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ABSTRACT
Microsoft’s Picture Password provides a method to authenticate a
user without the need of typing a character based password. The
password consists of a set of gestures drawn on an image. The po-
sition, direction and order of these gestures constitute the password.
Besides being more convenient to use on touch screen devices, this
authentication method promises improved memorability in addition
to improving the password strength against guessing attacks. How-
ever, how unpredictable is the picture password? In this paper we
exploit the fact that different users are drawn to similar image re-
gions, and therefore these passwords are vulnerable to guessing at-
tacks. More specifically, we show that for portrait pictures users are
strongly drawn to use facial features as gesture locations. We collect
a set of Picture Passwords and, using computer vision techniques,
derive a list of password guesses in decreasing probability order. We
show that guessing in this order we are able to improve the likelihood
of cracking a password within a limited number of guesses.

Index Terms— Graphical Password, Picture Password

1. INTRODUCTION

Graphical passwords have been proposed as alternatives to text based
passwords starting in 1999. The basic idea was that a visual pass-
word would be more memorable and more secure than a text based
password. The increased memorability comes from the fact that re-
search has shown that people have an easier time remembering vi-
sual information versus verbal information. For example, the dual-
coding theory [1] describes how visual and verbal information are
processed in different parts of the brain. Whereas visual memories
retain similar perceptual features to the physical observation, verbal
memories are stored in symbolic form. This conversion process is
what makes verbal memory more challenging.

The increased security comes from the fact that the symbol space
can be larger than for character-based passwords. For example, there
are 95 printable ascii characters. However, if we allow a user to se-
lect a point on a 15 × 20 grid, we have tripled the possible options.
This grows exponentially with the number of characters allowed,
and additional gestures provides for an even larger password space.
However, the true strength of a password cannot be measured simply
by looking at the space of all possible passwords (as has been known
for character based passwords [2]). This is an upper-bound since
people tend to choose easily guessable passwords, since they tend to
be memorable [3]. In this paper, we extend the idea from character-
based passwords to graphical passwords by using computer vision
techniques to predict easily guessable graphical passwords.

Many different types of graphical passwords have been proposed
(for a survey see [4]), each one dealing with the issues of memorabil-
ity and security in different ways. In this paper we focus specifically
on a variant of PassPoints [5] proposed by Microsoft for their new
operating system “Windows 8” [6] . While PassPoints allows a se-
ries of taps on different locations of a given image, the Microsoft

Fig. 1. An example of four picture passwords given by four different
people over the same image. The password consists of a series of
three gestures. These can be any combination of taps (blue), lines
(red) and circles (green). The user is allowed to draw the gestures
anywhere in the image. However, it is clear from the examples that
users tend to choose similar locations. In this paper we use computer
vision techniques to exploit this weakness, and measure how quickly
a picture password can be guessed.

Picture Password (MPP) adds two additional possible gestures: the
line and the circle. A user selects an image from his library and cre-
ates a password by drawing a combination of three gestures. Each
gesture can be of a different type: tap, line or circle (See Fig. 1).

We focus specifically on the MPP since it is part of a new ma-
jor operating system which is already used by 2.25% of web users.
However, our method and results shed light on the broader subject
of graphical passwords and raise important questions about their
strength. Specifically, the problem of finding the balance between
choosing a memorable password and a strong one exists for graphi-
cal passwords just as it exists for character-based ones. In addition,
analyzing the graphical passwords gives additional insight in to more
general subjects such as image saliency and memorability.

In this paper we show that people are drawn to use facial features
when selecting the location of their gestures in portrait pictures. Peo-
ple tend to use these features (i.e. eyes, nose, mouth) as locations
for taps, line beginnings and ends, and circle centers. We exploit
this fact to perform a guessing attack on the Picture Password. We
show that by learning the probabilities of using these facial features
in a password, and creating a list of password guesses in decreasing
probability order we can perform an effective attack on the MPP.

2. PREVIOUS WORK

As far as we know, there has not been any previous work attempting
to attack the MPP. However, there have been attempts to construct
dictionary attacks for PassPoints which is similar to the MPP, but
only allows the tap gesture. In PassPoints, the user taps n points
on the image in a successive order, which constitute his passwords.



There are two main categories for these attacks: human-seeded and
purely automatic. Both rely on the fact that users tend to select sim-
ilar locations in images. The human-seeded attacks [7, 8], need to
have a small set of click points initialized by humans for the same
images they are attempting to predict the password on. By clustering
these points in a smart way they are able to identify regions which
have a higher probability of being used in a password. Although this
yields state-of-the-art results it is not applicable in the case of the
MPP since each user will select their own personal image, and no
prior information about the image exists.

The purely automated attacks try to use image processing tech-
niques to identify regions which have a higher probability of being
used in a password. For example, Thorpe et al. [8] use corner detec-
tion and a low-level saliency model to predict the probable regions.
Salehi-Abari et al. [9] segments the image and uses regions centers
as additional interest points. Using the corners and region centers as
interest point maps, and scoring each point by its saliency provides
an order to guess the passwords. Because this is a purely automated
method, it relies on the assumption that the saliency map correlates
with the password selection. This is not necessarily true.

We extend the previous work in a few ways. First, our work
combines the advantages given by these two main lines of work. We
learn from training passwords and guess passwords on unseen im-
ages. We do this by detecting points which are semantically similar
between our training data and the new image, and use them to trans-
fer our learned knowledge.

This also allows us to deal better with the different gestures al-
lowed in the MPP. Although it makes sense to assume that there is a
correlation between saliency and point selection, it is harder to make
assumptions about where people would use different gestures (for
example, drawing a circle vs. a line). Training data can help us deal
with that problem. Finally, the fact that we are using higher-level
semantic data (in our case: face detection) is also a novelty for this
task. It has been shown [10] that semantic data can better predict
saliency and we show that higher-level information provides better
guesses for interest points in the password.

We deal with images which contain groups of people, and which
contain large faces (each face’s size is at least 1
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of the image).

Although people can select any image as their background for their
MPP, we assume that most images in many personal libraries contain
faces, and that there is a high probability that a user would select one
of these images. Although we deal specifically with portrait images,
our general idea can be extended to other types of images as well.
For example, although we only use face detection, an easy extension
to this work would be to add a body pose detection algorithm for
images which contain full views of people.

3. METHOD

We consider the set of three gestures needed to be guessed as three
unknown words. The tap word includes a tap location (x, y), the line
word includes the beginning and end locations (x1, y1, x2, y2), and
the circle word includes the center location, the radius and direc-
tion of drawing (clockwise/counter clockwise) (x, y, r, d), similar
to [11]. Given a new image, our guessing algorithm proposes pass-
words such that the more probable ones are proposed earlier. The
goal is to guess a password in as few guesses as possible.

As in the MPP we allow an error tolerance when verifying the
password. In our experiments we allow an error within a 40 × 40
pixel rectangle centered on the signified location. That is, when ver-
ifying a password, if the correct location is inside the 40×40 rectan-
gle we consider it a match. For circle directions we do not allow any

error, and for radius we allow an error of up to 20 pixels. This again
is similar to the details given in [11] , with the slight difference that
when verifying locations we place a rectangular error window while
[11] place a circular one.

As a nominal evaluation of the size of the password space, we
divide the image into a grid where each cell is 40×40 pixels. Guess-
ing by iterating over all the centers of these grid squares, would cover
the entire image. For example, for an image of size 600×800 pixels
we divide the image into a 15× 20 gird and our vocabulary size is:

• 15× 20 = 300 for taps

• (15× 20)2 = 90000 for lines (beginning and end point)

• 15 × 20 × 2 × 10 = 6000 for circles (2 directions, bin the
radius into 10 bins).

• (90000+6000+300)3 = 8.12×1014 for the entire password
space

Since we have three different types of gestures with different
types of words, we look at two sets of probabilities. First, for each
gesture type we calculate P (word|type). Second, for the entire
password we calculate the probabilities of the different gesture type
orders. Once we have these two sets of probabilities, we can rank all
possible passwords by the total probability:

P (wij , wkl, wmn) =P (t1 = i, t2 = k, t3 = m)

×P (wij |i)P (wkl|k)P (wmn|m)
(1)

Where t(1,2,3) are the types of the first, second and third gestures
respectively, i, k, m ∈ {tap, line, circle} and wij is the jth word
of type i.

First in Sec. 3.1 we describe how we calculate the probability for
all possible words p(w|t). Then in Sec. 3.2 we provide an algorithm
to use this ranked list to guess an entire password.

3.1. Words-Probabilities

We would like to learn from a dataset of passwords which words
users tend to use. For word location, we cannot use the absolute
location in the image, as has been done previously in [7, 8], since we
are attempting to guess a password on an unknown image. Instead,
we do this by labeling the training images with higher-level semantic
data, and then learning how often people use these regions in their
passwords. For example, we may learn that people tend to circle a
nose or draw lines between eyes. When presented with a new image,
we simply have to automatically detect the regions which contain
these semantic features, and rank these region types by how often
they were used in the training data.

We theorize that since we are dealing with images with large
faces, people will be drawn to the different facial features. There-
fore, we use the algorithm given in [12] for face and pose detection.
This algorithm provides 68 key points across each face in the image
which correspond to certain areas of the face. For example, point 6
corresponds to the tip of the nose, point 67 corresponds to part of
the left ear, etc. We manually cluster these 68 points to 8 main fa-
cial features: left eye, right eye, left eyebrow, right eyebrow, nose,
mouth, chin, and the rest of the face.

Once we detect these regions on all training images, we count
how many times each one was used in our training set. We do this
by looking at a 40× 40 rectangle centered at the training point, and
adding a vote for all facial features which appear in this rectangle
for the specific gesture type. Once we have counted all the votes we
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Fig. 2. The probability of each facial feature used given the gesture
type: p(feat|t). These are results from our collected passwords,
normalized by the total number of gestures of each type.
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Fig. 3. The frequency of the two extra parameters for the circle ges-
ture. The circle direction graph p(direction) shows a clear pref-
erence for counterclockwise circles, while the radius distribution
p(radius) shows a preference for small circles.

normalize by the number of total gestures of that type to get p(feat|t)
where feat is one of our facial features. Fig. 2 shows this analysis
on our collected training data (our password collection method is
described in Sec. 4) . Some interesting trends appear in this analysis.
For example, users tend to start lines at the left (eye/eyebrow) end
end at the right (eye/eyebrow). In addition, the nose was the most
popular region for circles.

In addition to location statistics we also needed information re-
garding the circle’s radius and direction in order to construct a prob-
ability for words of that type. We can easily determine these prob-
abilities by calculating the empirical probabilities from our training
data. Fig. 3 presents the results from our password collection. As can
be seen, about 70% of circles were drawn counterclockwise, which
is consistent with research regarding the general population [13]. In
addition, users tend to draw smaller circles (around 30 pixels in ra-
dius), which show that people tended to circle smaller features in the
images vs. whole faces (face radii were on the order of 100 pixels).

Given a new image, we can now calculate the probability of each
word. We first divide the image into a grid and for each grid cell we
look at the facial features which it overlaps (regardles of which face
it comes from). Once we label every grid cell with a facial feature,
we can simply calculate the probabilities of all possible words for
each type.

• Tap:
p(featxy|tap)

size(featxy)

• Line:
p(featx1y1

|line start)

size(featx1y1
)

× p(featx2y2
|line end)

size(featx2y2
)

• Circle:
p(featxy|circle)

size(featxy)
× p(direction)× p(radius)

Where featxy is the facial feature at (x, y) and size(featxy) is
the number of grid cells this feature occupies. Since we assume
a uniform probability among all grid cells within a certain feature,
we need to divide by the feature size. It is important to remember
that since we are only looking at facial features, our word space is
much smaller than the entire possible word space (for cells that do
not contain any features we set the probability to zero). Therefore
calculating probabilities for all facial feature words is possible.

0 Tap 
1 Line 
2 Circle 

First 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 
Second 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 
Third 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 

Pe
rc

en
t o

f a
ll 

Pa
ss

w
or

ds
 0.4 

0.3 

0.2 

0.1 

Fig. 4. Probability of the different gesture orders for our collected
password database: P (t1, t2, t3). The x-axis represents all possible
gesture orders (33 = 27).

3.2. Full Password Guessing

In order to guess an entire password we calculate the probabilities of
the different gesture orders: P (t1 = i, t2 = k, t3 = m). We learn
these probabilities from our training data and results are shown in
Fig. 4. Surprisingly, users often use the same gesture type for all the
gestures in the password. Although people did not use circles very
often, when they did it was usually in a series of 3 circles. In fact, this
trend was so strong (only 20% of the passwords have more than one
type of gesture in their order), that we only consider the three domi-
nant cases for our guessing algorithm. This significantly reduces our
search space, even before we analyze the different locations.

Once we calculate the probabilities of all the words given the
types in addition to the order probability we can simply guess pass-
words in decreasing order of probability (Eq. 1).

4. EXPERIMENTS AND RESULTS

We use Amazon Mechanical Turk to collect our training passwords.
We created a web interface in which a user is asked to create a picture
password. We use the $1 recognizer [14] to recognize the circle
and line gestures. The directions and setup are very similar to the
ones given by the original MPP. Once a user has created a password
he is asked to confirm it by drawing it again. In order to ensure
that users are truly selecting passwords which they can memorize
we introduce a distractor before the third confirmation. After the
second confirmation, a pop-up appears that covers the image and the
user is asked a set of random trivia questions. The goal of this step is
too distract the user from the image. Once the user has answered all
the questions he is asked to confirm the password once more. If any
of the confirmations are wrong the user is requested to start from the
beginning (set up a new password). We collect 300 passwords from
300 separate users, over 30 images. We use images from the Images
Of Groups Dataset [15] that contain 2 to 3 people.

It is important to note two main differences between our pass-
word collection algorithm and the actual MPP. First, our users do not
use touch screens (which the MPP is mostly geared towards). We
believe this is one of the reasons circles were used less in our pass-
word collection (circling with a mouse is much harder than circling
with your finger). This is not a problem; by collecting additional
touch-screen data, we can simply update the probabilities that our
algorithm uses. The algorithm itself would not need to be altered. In
addition, the MPP can also be used on non-touch screen computers
and so this collection is valid as well.

The second difference is the fact that our users are not setting
actual passwords, but only completing a task on Mechanical Turk.
This means that they may be less inclined to create strong passwords.
While we recognize this, we note that this type of password collec-
tion has been used previously for character based passwords [16]. In
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Fig. 5. Results on three images for our first experiment (interest
point detection). There are a total of 300 grid-cells so all methods
reach 100% by 300 guesses. The red vertical line shows how many
grid cells have facial features (after that we guess randomly).

order to guess real word passwords, real passwords might need to be
collected from real users.

In order to test our prediction performance we perform a leave-
one-out cross validation. That is, we learn the probabilities from a
set of 29 images (290 passwords) and then try to guess the passwords
on the remaining image. In our first experiment we show that using
facial features for this type of image is superior to using corner de-
tection and low-level saliency (similar to [9]). In this experiment, we
simply wish to show that most password words’ locations fall within
our facial feature regions. We examine all the points used for each
image (taps, line beginnings and ends, centers of circles) and itera-
tively guess each grid cell on the image. At each step we count how
many points we have guessed correctly. We compare using facial
features with learned probability to 3 other guessing methods:

• Random: Randomly moving throughout the grid.

• Centered: Start guessing from the center and then move out.

• Saliency: Corner +regions centers ranked by saliency ([9])

Fig. 5 shows the results for three different test images. It is clear
to see that our ranking considers more important points earlier on.
Surprisingly, going out from the center outperformed using saliency.
This is because most of the faces in the image tend to be closer to the
center of the image, but the low level saliency model detects many
points in the background and on the faces edges which tend to be
used less in our password dataset.

In our second experiment we attempt to guess entire passwords
using the ranking from Sec. 3. We compare to the following meth-
ods:

• Random: Guessing passwords from entire image in random
order.

• All Image: Guessing passwords from entire image uniformly,
using collected order statistics ( P (t1, t2, t3)).

• Full Face: Guessing passwords from the entire face uni-
formly, using collected order statistics ( P (t1, t2, t3)).

• All Features: Guessing passwords in decreasing score order
(Eq. 1) with all facial features.

Fig. 6 presents our results for all 300 passwords (using leave-
one-image-out cross validation). The All Image results show already
how much is gained simply from using the order statistics, where
25% of the passwords are guessed within 3.4× 10−6% of the entire
space. This method only guesses 80% of all the passwords, since
the other 20% are passwords with different gestures (see Sec. 3.2).
When we focus solely on the face region (without looking at the
individual features), we are able to get an additional improvement.
Although using this method we only guess 60% of the passwords
correctly (the extra 20% include non facial regions) we begin guess-
ing passwords earlier. Finally, using all the facial features including
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Fig. 6. The results of our guessing algorithm. For further details
about the different methods see Sec. 4.
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Fig. 7. Examples of two images which the algorithm guessed the
most passwords (green background) vs. two images were the algo-
rithm performed the worst (red background). The numbers represent
the number of passwords guessed correctly.

the probabilities leads to the best results. We are able to start guess-
ing passwords correctly very early on. In fact, 3 of the passwords
(3 taps on the left eye) are guessed with 8 guesses. We also per-
form better than all other methods throughout the entire guessing
algorithm.

The results shown in Fig. 6 are in log scale and so the time gains
are very large. For example, if each guess takes 1 millisecond, it
would take on the order of 1000 years to guess 25% of the passwords
using a brute force method. However, using our ranked guess list we
are able to guess 25% of the passwords in about 16 minutes.

Fig. 7 shows the two images where we performed best (green
background) vs. the two images where we performed the worst (red
background) and the number of passwords guessed correctly. The
images we perform poorly on were usually due to misdetections in
our images (i.e. the dog and the baby were not detected).

5. CONCLUSION

In this paper we presented a novel approach for guessing graphical
passwords (and specifically the MPP) using computer vision. The
general idea is to use high level semantic features to transfer learned
knowledge from a training set of passwords to a new image. We
show through experiments that this technique can guess passwords
in a much shorter time than random guesses (we guess 50% of the
passwords in 0.001% of the size of the entire space).

This work does not attempt to provide an exact method for actu-
ally cracking the MPP since the MPP only allows 5 wrong password
guesses before a character-based password is required. Instead, it
emphasizes the idea that the same vulnerabilities which lie in al-
phanumeric passwords, also exist in graphical passwords. More
specifically, the fact that people tend to choose “easy” passwords,
can be taken advantage of in graphical passwords as well.

There are many directions in which to extend this work. For
example, an analysis of image choice for the MPP would be inter-
esting. That is, an automatic algorithm which would recommend
images which are harder to guess. In a similar fashion, different
password policies can be investigated. For example perhaps a policy
which does not allow a user to perform all of his gestures on a face.
Finally, extending this work to other types of images which contain
full bodies or no people at all would be interesting as well.
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