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Motivation
• Facial understanding and gesture recognition

are powerful enablers in intelligent vision 
systems.

• Potential applications include surveillance, security, 
entertainment, smart spaces, and human computer 
interfaces (HCI)
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interfaces (HCI).  
• Tomorrow’s devices will need to embrace human subtleties 

while interacting with them in their natural conditions.

Interactive Digital 
Signage

Colors…
Sizes…
Styles…
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Designer…
Colors…
Sizes…

Inventory…

20%
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Static Processing
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K-NN
SVM
Neural nets
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A Few Milestones
• Yang [PAMI ‘07] used dimensionality reduction with SRs 

for classification purposes.
• Wright [PAMI ‘09] used SRs for best in class facial 

recognition.
• Zafeiriou [CVPR ‘10] used PCA and SR methods based 
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[ ]
on Wright for facial expression, but reported significant 
coefficient contamination.

• Ptucha [ICCV ‘11] used supervised manifold learning to 
minimize coefficient contamination.

• Jiang [CVPR ’11,’12] used K-SVD to jointly optimize 
classification accuracy and more efficient dictionaries.

7

Agenda

• Introduction to Dimensionality Reduction
• Introduction to Sparse Representations
• Merging the two concepts into Manifold 

b d S R t ti
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based Sparse Representations
• Optimizing the two concepts with LGE-

KSVD
• Sample Results

Hypothesis
• Methods based on manifold learning and sparse 

representations can achieve accurate, robust, 
and efficient classifiers for scene understanding.
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Dimensionality Reduction
• For the purpose of facial understanding, the dimensionality of 

a 26x20 (∈ R520 ) pixel face image or a 82x2 (∈ R164) set of 
ASM coordinates are artificially high.

• The high dimensionality space makes the facial 
understanding algorithms more complex than necessary.

• The set of 520 pixels (or 164 coordinates) actually are
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• The set of 520 pixels (or 164 coordinates) actually are 
samples from a lower dimensional manifold that is embedded 
in a higher dimensional space.

• We would like to discover this lower dimensional manifold 
representation (to simplify our facial modeling)- a technique 
formally called manifold learning. [Cayton ‘05, Ghodsi ’06]

• Given a set of inputs x1..xn ∈ RD, find a mapping yi = f(xi), 
y1..yn ∈ Rd; where d <D.

Locality Preserving Projections* (LPP) 
[He ‘03]

• Given a set of input points x1..xn ∈ RD, find a mapping yi = ATxi, 
where the resulting y1..yn ∈ Rd; where d < D.
– Same algebra as PCA, if we kept the top d eigenvectors!

• Create a fully connected adjacency graph W.  Assign high weights to 
close/similar nodes, and low weights to far/dissimilar nodes.
– Mimic local neighborhood structure from input to projected space.

LPP i li i ti t th li L l i Ei

d << D.
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• LPP is a linear approximation to the nonlinear Laplacian Eigenmap
and is solved via the generalized eigenvector problem:

X L XT a = λ X D XT a
• Where:

– D is a diagonal matrix  whose values are the column sums of W, 
– L is the Laplacian matrix: L = D-W, 
– a is the resulting projection matrix (== “eigenvectors” ) , and
– λ is the resulting vector importance (== “eigenvalues”) .

* http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html

PCA vs. Supervised LPP

Top 3 dimms of PCA space. Top 3 dimms of SLPP space.

1072  samples, 26x20 pixel faces (R520 R3 )
Angry Sad Neutral Happy Surprised

[Lucey ‘10]
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• PCA is good at dimensionality 
reduction, but assumes 
linearity.

Yaw:
R=-45
G=-30
B=-15

Apply Dimensionality Reduction to Pose 
Training Set 

21 subjects, each at 21 poses
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C=0
M=15
Y=30
K=45

Pitch:
= down
= center
= up*

21

Each 164 Dim ASM 
Face is Mapped 
Down to 1 point in 
plot this plot.
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Apply Dimensionality Reduction to Pose 
Training Set 

21 subjects, each at 21 poses

Yaw:
R=-45
G=-30
B=-15
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C=0
M=15
Y=30
K=45

Pitch:
= down
= center
= up

Model Manifold Surface

PCA
PCA *
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SLPPSLPP *
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Sparse Representations
• Inspired by studies of neurons in the visual cortex, the 

notion of Sparse Representations (SRs) has been proven 
applicable to a variety of scientific fields.

• For many input signals, such as natural images, only a 
small number of exemplars are needed to represent new 

Actual simple cell response
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test samples.  
• SR gives state-of-the-art results for pattern recognition, 

noise reduction, super-resolution, tracking, …
• At the The First Facial Expression Recognition and 

Analysis Challenge (FERA2011) at FG’11:
– 13/15 entrants used SVM, but 0/15 entrants used SR

25
[Images from DeAngelis, Ohzawa & Freeman, 1995]

• Input: Images x1, x2, …, xn (each ∈ Rh x w)
• Learn: Dictionary of bases φ1, φ2, …, φk

(each also ∈ Rh x w), so that each input x (and 
newly introduced test samples y) can be 

Sparse Representations
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y p y)
approximately decomposed as:  

s.t. aj’s are mostly zero (“sparse”)  
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Sparse coding illustration [Ng ECCV ‘10]
Natural Images Learned bases (φ1 , …, φ64):  “Edges”

Ptucha ‘13

28

≈ 0.8 *                   + 0.3 *                     + 0.5 *

x ≈ 0.8 *       φ
36

+  0.3 *        φ42 + 0.5 *       φ63
[0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0] 
= [a1, …, a64]    (feature representation) 

Test example

Sparse Representations

• Given y and Φ, the objective of SRs is to identify the smallest 
number of nonzero coefficients a ∈Rn such that:

y ≈ ŷ = Φ a. 
• The solution is equivalent to the Lasso regression:

{ }2minˆ λ+Φ
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where ||a||1 = Σ |a|. 
• Although not differentiable like a ridge regression, the ℓ1

minimization problem can be efficiently solved using convex 
optimization algorithms. [Donoho ‘06, Candes ‘06]

• Some of the fastest approaches include several variants of 
Least Angle Regression with lasSo (LARS). [Efron ‘04]

{ }
1

min aaya λ+Φ−=

Putting it Together
• Manifold based Sparse Representations (MSR) exploit 

the discriminative behavior of manifold learning, and 
combines it with the parsimonious power of sparse 
signal representation.

ng

Test sample

Manifold mapping
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…

M
an

ifo
ld

 L
ea

rn
in

…

Training 
dictionary, 
Φ ∈Rnxd

n training 
samples, 
each ∈RD 

pp g

= Σ ai Φii=1

n

Classifier

ℓ1
optimization Φ ≈

Test 
Face

Sparse Coefficients
Top non-negative ‘a’ sparse coefficients for Test “sad” Face.

Interesting…but
..how do we 
turn this into a 
classifier?
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A C D F H Sa Su

classifier?

• Max peak?
• Max non-zero  
coefficients?
• Max Energy?

A: Anger
C: Contempt
D: Disgust
F: Fear
H: Happy
Sa: Sad
Su: Surprised
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Reconstruction Error

• A reconstruction error classifier generally outperforms 
other methods. [Yang ‘07, Wright ‘09]

• Estimate the class, c* of a query sample y by comparing 
the reconstruction error inquired when only the 
reconstruction coefficients a corresponding to a specific

Ptucha ‘13 39

reconstruction coefficients ac corresponding to a specific 
class c are selected.

c* = arg minc=1…z ||y – Φ ac||2

Use non-zero 
coefficients from all 
classes to estimate, 
y ≈ Φ a

Use non-zero 
coefficients 
from each 
class

Coefficient Contamination

• Applying the reconstruction error is not a 
straightforward process for natural images.

• For example, facial identity of the person is often 
confused with facial expression.

Ptucha ‘13

p
• The usage of semi-supervised manifold learning 

encourages clustering of sample images in 
accordance with classification labels.
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PCA Coefficients for Sample Happy Face

(a)

angry happy neutral sad surprised
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LPP Coefficients for Sample Happy Face

(b)

angry happy neutral sad surprised
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Lowest Three Dimensions of PCA

(c)

P
C

A 
D

im
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PCA Dim 1
PCA Dim 2

Lowest Three Dimensions of LPP

(d)
LPP Dim 1

LPP Dim 2
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P 
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PCA Coefficients for Sample Angry Face

(a)

angry happy neutral sad surprised
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LPP Coefficients for Sample Angry Face

(b)

angry happy neutral sad surprised
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Lowest Three Dimensions of PCA
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PCA Dim 2

Lowest Three Dimensions of LPP
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Supervision & Regularization 

Reference

λ=0.005 λ=0.05 λ=0.1 λ=0.5
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λ
α

λ
α

λ
α

λ
α

Expression, CK+ Gender, LFW Race, LFW Race‐Gender, LFW

Increase 
regularization

Increase LPP 
supervision

Region and Pixel Processing
• It is quite conceivable that different regions of the face 

[Kumar ‘08] may benefit from different types of pixel 
processing.
– Each pixel processing↔facial region combination is a 

valid feature input to the statistical inference model.

Ptucha ‘13 44

MSR accuracies on CK expression dataset

MSR enables evaluation of any region of the face

po
rta

nt

Posed vs. Natural Datasets
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M
or

e 
im

p

CK+ GEMEP-FERA
*Correlates well with  [Pfister ICCV2011]

MSR Used On Other Facial Attributes
LFW Classification Accuracy

No.
class

SVM
no occl.

MSR no 
occl.

SVM
mouth 
occl.

MSR
mouth 
occl.

SVM
eye 

occl.

MSR
eye 
occl.

Gender 2 89.6 90.8 89.8 90.3 80.5 80.8
Glasses 4 85.0 87.9 84.3 85.0 71.8 79.6

Hair 7 86.9 87.7 80.8 85.6 87.3 87.4
Race 5 85.1 87.5 85.0 84.3 78.7 82.0

i 9 6 2 6 6 64 6 66

Ptucha ‘13 46

Mixed 10 75.9 78.5 76.2 76.6 64.6 66.5
AVG - 84.5 86.5 83.2 84.4 76.6 79.3

Glasses Facial HairGender Race
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Optimization of Dimensionality 
Reduction and Sparse Representations
• Sparsity Preserving Projections [Qiao’09] uses 

(unsupervised) sparse coefficients instead of Laplacian 
for dimensionality reduction

• Global SR Projections [Lai ‘09], Discriminative Sparse 
Coding [Zang ‘11] and Graph Regularized Sparse
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Coding [Zang 11], and Graph Regularized Sparse 
Coding [Zheng ‘11] create variations of joint objective 
function (DR and SR)

• Supervised LPP [Cai ‘11] modifies LPP to have 
(unsupervised) Laplacian and (supervised) LDA 
properties.

• LC-KSVD [Jiang ‘11] forces (unsupervised) sparse terms 
to be (supervised) discriminative and jointly learns a 
(supervised) classifier

LGE-KSVD
• Each of the previous methods introduce a new 

dimensionality reduction technique or a new SR 
technique.  

• What lacks is a unified approach that optimizes 
dimensionality reduction projection matrix U with 
di ti Φ d ffi i t â

Ptucha ‘13

dictionary Φ, and sparse coefficients â.  
• The next few slides will present such a method called 

LGE-KSVD, for the optimization and infusion of Linear 
extension of Graph Embedding with K-SVD dictionary 
learning.
– Note: LGE is a broader category of linear dimensionality 

reduction methods which use adjacency matrix W to describe 
neighbor to neighbor topology (includes LDA, LPP, and NPE).

54

LGE-KSVD
• Classification frameworks based on SR concepts have 

been found to suffer from:
1. Coefficient contamination that compromises 

classification accuracy; and 
2 Computational inefficiencies due to high dimensional

Ptucha ‘13

2. Computational inefficiencies due to high dimensional 
features and large dictionaries.   

• LGE-KSVD uses: 
– Semi-supervised dimensionality reduction to address 

both limitations.
– K-SVD dictionary learning to not only make the 

dictionaries more efficient, but yield higher 
classification accuracies.
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K-SVD
• K-SVD [Aharon ‘06] was introduced as a means to learn 

an over-complete but small dictionary.  

• K-SVD is an iterative technique, where at each iteration, 
training samples are first sparsely coded using the

{ } δ≤=Φ Φ− aax tsa
0

2

2
..minˆ,ˆ
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training samples are first sparsely coded using the 
current dictionary estimate, and then dictionary elements 
are updated one at a time while keeping others fixed.  

• Each new dictionary element is a linear combination of 
training samples.  

• [Rubinstein ‘08] implemented an efficient implementation 
of K-SVD using Batch Orthogonal Matching Pursuit
(http://www.cs.technion.ac.il/~ronrubin/software.html)

56
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Classification of K-SVD Sparse 
Coefficients

• Because dictionary elements from K-SVD are a linear 
combination of input samples, we cannot use the 
minimum reconstruction error.

• Alternatively we can pass SR coefficients into any 
regression or machine learning classifier.

Ptucha ‘13

g g
• Define H as ground truth (GT) matrix, H∈Rkxn.

– Each column of H corresponds to a GT sample.  The kth position 
is 1 if yi belongs to class kj, otherwise 0. 

• Coefficients a from each training sample are stored in 
matrix A, A∈Rmxn.  

• Then solve for coefficient transformation matrix C.

58
ACHC T−=

2

2
minˆ ( ) HAAAC TT

1−
=

LGE-KSVD Objective Function

• Combining LGE dimensionality reduction with K-
SVD minimization functions, we get:

{ } δ≤
⎭
⎬
⎫

⎩
⎨
⎧

+=Φ Φ− aa ts
UXDXU
UXLXUUXaU

TT

TT
T

0

2

2
..minˆ,ˆ,ˆ
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K-SVD in low 
dimensional 
space

LGE 
dimensionality 
reduction objective 
function.

• The above equation is neither directly solvable 
nor convex.

X: input data
U: dim. reduc. matrix
Φ: dictionary
a: sparse coeffs

⎭⎩ UXDXU 02

LGE-KSVD Objective Function

• We learn a dictionary of m atoms, m ≤ n.
• It can be shown that there is an implicit 

transformation T Φ=TXTU where the rank of T

{ } δ≤
⎭
⎬
⎫

⎩
⎨
⎧

+=Φ Φ− aa ts
UXDXU
UXLXUUXaU

TT

TT
T

0

2

2
..minˆ,ˆ,ˆ
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transformation T, Φ=TXTU, where the rank of T
is greater than the rank of U.

• The solution is to use K-SVD to iteratively solve 
for a, then Φ; then wrap this entire procedure 
with an update procedure on U.

Φ= − TTT AUXU
2

2
minˆ ( ) Φ=

− TTT AXXXU
1

Training Procedure for LGE-KSVD
WHILE ε has not converged or ε > τ

IF firstIteration
1a. Calculate U using LGE
1b. Calculate U using  U=(XXT)-1XATΦT

ENDIF
2 Calculate low dimensional samples YT=XTU

Ptucha ‘13
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2. Calculate low dimensional samples YT=XTU
3. Initializes the m samples of Φ randomly from the n

low dimensional training samples
4. Calculate {A,Φ} using modified K-SVD, substituting Y

for X.
5. Calculate C using C=(AAT)-1AHT

6. Calculate verification set error, ε = ||H - CTA||22

ENDWHILE
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Testing Procedure for LGE-KSVD

• Given a test sample x, along with U, Φ, and C:

1. Calculate low dimensional sample y=xTU.
2. Use Φ and y to calculate sparse coefficients a, using a 

pursuit* algorithm

Ptucha ‘13
62

pursuit  algorithm.
3. Use C along with a to estimate class label vector l ∈Rkx1 

where the maximum value of l is used as a class 
predictor.

*such as SLEP, http://www.public.asu.edu/~jye02/Software/SLEP

( )aCll T

k1i
ˆmaxˆ

:
==

=

Modified K-SVD

• K-SVD enforces sparsity by fixing the support of 
each atom in the iteration process to a subset of 
training samples.

• The addition of supervision injects classification 

Ptucha ‘13

p j
smarts into K-SVD, but still fixes atom support.

• We propose to use semi-supervised LGE 
adjacency matrix W to regulate the support of 
each dictionary element.

63

Modified K-SVD
• The support of each dictionary element j may:

– Expand:  Modify the support of element j by adding 
(union) all training entries similar to element j.

– Contract: Modify the support of element j by removing 
(intersection) training entries not similar to element j

Ptucha ‘13

(intersection) training entries not similar to element j.
– Redefine: Set the support of element j to be only 

training samples similar to element j.
– Fixed: Maintain the support of element j, as in the K-

SVD algorithm.
• Similar is defined in terms of the LGE adjacency matrix

64

Results: CK+ Expression Dataset 
7 static facial expressions, 68 AAM points,  

164 training and 163 testing samples

(dimension)
(# dictionary 

atoms)
Method d m % Accuracy 

PCA 62 - 82.2 
LDA 6 - 89.6 
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LPP 62 - 83.4
NPE 24 - 80.4 
SPP 48 - 87.7 

K-SVD 136 63 79.1 
LC-KSVD1 136 63 79.1 
LC-KSVD2 136 63 75.5 

SRC 136 164 43.6 
MSR  62 164 75.5 

K-LGE (this paper) 62 63 92.0 

 
LGE based K-SVD
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Results: CK+ Expression Dataset 
7 static facial expressions, 60x51 images,  

164 training and 163 testing samples

Method d m % Accuracy 
PCA 162 - 82.8 
LDA 6 - 86.5 

(dimension)
(# dictionary 

atoms)

Ptucha ‘13
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LPP 163 - 84.7 
NPE 71 - 84.0 
SPP 80 - 77.9 

K-SVD 3060 63 84.0 
LC-KSVD1 3060 63 85.9 
LC-KSVD2 3060 63 84.7 

SRC 500 164 71.8 
MSR  163  164 79.1 

K-LGE (this paper) 163 63 86.5 

 
LGE based K-SVD

Results: YaleB Recognition Dataset 
38 subjects, 192x168 static images reduced to 

504 dimensions via random projections,  
1216 training and 1198 testing samples

Method d m % Accuracy 
PCA 477 - 89 1

(dimension)
(# dictionary 

atoms)

Ptucha ‘13
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PCA 477 - 89.1
LDA 37  - 90.3 
LPP  477 - 89.3 
NPE 271 - 91.2 
SPP 288 - 88.7 

K-SVD 504 570 93.2 
LC-KSVD1 504 570 93.7 
LC-KSVD2 504 570 93.4 

SRC 504 1216 86.1 
MSR  477  1216 96.5 

K-LGE (this paper) 477 570 95.3 

 
LGE based K-SVD

Results: GEMEP-FERA Emotion 
5 class, two 24x20 MHI static images per video,  

155 training and 134 testing samples

Method d m % Accuracy 
PCA 154 - 55.2 
LDA 4 - 55.2 

(dimension)
(# dictionary 

atoms)
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LPP 154 - 55.2 
NPE 66 - 56.7 
SPP 75 - 52.2 

K-SVD 1920 75 51.5 
LC-KSVD1 1920 75 53.7 
LC-KSVD2 1920 75 51.5 

SRC 500 155 57.5 
MSR 154   155 56.0 

K-LGE (this paper) 154  75 60.5 

 
LGE based K-SVD

Results: i3DPost Multi-View Activity
12 class, 125 MHI sequences per video,
PCA reduced 767 dimensions per video,

512 training and 256 testing samples

Method d m % Accuracy 
PCA 510 - 94.9

(dimension)
(# dictionary 

atoms)

Ptucha ‘13
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LDA 510 - 94.5 
LPP 510 - 96.1 
NPE 224 - 94.9 
SPP 241 - 91.0 

K-SVD 767 450 94.1 
LC-KSVD1 767 450 95.3 
LC-KSVD2 767 450 93.8 

SRC 767 512 88.7 
MSR 510  512 95.3 

K-LGE (this paper) 510  450 96.1 

 
LGE based K-SVD
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LGE-KSVD Analysis

Sensitivity to α Blend Parameter

ur
ac

y 
  

ur
ac

y 
  

Sensitivity to Dictionary Size
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%
 A

cc
u

%
 A

cc
u

SLPP α Parameter
Unsupervised        Supervised 

Dictionary Size
(i3DPost Dataset)

LGE-KSVD Analysis

Iteration Accuracy Improvement

Im
pr

ov
em

en
t

L1 RMSE Error over 8 Iterations*

E 
Er

ro
r Classification error at 

end of iteration
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%
 A

cc
ur

ac
y 

  

Sub iteration

*Each iteration has 20 K-SVD sub iterations
CK+ w/ images

R
M

S

1st

iter.
2nd

iter.
3rd

iter. …

CK+ 
ASM

CK+ 
IMG

YaleB GEMEP
FERA

13DPost

Temporal Processing
• Communication between humans naturally 

contains temporal signature.
– Rolling of eyes, waving of hand, wink, etc.

• Previous studies adopted both sparse and 
dense optical flow techniques and contrast to

Ptucha ‘13

dense optical flow techniques and contrast to 
static methods.

• Facial expressions and gestures can occur at 
any point in time and are variable in length.

• We define sliding temporal windows, Wθ
l, 

each of duration θ frames, l=1..m sliding 
windows.

77

Examine Video In Variable Size 
Rolling Frame Buffers

n Video Frames

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 n

…

1

Ptucha ‘13

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 n…

{1,2}

{2,3}

{3,4}

{4,5}

{5,6 …

All Buffers of size 2

78

1
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Examine Video In Variable Size 
Rolling Frame Buffers

n Video Frames

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 n

…

1

Ptucha ‘13

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 n…

{1,2,3,4}

{2,3,4,5}

{3,4,5,6}

{4,5,6,7}

{5,6,7,8}…

All Buffers of size 4

79
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Examine Video In Variable Size 
Rolling Frame Buffers

n Video Frames

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 n

…

1

Ptucha ‘13

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 n…

{1,2,3,4,5,6,7,8}

{2,3,4,5,6,7,8,9}

{3,4,5,6,7,8,9,10}

{4,5,6,7,8,9,10,11}

{5,6,7,8,9,10,11,12}…

All Buffers of size 8

80
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Analysis Example

• Lets say, we are looking at window widths of 8.
• Our first  position center is frame 12.
• We then look at 7 motion trajectories:

Ptucha ‘13

8 9 10 11 12 13 14 15

8 9 9 10 10 11 11 12 12 13 13 14 14 15

81

Facial Feature Point Tracking

8 9 10 11 12 13 14 15

Ptucha ‘13

8 9 9 10 10 11 11 12 12 13 13 14 14 15

Similarly, can compute point tracking from current 
frame the mean frame.

82
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Motion History Images 
[Bobick ‘01][Koelstra ‘10]
Example buffer Wθ

l of size θ=4
(for each θ, we have m rolling buffers, l=1:m)

Ptucha ‘13

Difference 
images

Motion History 
Template, 
MHIθl

83

Motion History Images (Cont’d)

Motion History 
Template, 
MHIθl

Ptucha ‘13

Pixels point 
towards 
recent 
movement

Δx and Δy of 
each vector 
passed into 
classifier

84

Summary
• Face and gesture understanding problems can 

be reliably solved in unconstrained scenes using 
SRs.  

• The usage of semi-supervised LPP before SR 
clusters by classification task, avoiding 
coefficient contamination.
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coefficient contamination.
• The usage of K-SVD dictionary learning makes 

the dictionaries more compact and results in 
higher classification accuracies.

• If the training dictionary is not over complete, SR 
methods have trouble generalizing test samples 
from training dictionary exemplars.
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