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Abstract

With increasing technical advances, computer graphics
are becoming more photorealistic. Therefore, it is important
to develop methods for distinguishing between actual pho-
tographs from digital cameras and computer generated im-
ages. We describe a novel approach to this problem. Rather
than focusing on the statistical differences between the im-
age textures, we recognize that images from digital cameras
contain traces of resampling as a result of using a color fil-
ter array with demosaicing algorithms. We recognize that
estimation of the actual demosaicing parameters is not nec-
essary; rather, detection of the presence of demosaicing is
the key. The in-camera processing (rather than the image
content) distinguishes the digital camera photographs from
computer graphics. Our results show high reliability on
a standard test set of JPEG compressed images from con-
sumer digital cameras. Further, we show the application of
these ideas for accurately localizing forged regions within
digital camera images.

1. Introduction

The field of computer graphics is rapidly maturing to
the point where human subjects have difficulty distinguish-
ing photorealistic computer generated images (PRCG) from
photographic images (PIM). As evidence of the prolifera-
tion of computer generated imagery, one need look no fur-
ther than Hollywood. According to Wikipedia [16], the first
feature-length computer animated film was Toy Story, in
1995. In 2007, a total of 14 computer animated films were
released, several with stunningly realistic imagery. In ad-
dition to computer animated films, computer graphics are
routinely used to create imagery in live action motion pic-
tures that would otherwise be nearly impossible to film.

Partly because of the success of computer animation in
popular culture, it is well known by the general public that
images can be manipulated and are not necessarily a histor-
ical record of an actual event. When viewing movies for
entertainment, the audience is usually a willing participant
when fooled into believing computer generated images rep-
resent a fictional version of reality. However, in other sit-
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Figure 1. Most digital cameras employ an image sensor with a
color filter array such as shown on the left. The process of de-
mosaicing interpolates the raw image to produce at each pixel an
estimate for each color channel. With proper analysis, traces of de-
mosaicing are exhibited in the peak of an analysis signal as shown
on the right. The presence of demosaicing indicates the image is
from a digital camera rather than generated by a computer.

uations, it is extremely important to distinguish between
PRCG and PIM. In the mass media, there have been em-
barrassing instances [11] of manipulated images being pre-
sented as if they represent photographically captured events.
In legal situations, where photographs are used as evidence,
it is crucial to understand whether the image is authentic or
forged (either computer generated or altered). Furthermore,
in the intelligence community, it is of vital importance to
establish the origin of an image.

2. Related Work

There are several possible approaches for authenticating
the source of a digital image. With active watermarking
[13], an image is altered to carry an authentication message
by the image capture device. At a later time, the message
can be extracted to verify the source of the image. Unfor-
tunately, this method requires coordination between the in-
sertion and extraction of the watermark.

In contrast to the active approach, statistical methods are
also used to characterize the difference between PRCG and
PIM. For example, in [8], a set of wavelet features are ex-
tracted from the images to form a statistical model of PRCG
and PIM, and classification is performed with standard ma-



chine learning techniques. In [10], it is shown that geo-
metric and physical features are also effective for classify-
ing between PRCG and PIM. In essence, both of these ap-
proaches are effective because of the lack of perfection of
the state-of-the-art computer graphics. For example, in [10],
it is noted that PRCG contain unusually sharp edges and
occlusion boundaries. A reasonable explanation for this is
that the imperfections such as dirt, smudges, and nicks that
are pervasive in real scenes are difficult to simulate. It is
far easier to construct a computer graphic of a gleamingly
new office than the image of that office after a decade of
wear. In any case, as the field of computer graphics matures
with more realistic modeling of scene detail and more re-
alistic lighting models, it seems reasonable to assume that
the statistical differences between real scenes and computer
generated scenes will diminish.

Meanwhile, researchers have recently shown that when
an image is resampled through interpolation, statistical
traces of resampling are embedded in the image signal it-
self [5, 6, 11]. In [5], the signature is recovered by apply-
ing a Laplacian operator to the image. The Laplacian is
shown to have a higher variance at positions corresponding
to pixel locations in the original uninterpolated image, and
this pattern is recovered with Fourier analysis. Similarly, in
[11] the EM algorithm along with Fourier analysis are used
to recover the correlations between neighboring pixels that
are introduced through interpolation. In addition, because a
forgery is generally created by resampling an object and in-
serting it into a target image, this approach has been shown
to be useful for detecting candidate forged image regions
and is robust to JPEG compression.

Other researchers have focused on matching images to
specific digital camera models [2, 14, 12] using camera-
model specific properties of demosaicing. Further, in [7],
the authors exploit image sensor imperfections to match im-
ages to specific cameras. These approaches demonstrate the
utility of exploiting the natural watermarks that are inserted
into images as a result of necessary image processing (in
the case of demosaicing) or practical hardware issues (in
the case of sensor imperfections).

In [12], the authors use the EM algorithm, this time for
finding pixels correlated with neighbors and for estimating
the coefficients of demosaicing. Based on the estimated
coefficients, the image is classified into one of seven bins
based on the technique used for demosaicing. Further, the
probability maps can be used to suggest local tampering.
This work is based mostly on simulated demosaicing with-
out the nonlinearities associated with post-processing.

Our contributions are the following: we describe a novel
approach for distinguishing between photorealistic com-
puter graphic images and photographic images captured
with a digital camera based on the idea that photographic
images will contain traces of demosaicing. We recognize

that finding the actual demosaicing parameters is not nec-
essary for distinguishing between photorealistic computer
graphics and photographic images. We achieve the highest
reported accuracy on a standard test set for distinguishing
between photographic images and photorealistic computer
graphics by detecting traces of demosaicing. We demon-
strate robustness by working only with images captured and
processed with consumer-grade digital cameras, including
the associated JPEG compression. Further, we extend our
algorithm to examine images locally, accurately detecting
forged regions in otherwise natural images.

3. Image Sensors and Demosaicing

Nearly all digital cameras1 contain an image sensor with
a color filter array, for example, the Bayer filter array shown
in Figure1. A filter is positioned over each photosite, sen-
sitizing it to either the red, green, or blue component of the
incident light. While other color filter array patterns and
filters are sometimes used, the Bayer is the most common.

The raw image from the image sensor contains only a
single signal value at each pixel position. This pixel value
further corresponds to only a single color component (red,
green, or blue in the case of the Bayer filter array). Typi-
cally, a demosaicing algorithm [1, 3, 15], also called color
filter array interpolation, is applied to the raw image to es-
timate the pixel value for each color component. The inter-
polation can either be linear or adaptive.

With a naı̈ve interpolation, each color channel is inter-
polated independently using only samples from the same
color, for example, with bilinear or bicubic interpolation.
In more complicated linear algorithms, interpolation is per-
formed by considering the local pixel values of multiple
color channels. For example, all of the missing green val-
ues can first be found. Then missing red pixel values are
found by interpolating a red minus green differential. In
even more complex nonlinear algorithms, the interpolation
kernel is adaptive depending on the characteristics of the
pixel values of the local neighborhood.

Generally speaking, demosaicing algorithms have sev-
eral features in common. Missing color values are deter-
mined from a weighted linear combination of neighboring
pixels, and the sum of the weights is one. As described in
both [5] and [11], it was shown in general that interpola-
tion of this variety leaves a signature that can be reliably
detected.

Detailed analysis of the signal traces left by interpolation
are found in [5, 11], so we present an example to provide
intuitive understanding of our algorithm for detecting the
presence of demosaicing. Considering only the green pixel
values of the Bayer pattern shown in Figure1, each missing

1The Foveon X3 sensor, used in the Sigma SD14 camera, is a notable
exception.
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Figure 2. When demosaicing is performed with linear interpola-
tion, the interpolated green pixels have lower variance than the
original green pixels. Assuming pixel values from green photo-
sites in the Bayer array are IID with varianceσ2, this image rep-
resents the variance from which each pixel value is drawn. The
spatial pattern of variances is the basis for detecting the presence
of demosaicing.

green pixel value can be interpolated from its four nearest
neighbors using bilinear interpolation:
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Assuming that the original green pixel values are IID and
drawn from a normal distribution with varianceσ2, the es-
timated green pixel values can be shown to have a variance
of only 1

4
σ2. As shown in Figure2, the green channel is

partitioned into two interleaved quincunx patterns, one cor-
responding to the original green pixel locations, and the
other corresponding to the estimated green pixel locations
with lower variance. This analysis oversimplifies the de-
mosaicing and omits the nonlinear image processing for the
purpose of illustration. The important point to recognize is
that demosaicing introduces periodic patterns into the im-
age signal. In a sense, demosaicing is a form ofpassive wa-
termarking, because the signal processing necessitated by
the image sensor leaves a signal in the image. By extracting
and recognizing these periodic signals embedded within the
image, the source of the image is surmised.

4. Detecting Traces of Demosaicing

An interpolated pixel value is produced with a weighted
linear combination of neighboring pixel values. The
weights directly affect the variance of the distribution from
which the interpolated pixel value is drawn. This pat-
tern of variances can be detected and is the basis for de-
tecting demosaicing. In our implementation, we consider
only the green channel of the image to demonstrate our ap-
proach. The other color channels (or differences between
color channels) can be analyzed in a similar manner.
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Figure 3. Flow diagram for detecting demosaicing. First a high-
pass filter is applied, then the variance of each diagonal is esti-
mated. Fourier analysis is used to find periodicities in the variance
signal, indicating the presense of demosaicing.

Figure3 shows the steps in the algorithm for extracting
features related to demosaicing. First, the imagei(x, y) is
convolved with a highpass operatorh(x, y) in order to re-
move low frequency information and enhance the embed-
ded periodicity when demosaicing has occurred. We select
the operator:

h(x, y) =





0 1 0
1 −4 1
0 1 0



 (2)

Assuming once again that the original green photosites are
drawn from a distribution with varianceσ2, the variance of
the output of the operatorh(x, y) on the green channel can
be found, if we again make the simplifying assumption that
the green channel is interpolated with linear interpolation:

σ2
o = 4

(
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)2

σ2 + 4

(
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)2

σ2 + (1 − 4)2σ2 (3)

=
41

4
σ2 (4)

σ2
i = 0σ2 (5)

σ2
o is the variance of the output of application ofh(x, y) at

positions corresponding to original green photosites in the
image sensor, and thus nine pixel values from the original
sensor contribute to the filter output, four with a coefficient
1

4
, four with a coefficient1

2
, and position(x, y) itself has

coefficient -3.σ2
i corresponds to locations where the green

value is interpolated (i.e., red or blue photosites), assum-
ing the green channel is interpolated with linear interpola-
tion. In fact, if missing green values were actually estimated
with linear interpolation and all other image processing op-
erations in the camera are ignored, then application of the
filter h(x, y) yields a value of zero at each pixel location
with an interpolated green value. The choice ofh(x, y) was

made to maintain a large value forσ2

o

σ2

i

(in our case, assum-
ing linear interpolation, infinite) and testing using a small



number of training images. A large ratio ofσ2

o

σ2

i

aids in the
detection of the periodic pattern of variances characteristic
of demosaicing.

Again, we emphasize that the bilinear interpolation ex-
ample is merely illustrating the mechanics of how traces
of demosaicing are recovered from a photographic image.
In practice, the situation is far more complex. Our test im-
ages are finished images from real consumer cameras where
the demosaicing is actually performed with a nonlinear fil-
ter, the color filter array pattern is not known, and the im-
age processing path contains nonlinear operations such as
noise supression, color enhancement, and JPEG compres-
sion. Our algorithm make no assumptions concerning the
linearity of the demosaicing, only that the variance of in-
terpolated pixels is distinguishable from the variance of the
original pixels. In our experiments (Section 5), we demon-
strate that despite these nonlinear complications, the traces
of demosaicing are still detectable and useful for distin-
guishing PIM from PRCG and for accurately detecting evi-
dence of local tampering.

Next, estimates of the variance of each photosite are
made using Maximum Likelihood Estimation. After appli-
cation ofh(x, y), each pixel value is assumed to be drawn
from a normal distribution with a particular variance, and
the variance along diagonals is assumed to be constant for
images that have undergone demosaicing (note the variance
varies periodically across different diagonals). To compute
a MLE estimate of the variance, the statistical variance of
the pixel values along each diagonal is found. In keeping
with the work of [5], in place of actually computing vari-
ance, we use the computationally simpler mean of the abso-
lute values of each diagonal in the image. This projects the
image down to a single-dimension signal,m(d), werem(d)
represents the estimate of the variance corresponding to the
dth diagonal.

m(d) =

∑

x+y=d

|h(x, y) ∗ i(x, y)|

Nd

(6)

whereNd is the number of pixels along thedth diagonal and
is used for normalization.

To find the periodicity inm(d), the DFT is computed to
find |M(ejω)|. A relatively high peak at frequencyω = π

indicates that the image has undergone interpolation by a
factor of two and is characteristic of demosaicing. The peak
magnitude atω = π is quantified as follows:

s =
|M(ejω)|ω=π

k
(7)

wherek is the median value of the spectrum, excluding the
DC value. Normalizing byk was found to be important to
distinguish between true demosaicing and images contain-
ing signals or noise with large energy across the frequency
spectrum.
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Figure 4. Example signals generated by our algorithm. Top Left: a
256× 256 portion of the green channel from an original image (of
pine tree branches). Top Right: The absolute value of the image
after application of the filterh(x, y). Bottom Left: The signal
m(d), which represents an estimate of the variance along each
image diagonal. Bottom Right. The spectrum ofm(d), exhibiting
the characteristic peak atω = π (or normalized frequencyf =
0.5). Generally, uninterpolated images do not exhibit a peak inthe
spectrum ofm(d).

Figure4 shows examples of the signals produced by our
feature extraction for a small portion of an image. Figure
5 shows the spectrum|M(ejω)| for a selection of PIM and
PRCG from the ADVENT database [9].

5. Experiments

We validate our approach for two tasks: distinguishing
PIM from PRGC and accurately localizing tampered im-
age regions. We emphasize that all of our photographic im-
ages are compressed JPEG images directly from the cam-
era. Therefore they have undergone real-world demosaic-
ing, nonlinear rendering, and JPEG compression.

5.1. Distinguishing PIM from PRCG

To validate our approach, we use Columbia’s ADVENT
dataset from [9]. This set contains 2400 images, includ-
ing 800 personal PIM from the authors of [9] and Philip
Greenspun (personal), 800 PIM from Google Image Search
(google), and 800 PRCG from various 3D artist websites
(CG). In our work, we omit thegoogleimages because their
origin is not well known (i.e., it appears many have been re-
sized). The images contain a wide variety of subjects such
as people, animals, objects, and architecture. Samples of
both PIM and PRCG are shown in Figure5.

For each image, the scores is computed as described in
Section 4. An image is classified as PIM if its values ex-
ceeds a thresholdt, and as PRCG otherwise. By varyingt,
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Example Image 12

Figure 5. Image examples. The top row shows size PIM from [9]. Beneath each image is displayed the analysis signal. In each case,
there is a strong peak present atf = 0.5. The third row shows PRCG, also from [9]. These images generally have no discernable peak at
f = 0.5.

performance curves are generated. Figure6 shows the result
of our experiments. At the point on the performance curve
with the fewest errors, only 25 of 1600 images are misclas-
sified (98.4% accuracy). The threshold value corresponding
to this operating point is 4.49. Figure8 shows a selection
of PIM that were classified as PRCG. These images seem
to contain a large amount of image structure that is not re-
moved by the highpass filter and swamps out the demosaic-
ing signal. Figure9 shows several PRCG images that were
classified as PIM. Our algorithm’s accuracy far surpasses
the accuracy of about 85% reported by [10], although we
omitted the 800googleimages. Most of thegoogleimages
have undergone subsampling and other image processing
operations that destroy the demosaicing watermark. There-
fore, it can be said that our method is highly effective at
distinguishing between images directly captured at native
resolution by a digital camera and other images.

Because our algorithm is dependent on using many pixel
samples to estimate variance statistics, the performance suf-
fers when the algorithm is limited to using a central small
window of the image as shown in Figure6. However, even
considering a small 64× 64 region of the image results in
a correct classification rate of about 66%.

Figure7 demonstrates that our approach is robust even
with respect to severe JPEG compression. We recompress
the entire ADVENT set using a JPEG Qualify Factor of ei-
ther 95, 90, 80, 60, 40, 20. The classification accuracy only

Window Size Native 1024 512 256 128 64
Area under ROC 0.99 0.97 0.94 0.89 0.80 0.71

Table 1. The area under the ROC curve (see Figure6) as a function
of the window size from an image that is inspected.

JPEG Quality Factor 95 90 80 60 40 20
Area under ROC 0.99 0.93 0.91 0.90 0.87 0.82

Table 2. The area under the ROC curve (see Figure7) as a function
of the JPEG quality factor used to recompress the image.

gradually decreases, despite the heavy compression (with
a quality factor of 20, the images were compressed by an
average of greater than 80:1).

Tables 1 and 2 provide an alternate view of the ROC
curves of Figures6 and7 by reporting the area under the
ROC curves.

Demosaicing is necessarily one of the first operations ap-
plied to an image in the digital camera. Subsequent process-
ing includes nonlinear operations such as noise reduction,
sharpening, balance, and tonal adjustments as well as com-
pression (JPEG in our case.) The photographic images in
our test set include images captured by the Canon 10D and
Nikon D70 digital cameras. This experiment provides ev-
idence that the traces of demosaicing survive these image
processing operations that can even vary between camera
manufacturers.



Figure 8. A selection of photographic images (PIM) that weremistakenly classified as photorealistic computer graphic images (PRCG).

Figure 9. A selection of photorealistic computer graphic images (PRCG) that were mistakenly classified as photographicimages (PIM).
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Figure 6. The performance of our algorithm for distinguishing be-
tween photographic images and photorealistic computer graphics
from the ADVENT dataset [9]. Each curve reports the perfor-
mance using only a central square window of a specific size of
pixels from each image (though “native” includes the entireim-
age). As expected, when the classification is performed on fewer
pixels, the performance degrades.

5.2. Detecting forged image regions

With minor modification, the algorithm described in Sec-
tion 4 can be applied locally to detect regions of an im-
age that have possibly been tampered with. The intuition is
this: demosaicing produces periodic correlations in the im-
age signal. When a forgery is made, an image piece from
another source (either another image or a computer graphic)
is pasted over a portion of the image. In general, this im-
age piece is resampled to match the geometry of the image.
The resampling modifies the correlations of the image piece
(and actually introduces new correlations as shown in [11]).

The application of the highpass filter is the same as pre-
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Figure 7. Our algorithm’s classification accuracy gracefully fades
as a function of compression amount. Each curve reports the clas-
sification performance for distinguishing between PRGC andPIM
on the ADVENT dataset for size different compression levels.

viously described. Estimating the variance becomes a local
operation:

m(x, y) =
1

2n + 1

n
∑

i=−n

o(x + i, y + i) (8)

whereo(x, y) = |h(x, y) ∗ i(x, y)|, the absolute value of
the output of applying the filterh(x, y) to the imagei(x, y).
The parametern is the size of the local neighborhood; by
default we usen = 32. At each position(x, y), a local (256
point) one-dimensional DFT is computed along each row,
and the local peak ratios(x, y) is computed as described
before in Eq. (2).

We created three forged images to test this algorithm as
shown in Figure10 [4]. The forgeries were created in Pho-
toshop, by either inserting an object from another image



into the target image, or by copying and rescaling an ob-
ject from the target image itself (in the case of the sheep
image). For each image, the local version of our algorithm
is applied and the local peak signals(x, y) is found. The
forged region does not contain the expected traces of demo-
saicing, which results in low values ofs(x, y). Using our
algorithm, we were able to accurately localize the forged
regions in each of the three test images.

6. Discussion

Our algorithm effectively detects the presence of demo-
saicing in a digital image. Because computer graphics sys-
tems do not use an image sensor, we conclude that images
containing traces of demosaicing are likely to be photo-
graphic images. However, one could argue that a malicious
computer animator wishing to add an element of realism to
her computer graphic images could simply insert a software
module to simulate the effect of color filter array sampling
and then apply demosaicing. This attack admittedly will
confuse our algorithm, but this type of attack (i.e. modify-
ing or adding image signal components specifically to ex-
ploit the assumptions of the algorithm) is a weakness of this
entire class of algorithms [5, 8, 10, 11, 12]. For example,
modifying the high frequency components of PRCG might
confuse the classifier in [8], which relies on the fact that
most PRCG do not have as much detail as PIM.

We believe that there will be no single foolproof method
for distinguishing between photographic and computer gen-
erated or manipulated images. Rather, an arsenal of tests
will be necessary, especially as computer graphic capabili-
ties continue to advance. Forgers may fall into one or sev-
eral traps when attempting to propose a photorealistic com-
puter graphic image is a genuine event.

7. Conclusion

We describe a novel approach to distinguish between
photographic images and photorealistic computer generated
images. Rather than focusing on characteristics of the scene
itself, we exploit the image processing necessitated by the
camera hardware. In particular, we note that most cameras’
image sensors contain a color filter array and demosaicing
must be used to produce three-color images. Demosaicing
acts as a type of passive watermarking that leaves a trace
embedded within the image signal. When traces of demo-
saicing are detected, we surmise that the image is a photo-
graphic (rather than computer generated) image.

We document the performance of the algorithm on a
standard test set of 1600 images compressed with JPEG
compression, and achieve classification accuracy in the up-
per nineties. Further, we show the application of the algo-
rithm for accurately localizing forged image regions. The
remarkable attribute of our approach is that is works so well

on real images from images from various manufacturers that
have undergone all of the nonlinear camera processing such
as tonal adjustment and JPEG compression. We demon-
strate that it is not necessary to recover the demosaicing
parameters to authenticate images using evidence of demo-
saicing.
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Figure 10. When applied locally, our algorithm is useful foraccurately localizing forged image regions. The first column shows the original
images (captured by a Canon EOS Digital Rebel XT, a Canon 10D,and a Canon EOS Digital Rebel XTi, respectively. The next column
shows the forgeries that were hand-made using Photoshop by splicing other image portions into the target images. The child on the right
was modified to smile by superimposing a face from another image. A car from another image was added to the street scene. Thesheep
was duplicated and pasted back into the same image. Column 3 shows an image of the local peak ratios(x, y). Bright shades correspond
to higher likelihood for being a forged image portion (lowervalues ofs(x, y).) The black area in the map ofs(x, y) is a result of a
numerical singularity resulting from the clipped sky pixels. The last column shows likely forged regions in each image (i.e., regions with
corresponding values ofs(x, y) that are smaller than thresholdt. In each case, the forged region is found.


