemen-
tation of the model. Section 5 describes the experiment and results.
We conclude in section 6.

2. RELATED WORK

There are many different algorithms for sketch recognition which
use ink data (for a short survey on the different approaches see [3]).
Most of these algorithms try to decompose the sketch into known
symbols from a certain vocabulary based on some similarity mea-
sures. This approach makes sense for the task of interpreting graph-
ical diagrams in which each symbol has a specific shape. For exam-
ple, when interpreting an electrical circuit, the shape of each com-
ponent leads to its semantic label [4]. Another approach is that of
object recognition using shape contexts [5]. Although this method
attempts to recognize objects which have a more flexible appearance,
it still relies heavily on the shape of the object.

However, in free hand drawings these approaches would not be
sufficient, since strokes with similar semantic labels may have very
different shapes (see Fig. 2). Therefore in order to interpret these
symbols, a more global approach is necessary in which inter-stroke
relationships are taken into account. Sharon et. al. use this infor-
mation to label parts of a known object using a similar approach to
ours [1]. However, we differ from their approach in that we use the
model to perform multiple object detection as opposed to only part
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Fig. 2. Example of intraclass variance in collected drawings

labeling. In addition, we reduce the complexity of the algorithm by
using a tree structure in our graphical model.

Other works have attempted different ways in which to deal with
a more global approach. For example, Hall et al. use a combinato-
rial approach [6]. Sezgin et al. use temporal data [7]. Although
they both use the entire sketch to label each symbol, they do not use
any learned spatial relationships between the strokes. Qi et al. do
use spatial information, but they perform a binary labeling problem
using a CRF [8]. Mackenzie et al. use an agent based approach as
opposed to a probabilistic approach, and rely on a predefined gram-
mar [9].

Our work is an extension of Felzanszwalb et al. [2]. Although
there are many other approaches for object detection in images this
part based approach seemed the most suitable to use in drawings.
First, drawings are usually constructed by parts. For example, when
drawing a face one would usually draw the outline of each part sep-
arately. In addition, the algorithm allows to put a lot of weight on
the relationships between parts vs. their actual appearances. This is
crucial for our task since appearance cannot be counted upon.

3. THE PICTORIAL STRUCTURE

We approach the problem of detection and localization of an object
in a similar manner to Felzanszwalb et al. where the object we are
trying to detect can be expressed in terms of an undirected graph
G = (V,E) [2]. V = {v1, ..., vn} are the n parts that need to
be identified, and an edge (vi, vj) ∈ E describes the relationship
between the two parts. Given a sketch S = {s1, ..., sm} where each
sj is a stroke, our goal is to find L = {l1, ...ln}, where each li is an
assignment of a stroke sj to a part vi.

We use a statistical setting, where the p(L|S, θ) is the probabil-
ity of assignment L given the sketch S and a set of parameters θ.
Assuming all drawing are equiprobable we can use Bayes’ rule and
write this posterior probability as,

p(L|S, θ) ∝ p(S|L, θ)p(L|θ) (1)

Our set of parameters θ will include three subsets θ = (U,E,C).
U = {u1, ...un} describe the visual aspect of each part regardless
of other strokes. This can include different shape descriptors such as
rectangularity, length to height ratio, etc. E is the set of edges which
specifies which parts are connected, andC = {cij |(vi, vj) ∈ E} are
the parameters for each relationship. These relationships can include
position differences, size differences, etc. Using the same method as
in [2] we can write the likelihood and prior as

p(S|L,U) ∝
nY

i=1

p(S|li, ui) (2)

p(L|E,C) =
Y

(vi,vj)∈E

p(li, lj |cij) (3)

Finally we can plug equations 2 and 3 into 1 and arrive at our
final probability

p(L|S, θ) ∝
nY

i=1

p(S|li, ui)
Y

(vi,vj)∈E

p(li, lj |cij) (4)

We are interested in L∗ which maximizes this equation . Taking the
negative logarithm we find:

L∗ = argmin
L

„ nX
i=1

mi(li) +
X

(vi,vj)∈E

dij(li, lj)

«
(5)

where mi(li) and dij(li, lj) are the negative logarithm of the
likelihood and the prior respectively.

We learn the structure of G in a similar fashion to [2]. First, a
fully connected graph is constructed by finding the maximum like-
lihood estimates for U and C. In this graph each node represents
a part vi and has an associated probability p(S|li, ui) and the con-
nections represent the relationships between the parts (vi, vj) and
have an associated probability p(li, lj |cij). A tree structure is then
derived by finding the minimum spanning tree of the graph, where
the edge weights are set to −log(
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k
i , l

k
j |cij)) for r training

drawings.
The edges which are left in the tree describe for each part its

strongest relationship. For example, the left eye and right eye in
a face will most likely be connected since their spatial relationship
is very well defined (usually very little vertical distance), and their
sizes are very similar.

Finally, we can find L∗ by using the min-sum algorithm (also
known as the Viterbi algorithm), which guarantees an optimal mini-
mum. Although the tree limits the amount of relationships we have
between parts, and thus uses less information, it reduces the compu-
tational complexity of the inference from O(nmm2) for a full graph
to O(nm2) (where n is the number parts, and m is the total number
of strokes). Thus, the algorithm can scale much better for images
which contain many strokes, which could be true in a general case.

4. IMPLEMENTATION

The features that were selected to model both p(S|L, θ) and p(L|θ)
emphasizes the differences that exist between photographs and draw-
ings. For example, in drawings there is a large intraclass variance
between the appearance of the same parts (Fig. 2) and so no good
features could be found to evaluate p(S|L, θ). Many features were
examined, among them rectangularity, height to width ratio, bound-
ing box angle and compactness. However, all led to a degradation
in the results since none was able to successfully describe a specific
part. Therefore, a uniform probability was given to all strokes.

Since the appearance of the part does not signify its semantic
meaning, the inference was based on p(L|θ) which contains the prior
information about the relationships between the parts. We model
each of these relationships as a gaussian random variable. There-
fore each cij is the mean and variance of the distribution, computed
by calculating the mean and variance of each feature from the train-
ing data. The following relationships were found to exhibit the best
results:

1. The horizontal distance between the bounding boxes’ cen-
troids (∆x).

2. The vertical distance between the bounding boxes’ centroids
(∆y).

3. The difference in size of the bounding boxes.
4. The difference in the rectangularity of the parts.
5. The difference in angles of the bounding boxes

In order to detect objects of different scales, the first three con-
nection parameters cij are learned with respect to the size of part
vi. When each of the cij is learned, the measured quantity is first
normalized with respect to the size of the bounding box of sk, the



Output Color Body Face House Flower
blue head face building pot

purple neck left eye roof saucer
brown torso right eye left window stem
green left arm nose right window right leaf
black right arm mouth door left leaf

orange left leg left ear path stigma
red right leg right ear door knob petals

Table 1. Names and colors of parts for each category.

Fig. 3. A sample of body types detected by our algorithm.

strokes which represents part vi in the training phase. Therefore the
final distribution of each connection parameter, is over the measured
parameter normalized by the size of the part. During testing we di-
vide each measured quantity by the size of the bounding box of each
si and thus are able to detect objects of different scales.

We did experiment with other relationships (i.e relative circular-
ity, absolute distance, bounding box overlap, etc.). However, adding
these features yielded poorer classification results, and so finally the
5 features mentioned above were selected. The first two features
are the most important ones for many parts. In many drawing the
parts are mainly defined by their relative location. For example, in
a flower we would always expect to find the saucer beneath the pot.
The third relationship is only important for some parts. For example,
we would always expect the face to be bigger than the nose, but the
relative sizes of the nose and mouth can vary widely. The final two
features mainly allow to describe parts that are similar. For example,
The two eyes would usually have a similar shape, and their angles
would be symmetrical to each other.

Once the object location L∗ which minimizes eq. 5 is detected,
the strokes which comprise it are hidden, and a new search begins.
This is repeated until a search finds an object whose score is above
a threshold t. This last detection is discarded, and all previous ones
are labeled as correct detections.

5. EXPERIMENT

5.1. Experimental setup

The experiments were done on 4 object categories: body, face, house
and potted flower. Each one of the objects was constructed out of
seven parts as seen in table 1.

We collected a total of at least 60 training drawings and 60 test
drawings for each category from 12 different people on a tablet pc (a
total of 500 images). Using a java interface, each person would pro-
vide the ground truth while drawing, by selecting the correct color
to match the part he/she is drawing. The only constraint we put
on the drawers was that each part of the object would be drawn as
one stroke, since the model relies on this fact. During the training
phase people were requested to draw only a specific object using the
required parts. During the testing phase, subjects were allowed to
draw multiple instantiations of an object in one drawing, and add
distracting strokes, which are not part of any specific object. This
dataset is available for further research [10].

To test the algorithm’s robustness , 1-3 test images from different
categories where randomly overlaid on top of each other to create a
new set of 103 test images from our original 250. This increased the
amount of noise in the test images, while allowing different object
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Fig. 4. ROC curves for each of the four category detectors (best
viewed in color).
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Fig. 5. A sample of false positive detections for house (best viewed
in color).

categories to appear in one drawing. After learning the parameters
for each detector using the relevant training drawings, we ran each
of the 4 detectors on the overlaid images.

5.2. Results & Discussion

Sample results are shown in Fig. 6. The ROC curves in Fig. 4 show
promising results given that many of the drawings are cluttered, and
consist of many strokes (20-100 strokes per image). They also show
the relative performance of the different detectors. It can be observed
that face and house detectors perform the best, while the flower de-
tector has the poorest result. This makes sense, since the structure
of both the face and house categories is much more rigid than that of
the flower category.

Fig. 3 displays a sample of bodies that are detected by our al-
gorithm. These different body shapes again emphasize the impor-
tance of the relationships between the parts vs. the actual appear-
ance of the stroke. For example, notice that the head can be drawn
as different shapes (square, rectangle, circle, triangle, etc,). Fig. 5
displays a sample of false positive results from the house detector.
Although there was no house in any of the original drawings which
were overlaid to create the input (Fig. 5(a)), it is clear to see why the
algorithm detected a house. The overlaid drawings created a config-
uration which could definitely appear to look like a house

The algorithm is also extremely fast. Using 60 images, the learn-
ing phase for each detector takes approx. 0.6 sec, while the average
testing time is just 0.07 sec/image for each detector including fea-
ture extraction. Even the most cluttered images with 100 strokes
take only about 0.2 seconds. This is mainly due to the computation
reduction we achieve by using a tree structure.

For each detector we also compute the equal error rate, and the
confidence score at that rate. We then compute a confusion matrix
for each detector. The confusion matrix shows the performance of
the part labeling. Each stroke is labeled as either a certain part or
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Fig. 6. Examples of inputs and results obtained by our different detectors. Arrow colors signify which detector has been used. (Green-Body,
Yellow-Face, Red-Flower, Blue-House). Part labels and colors are described in Table 1. Notice error in face labeling in (c). See discussion
section for explanation.
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Fig. 7. Confusion matrix for face part labeling.

background and then compared with the ground truth. We present
only the confusion matrices for the face and body detectors in Fig. 7
& Fig. 8 because of lack of space.

The face detector’s confusion matrix highlights some of the
problems which arise because of the reduction of the graphical
model to a tree structure. For example, the tree structure for the
face detector contains edges between the right eye and the left eye,
and between the right ear and the left ear. This would be expected
since they have relationships which are relatively consistent across
drawings. However, in this model there is no edge that connects any
of the eyes to the ears. This results in a common error where the left
ear would be mistaken for the left eye, and similarly for the right
(Fig. 6(c)). This can be seen in the confusion matrix in Fig. 7. As
seen in Fig. 8 a similar error appears in the body detector between
the body and right arm, since the right arm only has a connection
to left arm. However, even with these common errors, the detector
themselves still perform well. A full graph will be able to correct
these errors, but would be more computationally expensive.

These results also highlight further work which can be done in
this field. First, since a tree structure is not always sufficient, other
structures such as k-fans could be used [11]. These structures present
a good balance between computational complexity and representa-
tional power. Also, since no appearance features were found based
on a gaussian assumption, perhaps a multimodal distribution can be
learned which can better explain the shape (as suggested in [1]). Fi-
nally, in order to allow for multiple parts per stroke, and multiple
strokes per part, a shape segmentation algorithm would need to be
incorporated into the model.

6. CONCLUSION

We propose a pictorial structure model for object recognition and
part labeling in drawings. We modify the original model to better
perform on drawings by doing the inference over strokes, and choose
useful features for the task of object detection. We present results on
a cluttered data-set in which drawings are overlaid on top of each
other, and mange to achieve promising results.
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