
Abstract

A novel algorithm is introduced that can detect the
presence of interpolation in images prior to compression
as well as estimate the interpolation factor. The interpola-
tion detection algorithm exploits a periodicity in the sec-
ond derivative signal of interpolated images. The
algorithm performs well for a wide variety of interpolation
factors, both integer factors and non-integer factors. The
algorithm performance is noted with respect to a digital
camera’s “digital zoom” feature. Overall, the algorithm
has demonstrated robust results and might prove to be use-
ful for situations where an original resolution of the image
determines the action of an image processing chain.

1. Introduction

Interpolation is the process of estimating the value of a
signal at positions intermediate to the original samples.
Generally, this is accomplished by fitting a continuous
function to the known samples and evaluating the function
at the desired locations. In order to avoid aliasing with no
degradation of valid signal, an ideal low-pass filter must be
used. In the spatial domain, this filter is represented as a
sinc function [1], which is infinite in spatial extent. In prac-
tice, the windowed sinc function is large and often pro-
duces ringing artifacts because of Gibbs phenomenon. A
linear low-pass filter or a cubic low-pass filter [2], shown in
Figure 1 is commonly used in image processing as a useful
alternative to the sinc function. The equations for the linear
and cubic interpolation filters  and  are:

(1)

(2)

Linear interpolation uses up to two samples, and cubic
interpolation uses up to four samples of an original signal
to calculate the value of an interpolated sample. In general,
it is agreed that the cubic interpolation filter yields superior
results to the bilinear interpolation filter.

An interpolated image contains clues that can be
extracted to determine the image’s history. In fact, the
interpolated image can be manipulated to produce a signal
that is periodic with the period equal to the resampling rate

. It will be shown that an unknown signal can be ana-
lyzed to determine not only if it was interpolated from
some original signal, but also the interpolation factor can
be determined.

2. Analysis of interpolated image signals

Referring to Figure 2, a one-dimensional digital signal
(i.e., an image row or column) is analyzed. Suppose an
interpolation function is and an original signal is

, where is an integer. The original signal is interpo-
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Figure 1: The interpolation function for linear interpolation (top)
and cubic interpolation (bottom).
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lated to produce sample , where is a real number.

Therefore  can be written as a matrix product:

(3)

where matrix has entries of , and is the

greatest integer not greater than . The filter matrix has

entries , where .

Equation (3) can be re-written as:

(4)

Consider the samples in the interpolated signal that pre-
cede and follow . These samples are given as

and , respectively. The interval between

samples in the interpolated signal is , where .

From these samples, a second derivative can be com-
puted:

(5)

This signal can also be written as a matrix product:

(6)

where the entries of matrix  are given as:

The variance of the signal as a function of

position  can be computed as:

(7)

where is the covariance matrix of the samples of the

original signal .
If we assume the original pixel values are samples from

a Gaussian distribution with variance 1 and mean 0, the

covariance matrix is the identity, and the variance
becomes:

(8)

Notice that the entries of the coefficient matrix have the
relationship:

(9)

Therefore,
(10)

so is periodic over , with period 1. The conclusion

is that the variance of the second derivative of an interpo-
lated signal has a periodicity equal to the sampling rate of
the original signal. Practically, this characteristic can be
exploited to determine whether a given image has been cre-
ated by a low-order interpolator and the rate of interpola-
tion .

Suppose samples of an interpolated signal are

used to form a new sequence

(11)

where m is an integer. We can compute the signal

from signal at integer locations. In an image, this
variance signal can be estimated because there are many
rows (or columns) over which statistics can be estimated.
Based on (9), we expect that the periodicity of the signal

 will be  = , the resampling factor.

To satisfy the Nyquist criteria, the signal must be

sampled at least twice per period. This is satisfied only
when (i.e., the resampling rate is at least 2.0).
Lower resampling rates will result in aliasing.

In the case where the interpolation function is the linear
interpolation filter (1), the coefficient matrix can be
shown as:

 when  and (12)

and

 when (13)
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The resulting periodic function is shown in Figure 3.

When the interpolating function is the cubic filter (2),
the analysis of the cubic interpolator becomes more
involved. When  and :

when :

The resulting periodic function is shown in Figure

4.
It has been proven that the variance of the second deriv-

ative signal is periodic with the period equal to the resam-
pling factor . This observation can be used as the
underlying model for an algorithm that detects whether a
digital image has been interpolated and determines the
interpolation rate .

3. Interpolation detection algorithm

The interpolation detection algorithm has the goal of
determining if an image of unknown origin has been pro-
duced with a low-order interpolation such as bilinear or
bicubic interpolation. The interpolation detection algo-
rithm has the additional goal of determining the factor of
interpolation when the image has been interpolated.

A block diagram of an algorithm designed to detect
interpolation in a digital image is shown in Figure 5. The

output of the algorithm is , the estimate of the interpola-
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Figure 3: The resulting signal for the linear

interpolation filter over the range (one period) for

a variety of sampling intervals . In all cases, the
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tion factor . The algorithm functions by first computing
the second derivative of each row of the image. Next, the
absolute values of each second derivative row are averaged
together in order to obtain a mean second derivative trace.
This signal is proportional to the variance signal (8). If an
image has been interpolated, this trace will exhibit a peri-
odicity related to the interpolation rate. Finally, the discrete
Fourier transform (DFT) of the mean second derivative sig-
nal is examined for peaks, and the corresponding frequen-

cies of the peak locations are used to determine , which
is related to the period corresponding to the frequency at a
peak in the DFT.

3.1. Differentiation

The first step of the interpolation detection algorithm is
to compute the second derivative of each row of the input
image. Alternatively, whereas the interpolation algorithms
we are considering have similar operations with respect to
rows and columns, the derivative of each column could be
computed. It is assumed that the image input to the algo-
rithm is represented as p(i,j), where and ,
R is the number of rows in the image, and C is the number
of columns in the image.

The second derivative of each row is computed for
 with the following difference equation:

(14)

3.2. Averaging over rows

The signal sp(i,j) is a two-dimensional signal made from
the second derivative signals for each row of the image.
The magnitudes of the rows of second derivative signals
are averaged together to form a pseudo-variance signal

:

(15)

This step is computationally faster than computing the
variance signal (8) but yields similar results. It can be
shown that the expected value of the absolute value of a

zero mean normal distribution is .

Figure 6 shows the mean second derivative signal for an
original image and two interpolated images.

3.3. Computing the DFT

When the image has been interpolated, the pseudo-vari-
ance signal exhibits a periodicity. This periodicity can be
extracted via analysis in the frequency domain.

The DFT of a time or space signal is a frequency repre-
sentation of the signal. Periodicity in the vp(i) signal may
by determined by detecting peaks in the DFT[vp(i)] signal.
The DFT is computed with C - 2 points. The DFT of the
signal vp(i) contains the frequency information at C - 2
points, representing normalized frequencies from 0 to

, with an increment of . Each frequency f (in

units of cycles/pixel) has an associated period (in units of
pixels/cycle) determined by the inverse of the frequency. A
peak at any particular frequency in the DFT corresponds to

a possible interpolation factor of .

Figure 6 shows the DFT signals corresponding to the
examples. In addition, Figure 7 shows several DFT

signals corresponding to several different interpolation fac-
tors for both bilinear and bicubic image interpolation.
As in Figure 6, the bilinear interpolation generates a stron-
ger peak than bicubic interpolation in the magnitude DFT
of the signal. The characteristic of the DFT is differ-

ent, depending on whether bilinear or bicubic interpolation
is used. For bilinear interpolation, spikes appear at each
integer multiple of 1/f until 1/f > 1/2. For bicubic interpola-
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tion, a single spike at 1/f appears in the magnitude of the
DFT.

3.4. Determining the interpolation factor

The interpolation factor determination stage of the algo-
rithm consists of finding a peak fp in the DFT and deter-

mining an estimated interpolation factor from fp.
Constants and thresholds were empirically determined,
based on the nature of the DFT signal. The peak detection
of the DFT includes the following steps:

1. Only a portion of the DFT spectrum is searched for
peaks. Presently, the lowest frequencies of the spectrum are
ignored (effectively limiting the estimated interpolation

factor to a maximum of ). Because of symmetry, the
spectrum is only searched for peaks up to normalized fre-
quency of 0.5. Also, the peak detection operates exclu-
sively on the magnitude of the DFT, ignoring phase.

2. A frequency is classified as a candidate peak if its
associated magnitude is a local maximum and is T times
greater than a local average magnitude. T is selected to be
10.

If the peak detection search yields no peaks, the algo-
rithm concludes that no interpolation has been performed
on the image. Otherwise, the peak fp is the candidate peak
having the greatest magnitude. From this peak, the interpo-

lation rate is estimated. The relationship between the

peak fp and  is:

 or (16)

Because of aliasing as described in Section 2, each peak
corresponds to one of multiple interpolation factors. (For
example, the peaks associated with an interpolation by 1.5
will appear similar to those of an interpolation by 3.0.)
Because each point in the DFT may be interpreted as an
interpolation factor greater than or less than 2.0, assump-
tions or a priori knowledge about possible values of may
solve the ambiguity. Perhaps, in some cases, additional
clues from the digital image or its frequency representation
could be used to determine the most probable of the possi-
ble rates of interpolation associated with fp.

The number of points in the DFT determines the resolu-

tion with which the interpolation rate may be estimated.
Because the estimated interpolation rate is derived from a

frequency f in the DFT, by the relationship and f is

uniformly sampled, the estimated interpolation rate has fin-
est resolution for low interpolation rates.

4. Detection of interpolation prior to JPEG
compression

Digital images are typically compressed with JPEG.
Often, interpolation of an image occurs before JPEG com-
pression. The compression acts as a noise source, making
the detection of interpolation more difficult. In some ways,
JPEG decoding is similar to an interpolation algorithm. A
JPEG compressed image contains one DC level for each 8

8 pixel block of the image. In the decoding process, this
DC level is used (in conjunction with the coefficients of the
DCT) to reconstruct the image. In the absence of the non-
DC coefficients of the DCT, JPEG decoding has an effect
similar to nearest neighbor interpolation. Therefore, it
should be expected that any method used to detect an inter-
polation may also detect a factor of 8 interpolation when
JPEG compression is present. Figure 8 shows the magni-
tude of the DFT[vp(i)] signal for a non-interpolated image
compressed with JPEG. Peaks occur at normalized fre-
quencies of 1/8, 1/4, 3/8, 5/8, 3/4 and 7/8. When analyzing
JPEG compressed images with the interpolation detection
algorithm, these peaks must be ignored. As a result, the
peak associated with the true interpolation factor can be
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found, but detecting interpolations by factors of 8, 4, 8/3, 8/
5, 4/3, or 8/7 becomes more difficult.

Figure 9 shows the magnitude of the DFT[vp(i)] signal
for an image created by an interpolation of 2.8 followed by
JPEG compression. When the peaks associated with JPEG
compression are ignored, the peaks at a normalized fre-
quency of 0.357 are found. According to (16), this peak
corresponds to an estimated interpolation factor of either
2.8 or 14/9.

5. Experiment

Instead of an optical zoom lens, the Kodak EasyShare
CX7300 digital camera has a “digital zoom” feature that
allows the user to zoom in on a region of the scene. Digital
zoom is a feature commonly found in consumer digital
cameras that essentially performs an interpolation of the
image prior to image compression. In the CX7300, any
zoom factor (i.e. interpolation factor ) from 1.1 to 3.0 in
increments of 0.1 can be selected.

The zoom factor for a particular image can be found in
the EXIF header under the tag “CaptureConditions.Digi-
talZoomRatio”

The interpolation detection algorithm was used to esti-
mate the “digital zoom” amount used in the Kodak
CX7300 digital camera.

The CX7300 was used to capture 114 images. The cam-
era was set to capture at the highest resolution (1544
2080 pixels) and the highest quality JPEG compression. A
histogram of the distribution of the digital zoom values is
shown in Figure 10. Thirteen images did not use the digital
zoom feature and were not interpolated.

As described in Section 3.4, as a consequence of alias-
ing, the estimate of the interpolation rate is one of two val-
ues (16). Because a priori knowledge of the possible
interpolation factors exists, in most cases, the aliasing
problem can be resolved. When the peak fp is found, the
two candidate estimated interpolation rates are determined.
These candidate interpolation rates are examined against
the list of possible interpolation factors. Often this step
removes the ambiguity caused by aliasing by leaving only
a single interpolation rate. For example, consider again the
interpolated image having a DFT signal as shown in Fig-
ure 9. The candidate interpolation rates are 2.8 or 14/9.
However, because it is known that the CX7300’s options
for digital zoom rate are from 1.1. to 3.0 in increments of
0.1, we can eliminate 14/9 and estimate correctly that the
image was interpolated by a factor of 2.8. For the CX7300,
with one exception, at least one candidate interpolation rate
can be eliminated based on the a priori knowledge. The
exception is for interpolation factors of 1.5 and 3.0. When
the true interpolation rate is either 1.5 or 3.0, the candidate
interpolation rates are 1.5 and 3.0 and neither can be elimi-
nated from consideration. In that situation, the ambiguity
caused by aliasing cannot be resolved.

The interpolation detection algorithm was applied to all
114 images from the CX7300 and correctly identified all
13 images that were not interpolated. The interpolation fac-
tors for the 16 images interpolated by factors of 1.5 or 3
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Figure 8: The magnitude DFT signal for a non-interpolated
image compressed with JPEG compression.
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were correctly, though ambiguously, identified as either 1.5
or 3.0. Finally, the interpolation factor estimate was correct
for each of the remaining 85 images.

6. Algorithm limitations

The interpolation detection generally performs well
when detecting interpolation by a low-order interpolation
function (such as the linear or cubic interpolation func-
tion.) The algorithm works by detecting patterns in pixel-
wise differences. These differences become more difficult
to detect as each interpolated pixel value is determined as a
function of more pixels in the original image. For example,
for a particular windowed sinc interpolation function, each
interpolated pixel value is a function of 225 pixels (15
15 pixel window) from the original image. For comparison
with bicubic interpolation, each interpolated pixel value is
a function of 16 original pixel values. The performance of
the interpolation detection algorithm decreases as the order
of the interpolator increases. To illustrate, an image was
interpolated by a factor of 4 with the aforementioned win-
dowed sinc interpolator. The resulting DFT signal with no
detectable peaks is shown in Figure 11.

A second limitation of the interpolation detection algo-
rithm is for a special case of interpolation by a factor of 2.0
where phase is preserved, an example is shown in Figure
12. Original sample locations (dashed lines) fall midway
between interpolated sample locations (dotted lines). In
this specific scenario, it can be shown that the sampled
variance signal is identical at each interpolated sam-

ple location. Therefore, the DFT signal will fail to produce
meaningful peaks. Figure 13 illustrates the DFT signal for
an interpolated image produced using a phase-preserving
bicubic interpolation by a factor of 2.0. However, other

phase-preserving factors of interpolation other than 2.0 are
robustly detected by the algorithm, as described by Figure
5.

7. Conclusions

The novel interpolation detection algorithm is a fast
and efficient algorithm for determining if an image has
undergone interpolation with a low-order interpolator and
the rate of that interpolation. The algorithm operates by
exploiting the property that the second derivative signal of
the interpolated images contains a periodicity. The algo-
rithm produced reliable results on test images from a
Kodak EasyShare CX7300 digital camera where interpola-
tion occurs prior to compression with the digital zoom fea-
ture. The performance of the algorithm degrades for high-
order interpolation filters such as a windowed sinc interpo-
lation filter.

×

WINDOWED SINC INTERPOLATION BY 4.0

f

Figure 11: The DFT[vp(i)] signal associated with an interpolation
factor of N = 4 for a windowed sinc interpolation. No peaks are
noticeable. The interpolation detection algorithm performs poorly
for high order interpolators.
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interpolation detection algorithm fails to detect the interpolation
for the specific case of interpolating by a factor of 2 and
preserving phase.



Overall, the algorithm has demonstrated robust results,
and might it prove to be useful for situations where knowl-
edge of an image’s history determines the action of an
image processing chain.

Kodak and EasyShare are trademarks of Eastman Kodak
Company.
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