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Abstract

A Bayesian probability-based vanishing point detection algorithm is presented which introduces the use of multiple
features and training with ground truth data to determine vanishing point locations. The vanishing points of 352 images
were manually identi-ed to create ground truth data. Each intersection is assigned a probability of being coincident
with a ground truth vanishing point, based upon conditional probabilities of a number of features. The results of this
algorithm are demonstrated to be superior to the results of a similar algorithm where each intersection is considered to
be of equal importance. The advantage of this algorithm is that multiple features derived from ground truth training are
used to determine vanishing point location. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Perspective projection describes the mapping of a
three-dimensional scene (a set of real world objects)
onto a two-dimensional image plane (a photograph.)
Detailed descriptions of perspective projection may
be found in Ballard and Brown [1], and Kanatani [2].
As shown in Fig. 1, perspective distortion maps a
point in the three-dimensional scene (xo; yo; zo) to a
point on the image plane (x′o; y′o; z′o) by the following
equation:

(x′o; y′o; z′o)=
(
xof
zo
;
yof
zo

; f
)
; (1)

where f is the focal length of the optical system. The
point p=(xo; yo; zo) may also be represented as a vec-
tor from the origin. Thus, p may be written in terms
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of sums of multiples of unit vectors in the directions of
the x-, y-, and z-axis (i, j, and k, respectively.) In this rep-
resentation, the point p=(xo; yo; zo) may be represented
as p= xoi + yoj + zok.
Since the 15th century, it has been known that the

perspective projection of lines that are parallel in a
three-dimensional scene meet at a common vanish-
ing point on the image plane [3]. The vanishing point
C may be represented as a point on the image plane
C= xvpi + yvpj + fk.
For example, Fig. 2 shows an image of a room with

several sets of parallel lines. This scene contains at least
two sets of mutually orthogonal lines: the vertical lines
of the windows, doors, and framing and the horizontal
lines of the windows, ceiling, and couch. Each of these
two sets of lines has a corresponding vanishing point,
shown as ∗, and +, respectively, in Fig. 3. The vanishing
point of vertical scene lines must fall on the vertical axis
of the image, providing that the camera is rotated about
the x-axis only. The real image in this example shows
that the vanishing point marked by ∗ falls almost on the
vertical image axis. The reason the vanishing point does

0031-3203/02/$22.00 ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
PII: S0031-3203(01)00128-5



1528 A.C. Gallagher / Pattern Recognition 35 (2002) 1527–1543

Fig. 1. Perspective projection of a single point x in space to a point on the image plane. The point of projection is marked with (o).

Fig. 2. An image with multiple sets of mutually orthogonal
parallel scene lines. The location of a vanishing point is de-
termined by -nding the intersection of a set of parallel scene
lines.

not fall exactly on the vertical image axis is that there is
some small amount of rotation of the camera about the
z-axis (the optical axis).
Barnard [4] -rst proposed using a Gaussian mapping

[5] to represent the vanishing point C as a point on a
unit sphere (also called a Gaussian sphere) centered at
the origin (the focal point) of the optical system. This
mapping of a point on the image plane to the Gaus-
sian sphere is accomplished simply by normalizing the
vector from the origin to the point C to have magnitude
1.0, as

CG =
C
|C| : (2)

Any vanishing point C=(xvp; yvp; f) may be represented
as some vanishing point vector CG =(xG; yG; zG). In fact,
any point in space (except the origin) may utilize this
Gaussian mapping. The vanishing point vector CG has
been found to be a useful representation because the en-
tire image plane extending to in-nity in all directions may
be mapped onto the zG¿ 0 half of the Gaussian sphere.
For example, the point on the image plane C=(0;∞; f)
is mapped to CG =(0; 1; 0). In order to -nd the location
on the image plane referenced by a vector on the Gaus-
sian sphere, simply scale the vector to have the focal
length f, given as

C= fCG
zG

: (3)

The vanishing point C occurs at the intersection of the
image plane and the vector CG .
Fig. 3 shows the mapping of the two vanishing points

of the image -rst shown in Fig. 2 from the image plane
to the unit sphere.
Notice that Fig. 3 also labels the image axes as the ver-

tical and horizontal axes. In this example, the horizontal
axis is parallel to the x-axis, and the vertical axis is par-
allel to the y-axis. It is important to note that the vertical
and horizontal axes are labeled with respect to the orien-
tation of the particular image under consideration, rather
than the optical system frame of reference. The vertical
and horizontal axes always pass through the image origin
and are always parallel to either the x-axis or the y-axis
of the optical system frame. The vertical axis is consid-
ered to be collinear with “top” and “bottom” on the im-
age. The horizontal axis is orthogonal to the vertical axis
and runs from “left” to “right” on the image.
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Fig. 3. A typical arrangement used to represent a vanishing point with a Gaussian sphere. The optical system is centered at the
origin, shown by o.

The convenient vanishing point vector notation made
possible by the Gaussian mapping is commonly used by
researchers who study vanishing points. Strictly speak-
ing, the center of the unit sphere is located a distance
f equal to the focal length of the camera from the im-
age plane. However, for the purpose of vanishing point
representation, Magee and Aggarwal [6] have shown
that the distance f need not be the true focal length of
the camera, as discussed in Section 2. Throughout the
work presented in this paper, the focal length f is as-
sumed to be equal to the length of the frame diagonal,
which is a fairly common camera design. In the case
of a 35 mm negative, the focal length is assumed to be
43:3 mm. The images used in this research are digitized
at 512× 768 pixels, so the focal length is assumed to be
923 pixels. As an example, the vertical vanishing point
∗ of Fig. 3 may be represented on the image plane as
C∗=(24:3;−2235; 923), or as a vanishing point vector
CG∗=(0:01;−0:92; 0:38).
Throughout this paper, it should be assumed that points

in space (including the ground truth vanishing points and
the automatically detected vanishing points) are repre-
sented by the corresponding Gaussian mapping (2), un-
less otherwise noted.

2. Past vanishing point work

Barnard [4] -rst proposed the idea of using a Gaus-
sian sphere as an accumulator space for vanishing point
detection. The “plane of interpretation” is identi-ed

as the plane passing through the center of the sphere
(the origin or focal point of the optical system) and
both ends of a particular line segment. Each bin of the
Gaussian sphere accumulator that falls on the inter-
section of the Gaussian sphere and the interpretation
plane (this intersection forms a great circle) is incre-
mented. After this procedure is completed for all line
segments, the vanishing points may be found by search-
ing for local maxima on the sphere. The position of
the local maximum represents the vanishing point vec-
tor. The location of the vanishing point in the image
plane may be determined by projecting this vector back
onto the image plane (3). One diKculty with Barnard’s
approach is that the partitioning of the Gaussian
sphere causes nonuniform bin sizes that aMect the -nal
results.
Brillault-O’Mahony [7] and Quan and Mohr [8]

build on Barnard’s work by describing vanishing point
detection using an alternative accumulator space and
an alternative quantization of the Gaussian sphere,
respectively.
Magee and Aggarwal [6] propose a vanishing point

detection scheme that is similar to Barnard’s method in
that the Gaussian sphere is again utilized. However, the
Gaussian sphere is not used as an accumulator. With their
method, cross products operations are performed in or-
der to identify the intersections of line segments on the
Gaussian sphere, forming a list of all intersections of
each pair of line segments. Clustering is performed to
-nd common intersections that are identi-ed as possible
vanishing points. Also, they show that the algorithm is
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insensitive to focal length. This method has several ad-
vantages. First, the accuracy of the estimated vanishing
point is not limited to the quantization of the Gaussian
sphere. Secondly, this method allows for the considera-
tion of each intersection individually. Thus, intersections
that do not make sense (such as an intersection occurring
on one of the two component line segments) as a van-
ishing point may be rejected. This was not possible with
the accumulator space methods, which consider only line
segments rather than intersections.
Collins and Weiss [9] devised a scheme of statistical

inference which also utilizes a Gaussian sphere where
the normal to each plane of interpretation is determined.
A statistical -tting is performed in order to -nd the po-
lar axis of an equatorial distribution. Shufelt [10] re-
ports that the method of statistical inference had poor
performance on test data when compared with Barnard’s
method.
Kanatani [2] describes much of the theory of van-

ishing points and perspective projection. However,
rather than using a Gaussian sphere as an accumulator
space, he describes the vanishing points with n-vectors,
vectors of length 1 originating from the perspective
point and pointing to a location in the image plane.
These n-vectors are similar to the vectors used by
Magee.
Lutton et al. [11] introduce a probability mask on the

Gaussian sphere in order to compensate for the -nite ex-
tent of the image. The probability mask attempts to ac-
count for this eMect by considering the probability of two
random lines (noise) intersecting at any given place on
the Gaussian sphere. However, the authors fail to take
into consideration the prior probability of the actual van-
ishing point locations, and instead assume that all van-
ishing points are equally likely. This assumption is far
from the actual case for typical consumer imagery (see
Fig. 5). In addition, the authors describe an eMort to ac-
count for errors in line segment identi-cation. Rather
than incrementing only the bins falling on the great cir-
cle, the authors propose incrementing the bins falling in
a swath about the great circle. The swath size is deter-
mined by possible interpretation planes passing through
the endpoints of the line segments. However, this weight-
ing scheme is based upon assumption rather than actual
ground truth data.
Shufelt [10] describes the method of primitive model-

ing in order to increase the robustness of the vanishing
point detection. A model is used to determine the relative
position of multiple vanishing points. Knowledge of the
primitive model assists the vanishing point detection by
allowing peak detection to include samplingmultiple bins
simultaneously, but requires an accurate estimate of the
focal length of the imaging system. In addition, Shufelt
reviews the performance of several of the other vanish-
ing point detection methods with a database of aerial
images.

In the present work, ground truth data is utilized to
establish conditional probabilities in a cross product
scheme similar to Magee’s. Features pertaining to the
two line segments forming each intersection are used
to determine the conditional probability that the inter-
section is coincident to a ground truth vanishing point.
Weighted clustering is then performed to determine the
most likely vanishing point location, considering the
collection of intersections and conditional probabilities.
This algorithm is based upon the ground truth vanishing
point data derived from the 86 images in the training
set. This algorithm represents the -rst reported use of
ground truth data for training an automatic vanishing
point detection algorithm.

3. Ground truth collection

A user interactive tool was created for the purpose of
manually identifying the vanishing points of an image.
The author used this tool to identify the vanishing points
for two image sets consisting of typical consumer im-
ages: 86 images from a training database referred to as
“TSD”, and a 266 image testing database referred to as
“JBJL”, for a total of 352 images. Incidentally, both of
these databased contain approximately 50% indoor im-
ages and 50% outdoor images. The following “rules of
thumb” were used in the ground truth collection:

(a) Vanishing points are identi-ed in order of signi--
cance. The most signi-cant vanishing point is identi-ed
-rst.
(b) Vanishing points from human-made structures

only are identi-ed. No attempt was made, for instance,
to assume that trees in a forest are substantially parallel
or that rows of crops are parallel.
(c) After a -rst vanishing point is identi-ed, a sec-

ond vanishing point is identi-ed only if the set of line
segments appear to have been approximately orthogonal
in the scene to the line segments corresponding to the
-rst vanishing point. Likewise, a third vanishing point is
identi-ed only if there exists another set of line segments
that appear to have been orthogonal in the scene to the
line segments corresponding to both the -rst and second
vanishing points.

It should be noted that this ground truth selection is
somewhat subjective, especially in light of the term “sig-
ni-cance” in rule (a) above. It can be imagined that a va-
riety of subjects would, on a given image, disagree about
which vanishing point is “most signi-cant”. In addition,
subjects could conceivably disagree about whether a sig-
ni-cant vanishing point appears at all in the image. Thus,
if the vanishing point ground truth data reported in this
document is found to be compelling in nature, it may be
desirable to corroborate the data with additional subjects.
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Table 1
Frequency of images with a speci-c number of signi-cant
vanishing points

0 1 2 3 Total

TSD 36 16 24 10 86
94 v.p.’s 41.2% 11.6% 27.9% 11.6%

JBJL 129 79 53 5 266
200 v.p.’s 48.5% 29.7% 19.9% 1.9%

Total 165 95 77 15 354
46.6% 28.8% 21.7% 4.2%

4. Results of ground truth collection

As previously mentioned, the vanishing point ground
truth collection was performed over two databases. The
metric of these images is a logarithmic scaling of ex-
posure. A total of 94 vanishing points were identi-ed
in the TSD database, and 200 in the JBJL database. A
complete breakdown of the number of images contain-
ing a speci-ed number of vanishing points is shown
in Table 1. The statistics vary somewhat between the
databases. For each database, slightly more than half
of the images contained at least one signi-cant van-
ishing point. However, the TSD database contained a
greater percentage of images with 2 and 3 vanishing
points than did the JBJL database. Assuming that these
databases reQect an appropriate sampling of image space,
it appears safe to state that approximately 1

2 of all con-
sumer images contain at least one signi-cant vanishing
point.
In order to gain insight into the ground truth data,

each vanishing point vector CG =(xG; yG; zG) is fur-
ther transformed to the angles � and , calculated as
follows:

�=cos−1(zG); (4)

= tan−1(yG=xG): (5)

Note that the angle  is unwrapped so that its value is
between 0 and 2�. For example, a vanishing point corre-
sponding to the vector (0:05;−0:86; 0:51) has values of
�=1:0356 rad and =4:7705 rad. The angle � is the
angle from the optical axis to the vector, and ranges from
0 (when the vector falls directly on the optical axis and
points to the image center) to �=2 (when the vector is or-
thogonal to the optical axis and intersects with the image
plane at in-nity).
The angle  is the angle between the projection of the

vector onto the xy-plane and the positive x-axis. Fig. 4
shows a graphical representation of the angles � and 

Fig. 4. An illustration of angles � and  on the Gaussian sphere.

with respect to the Gaussian sphere. Thus (assuming that
the horizontal axis of the image is parallel with the x-axis
and the vertical axis of the image is parallel with the
y-axis), vanishing point vectors which have =0 radi-
ans correspond to the vanishing point along the right side
of the horizontal axis of the image. Likewise, vanishing
point vectors which have =�=2 correspond to the van-
ishing point along the upper portion of the vertical axis
of the image, etc.
Fig. 5 shows an image of the two-dimensional his-

togram of the 294 vanishing point vectors from both
databases, quantized into bins of � and . (For this dis-
cussion, the vanishing point of each image was deter-
mined with respect to the image in upright orientation.
That is, the vertical axis of the image is parallel to the
y-axis. In addition, the “top” of the image is in the di-
rection of the positive y-axis.) In this representation, the
darker bins represent bins that contained more counts.
Black represents a bin having 25 or more counts, and
white represents 0 counts. The interesting features of
this histogram occur especially for large �, that is, van-
ishing points far from the image center (large �) or at
in-nity (�=�=2). It is clear that, contrary to Lutton
et al. [11], every vanishing point is not equally likely.
Vanishing points with large � tend to coincide with
the vertical or horizontal axis of the image (since there
are peaks at = {0; �=2; �; 3�=2}.) When a vanishing
point is far from the image center, it is extremely prob-
able that the vanishing point will fall near either the
horizontal or vertical axis of the image. Additionally,
the peaks at = {�=2; 3�=2} are much stronger than the
peaks at = {0; �}. This data shows that it is far more
likely that the vanishing point will fall on the verti-
cal axis of the image than the horizontal axis of the
image.
This observation is logical for several reasons. First of

all, there is a predominance of vertical lines in man-made
structures. When a photograph is taken with the cam-
era held perfectly level and straight (i.e., the optical axis
(z-axis) and the x-axis are orthogonal to the vertical lines
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Fig. 5. A histogram of the locations of the vanishing points determined by the ground truth study. The density of each bin corresponds
to the number of ground truth vanishing points falling within the bin. These bins are not equal size partitions of the Gaussian sphere;
however, along each row (-xed �) the bin sizes are equivalent. A majority of vanishing points coincide with =3�=2.

Fig. 6. A high-level block diagram of the Bayesian probability
based vanishing point algorithm.

of the scene), the vanishing point will occur on the ver-
tical axis of the image at in-nity. However, in consumer
photography it is common for the photographer to pivot
the camera slightly up or down in order to achieve a more
pleasing image composition (i.e., the x-axis remains or-
thogonal to the vertical lines in the scene, but the opti-
cal axis does not). In this case, it can be shown that the
vanishing point of vertical scene lines will still fall on
the vertical axis of the image, but will not occur at in-
-nity. Thus, for typical camera positions, the vanishing
point of vertical scene lines will fall on the vertical axis
of the image, independent of the camera tilt about the
x-axis.

5. A vanishing point detection algorithm based
on ground truth

Fig. 6 shows a high-level block diagram of the ground
truth based vanishing point detection algorithm. First,

image line segments are detected. Next the intersections
of these line segments are calculated. Each intersection
is then analyzed to determine its probability of being
coincident (as will be de-ned below) to a true vanishing
point. Finally, the intersections are clustered based on
the probabilities to determine the algorithm’s guess at
vanishing point location.

5.1. Line segment detection

Because vanishing points relate to the projection of
scene lines to image lines, all vanishing point detection
algorithms have some inherent component of straight line
detection. In fact, it is diKcult to compare the results of
various vanishing point algorithms unless the line detec-
tion method is also described.
A number of authors have addressed the problem

of straight line detection [12–15]. A line in an image
exhibits a collection of local edges. Thus, line de-
tection algorithms generally work by detecting edges
(and=or gradients) in the image, then determining col-
lections of these edges that occur in the image to form
lines.
Kahn et al. [14] expands on the approach taken by

Burns [12]. The line support region clustering is essen-
tially unchanged except that a threshold is placed upon
the gradient magnitude to exclude a major portion of im-
age pixels from further processing. In addition, rather
than using a planar -t of the line support region to deter-
mine the parameterization of the line, lines are directly
-tted to the line support region by using principal com-
ponent analysis. Kahn also mentions that the ratio of
eigenvectors provides a useful estimate of line quality Q.
In an eMort to keep complexity to a minimum, the line
segment detection algorithm used in the present work is
essentially a hybrid of the algorithms described by Burns
[12] and Kahn [14].
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Fig. 7. Images of the lines passing diMerent criterion. Top: All
lines (997) with at least 17 pixels in the line support region
and a Q of at least 10. Bottom: All lines (92) with at least 100
pixels in the line support region and a Q of at least 200. This
setting is used for the vanishing point detection.

As a -nal stage of the line segment detection, line
thresholds are applied to remove short line segments and
line segments of low quality. Any line segment with N ,
the number of pixels belonging to the line support re-
gion, less than a threshold t1 is excluded from further
processing. The threshold t1 is currently set at 100. In
addition, any line segment having a quality Q less than
another threshold t2 is excluded from further processing.
Currently the threshold t2 is set at 200. Examples of the
detected lines passing certain threshold criteria are shown
in Fig. 7.
After the line detection has been completed, an im-

age has an associated list of M line segments that
meet the requirements to be considered a valid line
segment.

5.2. Intersection computation

Most vanishing point detection algorithms are some-
how related to -nding points where a relatively large
number of line segments intersect.

Fig. 8. Line segment intersection algorithm.

For each possible pair of lines from the M lines de-
tected from the image, the intersection is computed using
a series of cross products. Thus, M valid lines results in
a total of M (M − 1)=2 intersections. Each intersection
is considered to be a possible vanishing point location.
Each intersection is assigned a probability of coinciding
with a correct vanishing point, based upon characteris-
tics of the two lines used to compute the intersection.
Finally, the most probable vanishing point is determined
by examining the Bayesian probabilities associated with
the intersection.
Fig. 8 is a block diagram describing the process of de-

termining the intersection of two line segments, Li and
Lj. Each line segment contains two endpoints that may
be represented by location in the image plane. As a note
on nomenclature, for each image there existsM line seg-
ments, referred to by the labels Li, where i=1; 2; : : : ; M .
A speci-c attribute of a given line i is referred to by us-
ing the same line subscript. For example, Ai refers to the
attribute A associated with line segment Li.

As shown in Fig. 9, line segment Li has endpoints
p1i(x1; y1) and p2i(x2; y2). These endpoints may be rep-
resented as vectors, by mapping onto the Gaussian sphere
as previously described by Eq. (2). (Estimated focal
length f=923 pixels.) Thus, the vector pG1i is a unit
vector in the direction from the origin to p1i.

As described by Barnard [4], an image line segment
can be thought of as forming an interpretation plane, the
plane which contains the origin and the line segment. The
unit normal Ni to the interpretation plane associated with
line segment Li may be determined by computing the
cross product of the unit vectors from the origin to each
of the line segment endpoints, as given in the following
equation:

Ni=
pGi1 × pGi2
|pGi1 × pGi2| : (6)

Thus, the unit normal Ni of the interpretation plane cor-
responding with each line segment Li is determined with
Eq. (6).
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Fig. 9. A typical arrangement used to represent a vanishing point with a Gaussian sphere. The optical system is centered at the
origin, shown by o.

The Gaussian vector representation of the intersection
Iij of any two interpretation planes associated with any
two line segments Li and Lj can then be determined by
the cross product of the unit normals

Iij =
Ni × Nj
|Ni × Nj| : (7)

As shown in Fig. 8, once the intersection Iij is com-
puted, a reliability check is performed. If Ni=Nj (i.e.,
line segments Li and Lj are collinear), the cross prod-
uct has magnitude zero, which causes a singularity for
Eq. (7). In addition, the intersection Iij is checked
to ensure that it does not occur interior to either of
the line segments. Intersections formed from collinear
line segments and intersections occurring interior to
either line segment or the other are ignored. Thus, af-
ter this stage, there are a maximum of M (M − 1)=2
intersections. The number of rejected intersections is
generally on the order of 2–4% of the total number of
intersections.
Typical values for M range from 0 to 130, mean-

ing that for some images, up to 8385 intersections are
calculated.

5.3. Intersection probability determination

Let V be the event that an intersection Iij is coinci-
dent with a ground truth vanishing point CG . The def-
inition of coincident will be discussed in further detail
below.
Rather than assume that each intersection has equal

importance as the prior research does, a probability
pij is assigned to each intersection. This probability
is the probability of V , given what is known about
the corresponding line segments Li and Lj. Bayesian
reasoning is used to determine pij from an analysis
of the ground truth data. Several types of features
are utilized to establish the value of pij, includ-
ing line segment length, diMerence in line segment

Fig. 10. Block diagram of the procedure used to establish the
conditional probabilities for the Bayesian probability.

angle , diMerence in line color, and line intersection
location.
The ground truth data from the TSD database was

used to develop the posterior probabilities in the manner
described by Fig. 10. Consider the feature F . The value of
the feature Fij for the intersection Iij is calculated based
upon the attributes of the lines Li and Lj. Additionally, the
intersection Iij is computed from Li and Lj as described
by Eq. (7).
Next, the intersection Iij is compared with the ground

truth vanishing points for the image. The distance be-
tween two unit normal vectors on the Gaussian sphere
is measured by the arc length between the two vectors,
which is equivalent to the angle between the two vectors.
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Fig. 11. Left: A histogram of the feature Fmll, the minimum length of the two lines used to calculate the intersection. Right: The
probability P(V |Fmll) (solid) and a smoothed version (dashed) of the same. Note that the Quctuations in the function at high values
of Fmll result from insuKcient data in the training set.

The calculation of this distance is

dij =min
x

[acos(Iij · CGx)]: (8)

The distance dij is computed as the minimum between
the intersection Iij and any of the X ground truth van-
ishing points CGx associated with the image. If the dis-
tance d is less than a pre-de-ned threshold t3 (currently,
t3 = 0:1), then the intersection Iij is considered to be co-
incident to the ground truth vanishing point. Thus the
“correct” histogram C(q) is incremented at the location
of the feature q=Fij. Additionally, regardless of dij, the
“total” histogram T (q) is also incremented at the location
of the feature q=Fij.
When this analysis is performed over a large number

of intersections and images, the desire is to get a fairly
accurate estimate of the probability that an intersection
Iij is coincident with a vanishing point, given feature Fij.
This posterior probability is approximated by

P(V |Fij)= C(q=Fij)
T (q=Fij)

: (9)

If several features F1; F2; : : : ; Fn are given for an
intersection, then the probability of the intersection
being a valid vanishing point given these features
may be estimated with the following, based on Bayes
theorem:

pij = P(V |F1ij ; F2ij ; : : : ; Fnij)

=
P(V |F1ij)P(V |F2ij) : : : P(V |Fnij)

P(V )n−1 : (10)

Note that Eq. (10), requires that the individual features
F1ij ; F2ij ; : : : ; Fnij are independent. This equation is the
basis for a single layer Bayesian network [16].

Several features speci-c to the line segment detection
algorithms were developed for use with this Bayesian
approach.
The -rst feature is the minimum line length Fmll. The

value of this feature is determined by analyzing the line
segments Li and Lj from which the intersection Iij is
determined. The value of the Fmll feature for intersection
Iij is the minimum of the lengths of the line segments Li
and Lj.
The total histogram for the feature Fmll is shown in

Fig. 11 based on an analysis of the TSD database. In
this database, there are 116,133 valid intersections total.
Of these, 19.1% (∼22; 000) of the intersections occur
within the threshold distance of t3 = 0:1 radians from a
ground truth vanishing point. Thus, the prior probability
P(V )=0:191. Fig. 11 shows a plot of P(V |Fmll), cal-
culated with Eq. (9). Note that a smoothed version of
this probability is also created with a polynomial -t and
shown with a dashed line. Notice that as the value of fea-
ture Fmll increases, so does the probability that the inter-
section Iij will be coincident with a vanishing point CG .
For very high values of Fmll (above ∼450), the proba-
bility P(V |Fmll) exhibits noisy behavior due to the few
number of samples (about 2% of the population), as can
be seen in the histogram T (Fmll). Note that this noise be-
havior may also be observed with regard to the remaining
features as well.
A second feature, Fc$, is based on the average color

of the line support regions from which Li and Lj are de-
termined. The color based feature Fc$ is the Mahalono-
bis distance between the average color of the line seg-
ment Li and the average color of the line segment Lj. As
shown in Fig. 12, an intersection has a higher probability
of being a vanishing point if the line segments which de-
termine the intersection are of similar color. This result
seems logical because parallel lines often are edges of
the same object (e.g., sides of a building, window panes,
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Fig. 12. Left: A histogram of the feature Fc$, the Mahalonobis distance between the average colors of the two line support regions.
Right: The probability P(V |Fc$) (solid) and a smoothed version (dashed) of the same.

Fig. 13. Left: A histogram of the feature Fca, the angle between the neutral axis and the vector connecting the average color of the
two line support regions. Right: The probability P(V |Fca) (solid) and a smoothed version (dashed) of the same.

etc.). Additionally, a single object is often a consistent
color throughout its surface. Parallel lines will likely be
of similar color because the lines result from a single
uniformly colored object.
A third feature, Fca, is also based on the diMerence

in color of the line support regions of Li and Lj. How-
ever, in this case, the distance is the angular distance
in radians between the neutral axis (red =green=blue)
and the vector adjoining the mean color of the line
support regions of Li and Lj. It should be expected
that the colors of parallel lines may diMer by only a
shift in the luminance direction. As shown in Fig. 13,
the value of Fca is zero when the color of two lines
diMer by only a luminance shift. (Note that 0 and 2�
are identical in this metric.) It is quite possible for two
lines to have a high value of Fc$ and a small value

of Fca when the lines diMer in color by a luminance
shift. When Fca has a value of �, that indicates that
both line segments have similar luminances but diMerent
colors.
A fourth feature, FRa, is the diMerence in an-

gle between the two line segments Li and Lj. The
feature FRa is computed with the following simple
equation:

FRa= |i − j|: (11)

Fig. 14 shows that the intersection formed by line seg-
ments having similar angle is more likely to be a valid
vanishing point that the intersections of lines with greatly
diMerent angles.
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Fig. 14. Left: A histogram of the feature FRa, the diMerence in radians between the two line segments on the image plane. Right:
The probability P(V |FRa) (solid) and a smoothed version (dashed) of the same.

A -fth feature Floc is based upon the location of the
intersection Iij on the Gaussian sphere alone. This loca-
tion is expressed in terms of � and w.

�=cos−1(zGI ) (12)

w=

{
v if v ¡ �

4 ;
�
2 − v if v¿ �

4 ;
(13)

where v= |tan−1(yGI =xGI )| and Iij is represented by the
gaussian mapping (xGI ; yGI ; zGI ).
The angle � is the angle from the optical axis (the

z-axis) to the Gaussian representation of the intersection.
The angle � ranges from 0 to �=2. The angle w is the
smallest angle from the projection of the intersection onto
the xy-plane to the nearest of the x- or y-axis. Note that
the angle w is wrapped so that its value is limited to
between 0 and �=4.
Fig. 15 shows a two-dimensional display of the his-

togram of all 116,133 intersection locations. (Black
corresponds with many occurrences.) Additionally,
Fig. 15 shows the probability of an intersection be-
ing coincident with a ground truth vanishing point,
given the intersection location. (Black corresponds
with high probability.) Again, this prior probability
contradicts the Lutton et al.’s [11] assumption that
each point on the Gaussian sphere has equal liklihood
of being a vanishing point. The equal probability as-
sumption would be true if the camera were held at
random positions to the scene; however, we know that
this is not the case. This feature is independent of the
distribution of the orientations of the images in the
training database, since the value of w is image ori-
entation independent. Another version of the feature
Floc could be made if the orientation of the image
is known. However, this variation has not yet been
explored.

Fig. 15. Left: A histogram of the feature Floc, the location of the
intersection expressed in terms of � and w . Black corresponds
with a high number of occurrences, and white corresponds with
no occurrences. Right: The probability P(V |Floc). Locations
having a higher probability are black, and lower probability is
lighter. Notice that although a large number of intersections
occur near the image center (small �), there is a low probability
that these intersections coincide with vanishing points.

Note that Lutton et al. [11] suggests a probability
masking to account for the eMect of the restricted retina
(-nite image size). He suggests that the accumulator cells
be scaled by the inverse of this mask. However, as pre-
viously noted, Lutton assumes that all vanishing points
are equally likely and does not base the probability on
any ground truth data. Additionally, Lutton’s result is
not directly applicable for any particular line detection
scheme.
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Thus, for each intersection Iij determined from line
segments Li and Lj, there is an associated probability that
the intersection location is coincident (within some tol-
erance) with a ground truth vanishing point. In the algo-
rithm, look-up tables (LUTs), each with 64 indexes, are
used to determine the posterior probabilities as shown
in Figs. 11–14. The smoothed version of each probabil-
ity is used in the application of the algorithm. Eq. (10)
describes how the probabilities from individual features
may be combined. Although the -ve features are prob-
ably not totally independent as Eq. (10) requires, this
assumption does not greatly aMect the utility of the esti-
mate of P(V |F1ij ; F2ij ; : : : ; Fnij). The results will illustrate
that the estimation of the vanishing point location is im-
proved with multiple features, despite the approximation
that the features are independent. Removing this correla-
tion between features could be accomplished by the cre-
ation of intermediate features in the form of a multilevel
Bayes network [16].
The use of all features is not required. Any of the 32

possible subsets of the -ve features may be used with
the current implementation of the algorithm without any
retraining of the algorithm.
Determining the relative importance of the -ve fea-

tures is diKcult, but may be approximated with a
weighted measure of variance. The more that the prob-
ability changes over the range of the feature, the better
that feature is for diMerentiating some intersections from
others. One measure of the ability of a feature to dif-
ferentiate amongst the intersections may be given as a
variance of the posterior probability that is weighted
by the histogram of the feature. This ability A may be
calculated as:

A=

∑
Fi T (Fi)[P(V |Fi)− P(V )]2∑

Fi T (Fi)
: (14)

For the -ve features given, the value of A is 0.0018,
0.0046, 0.0033, 0.0275, and 0.0616, respectively.
Thus, we expect the most bene-t from the location
feature Floc.

5.4. Vanishing point detection by clustering

At this point in the algorithm we have a list of (at
most) M (M − 1)=2 intersections Iij, each with asso-
ciated probability pij that intersection Iij is coinci-
dent with a vanishing point. Each intersection Iij may
be viewed as a classi-er, and the associated proba-
bility pij represents the associated con-dence. The
question is: How should this large number of clas-
si-ers be combined to determine an overall estimate
of the vanishing point? Fig. 16 shows a high-level
diagram of the procedure to determine the most prob-
able vanishing point from the collection of intersec-
tions Iij and the associated probabilities pij. Fig. 17

Fig. 16. Block diagram of the process of combining the prob-
abilities pij for each intersection Iij to form an estimated van-
ishing point.

Fig. 17. The 4080 intersections resulting from the 92 detected
line segments shown in Fig. 7. The shade of each intersec-
tion corresponds to the probability pij determined for that in-
tersection, with dark corresponding to high probability of co-
inciding with a vanishing point and light corresponding with
low probability. This view is looking from the image plane
down the optical axis toward the Gaussian sphere. The cluster
of high-probability intersections on the negative y-axis corre-
sponding to a vanishing point of the vertical scene lines.

illustrates a graphical example of the intersections
and associated probabilities for the image shown in
Fig. 2.
First, a constrained weighted K-means algorithm us-

ing up to 20 clusters is applied (up to a maximum of
20 iterations) to the M (M − 1)=2 intersections for the
purpose of determining cluster means.
After the weighted K-means clustering, the cluster

means are examined to select the most likely vanishing
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point. For each cluster mean Cm, the intersections Iij oc-
curring within some distance of the cluster mean Cm are
examined. The distance (2 between each intersection and
cluster mean is measured as an arc length on the Gaus-
sian sphere, as given in Eq. (8). Those intersections hav-
ing a distance (2 less than t4 (t4 = 0:1 was used for this
research) from a cluster mean Cm are considered to be
“nearby intersections”. A weight factor wm=1 when the
intersection Iij is a nearby intersection to cluster mean
Cm, and wm=0, otherwise. Note that the clusters de-
termined by the K-means clustering are not of uniform
size, so the K-means clusters are not used for further
analysis. Based on the associated probability pij of each
intersection Iij nearby to cluster mean Cm, an overall
score Sm for the corresponding cluster mean is gener-
ated. The cluster mean Cm with the greatest score Sm is
determined to be the most likely vanishing point for the
image.
Each intersection is considered to be a random event

with a probability pij of being coincident with a ground
truth vanishing point CG . In order for Cm to be coincident
with vanishing point, at least one of the nearby inter-
sections must correspond with a vanishing point. Thus,
determining the probability that any one of the intersec-
tions nearby to Cm is coincident with a vanishing point
is a score that may be used to determine the most likely
vanishing point.

S1m=1:0−
∏
i; j

wm(1− pij): (15)

When a cluster mean Cm has a large number of nearby
intersections (as is often the case), the quantity is often
extremely close to 1.0, beyond the accuracy of the nu-
merical representation of the computer. In fact, a com-
puter often has trouble distinguishing between the scores
of two cluster means. In order to avoid this problem, a
logarithmic approach is taken

S2m=−
∑
i; j

wmlog(1− pij): (16)

This scoring function is a monotonically increasing
transformation of Eq. (15). Therefore, the vanishing
point detected as the cluster mean with the maximum
scoring value will be identical in the case of Eqs. (15)
or (16).
By the preceding method, the most likely vanishing

point for an image is selected as the cluster mean with
the highest score. Obviously, if an image has fewer than
two detected lines meeting the requirements, then no in-
tersections and no vanishing points can be computed.
However, it is highly likely that such an image has no
vanishing points.
After a -rst vanishing point has been detected, sub-

sequent vanishing points may be detected. Each line

segment Li is compared with all previously identi-ed
vanishing points. If the normal of line segment Li is
nearly orthogonal to a vanishing point already detected,
then that line segment is assigned to that vanishing
point and is omitted from further analysis. After each
line segment has been reviewed, the process of com-
puting intersections, performing K-means clustering,
and selecting the most likely vanishing point may be
repeated. This process may be repeated as many times
as desired, until fewer than two lines remain unassigned
to a vanishing point. Each repetition generates another
vanishing point estimate. Generally it does not make
sense to attempt to detect more than three vanishing
points.

6. Pseudocode

The overall Qow of the algorithm may be described in
pseudocode as follows:

Step 1. Detect line segments (Section 5.1). M line
segments L are detected from the input image.
Step 2. For each of the M (M − 1)=2 possible line

segment pairs Li and Lj
Step 3. Compute intersection (Section 5.2). The inter-

section Iij of the line segment pair Li and Lj is found as
follows:
Step 3.1. Calculate unit normals Ni and Nj for each

line segment of the pair (6).
Step 3.2. Find intersection Iij using the cross product

of the unit normals Ni and Nj (7).
Step 3.3. If reliability check fails, proceed to next line

segment pair.
Step 4. Determine intersection probability (Section

5.3) as follows:
Step 4.1. Calculate features F = {Fmll; Fc$; Fca; FRa,

and Floc} for intersection Iij.
Step 4.2. Determine (by LUT) posterior probabilities

for each of the intersection’s features P(V |F).
Step 4.3. Combine the intersection’s posterior proba-

bilities with Bayes theorem (10) to determine the prob-
ability pij that the intersection Iij is coincident with an
actual image vanishing point.
Step 5. Detect vanishing point by clustering intersec-

tions and associated probabilities (Section 5.4).
Step 5.1. Apply weighted K-means clustering to -nd

a set of cluster means.
Step 5.2. For each cluster mean, compute score S (16).
Step 5.3. Select cluster mean with greatest score S as

the vanishing point.

7. Results

As an example of this algorithm applied to a real im-
age, Fig. 18 shows the line segments corresponding to a
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Fig. 18. The -rst and second algorithm output for the image
from Fig. 2.

-rst (top image) and a second (bottom image) vanishing
point, detected automatically. In this case, the algorithm
correctly identi-es a -rst and second vanishing point for
the image.
In order to assess feature robustness, the condi-

tional probabilities were computed on the JBJL testing
database. The results are shown in Fig. 19. Generally,
the results appear similar to the conditional proba-
bilities computed for the TSD training set, with the
exception of the conditional probability P(V |Fca) for
small Fca.
As a measure of the algorithm performance, the al-

gorithm was trained on the 86 images from the TSD
database, and then tested on the 266 images from the
JBJL database. The algorithm was con-gured to output
a maximum of two vanishing point estimates per image,
and over the 266 images, 483 vanishing points were de-
tected by the algorithm. If no features are used, then all
probabilities pij default to 1.0 and the algorithm essen-
tially performs the algorithm described by Magee and
Aggarwal [6], where the most likely vanishing point is
based upon a local maximum of the intersections Iij.
In this scheme, each intersection has equal weight and

the algorithm cannot take advantage of the ground truth
data.
In order to evaluate the algorithm’s performance, the

algorithm results are compared with the manually deter-
mined ground truth data. The arc distance (3 between
each ground truth vanishing point and each estimated
vanishing point is determined. When this distance is
less than threshold t5, the estimated vanishing point is
determined to be correct (a true positive). If the dis-
tance (3 from an estimated vanishing point to each
ground truth vanishing point is greater than t5, then the
estimated vanishing point is a false positive. Ground
truth vanishing points not within a distance of t5 from
any estimated vanishing point are classi-ed as false
negatives.
The vanishing point detection algorithm may be ap-

plied using any combination of the -ve features. Since
-ve features have been described, there are a total of 32
combinations of those features. Five speci-c tests were
performed on the testing set. By varying the threshold
t5, an idea of the algorithm’s performance can be gath-
ered. The results are shown in Fig. 20. Note that since the
number of vanishing point estimates was -xed over the
whole database (at an average of 1.82 vanishing points
per image), an increase in the number of true positives
corresponds identically to a decrease in the number of
false positives.
The baseline algorithm where no features are utilized

(i.e., each intersection is of equal importance as in Ref.
[6]), is called Trial 0. This version had the poorest per-
formance among the -ve variations tested. Fig. 20 shows
the performance of the algorithm within an allowable er-
ror (t5) from 0.01 to 0:3 rad. For example, only about
30% of the vanishing points are identi-ed within a toler-
ance of 0.1 radians between the Gaussian representation
of the ground truth vanishing point and the algorithm re-
sult vanishing point.
Trial 24, where both of the color features (Fca and Fc$)

are used, provides a slight improvement over the Trail 0
results.
Trial 4, where the intersection location feature (Floc)

is used provides a large boost over the baseline results,
as anticipated by the result of Eq. (14).
Trial 28, which combines the intersection location fea-

ture (Floc) used with Trial 4 and the two color features
(Fca and Fc$) used with Trial 24 creates a slight improve-
ment over the Trial 4 results.
Finally, Trial 31, which utilizes all -ve of the de-

scribed features, performs best overall, providing a
small performance increase over Trial 28, and a perfor-
mance increase on the order of 10% when compared
with Trial 0. This combination of features allows for
the identi-cation of 39% of the ground truth vanishing
points within a tolerance t5 = 0:1, a signi-cant im-
provement in preformance over Trial 0, which uses no
features.
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Fig. 19. The probabilities derived from the ground truth of the 266 images of the JBJL database. In general, these probabilities
appear similar (in regions where there are a signi-cant number of intersections, as indicated by the histograms) to the ground truth
of the 86 image of the TSD database, shown in Figs. 11–14. However, the probability P(V |Fca) for the JBJL database does appear
diMerent from the P(V |Fca) for the TSD database in the region of small Fca. This may indicate that the Fca feature is not a reliable
feature across diMerent databases.

The number of false positives may be dramatically
reduced by placing a threshold on the score S associ-
ated with each detected vanishing point. True positive
vanishing point detections tend to have high scores S.
For example, any detected vanishing point with a score
S less than a threshold may be ignored. An operating
curve using this decision boundary for trial 31 where
t5 = 0:1 is shown in Fig. 21. About 35% of all vanish-
ing points may be detected with 0.5 false positives per
image.

8. Conclusions

Vanishing point ground truth data has been established
for 352 images. Slightly more than half of these images
contain one or more signi-cant vanishing points. As dis-
tance from the center of the image increases, vanish-
ing points are more likely to occur near an axis of the
image.

A Bayesian probability based vanishing point detec-
tion algorithm using multiple features with ground truth
training is presented. The vanishing points of 352 images
were manually identi-ed to create ground truth data. Each
intersection is assigned a probability of being coincident
with a ground truth vanishing point, based upon condi-
tional probabilities of a number of features. The results of
this ground truth based algorithm are demonstrated to be
superior to the results of a similar algorithm where each
intersection is considered to be of equal value. About
35% of all vanishing points may be detected with 0.5
false positives per image.

9. Summary

Perspective projection governs the mapping of the
three-dimensional scene to the two-dimensional image.
The perspective projection of lines that are parallel in
a three-dimensional scene meet at a common vanishing
point on the image plane.
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Fig. 20. Results of Bayesian based automatic vanishing point detection. Note that the baseline of using no features is similar to the
method of Magee and Aggarwal [6].

Fig. 21. The ROC (on the 266 images in the JBJL test set) for the automatic vanishing point detection algorithm. This curve is
created by thresholding the scoring value S of the detected vanishing point (all detected vanishing points with S ¡ the threshold
are ignored.) Also, it is assumed that the detected vanishing point must be within 0:10 rad of the ground truth vanishing point to be
detected as a true positive. The vertical axis is the true positive rate and the horizontal axis is the average number of false positives
per image, when the algorithm is con-gured to output a maximum of two estimates per image.
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Automatic vanishing point detection schemes rely
on line segment detection followed by a means to de-
termine the intersections of these line segments. The
vanishing point is determined to be at the point with
the most intersections. The prior art methods gener-
ally weight all features and classi-ers equally, although
there have been attempts to compensate for the bias
of intersections occurring near the image center and
the uncertainty of the line segment accuracy. How-
ever, these compensations did not rely on ground truth
data for the determination of an appropriate level of
compensation.
A Bayesian probability-based vanishing point detec-

tion algorithm is presented which introduces the use of
multiple features and training with ground truth data
to determine vanishing point locations. The vanishing
points of 352 images were manually identi-ed to create
ground truth data. Each intersection is assigned a proba-
bility of being coincident with a ground truth vanishing
point, based upon conditional probabilities of a number
of features. The results of this algorithm are demonstrated
to be superior to the results of a similar algorithm where
each intersection is considered to be of equal importance.
The advantage of this algorithm is that multiple features
derived from ground truth training are used to determine
vanishing point location.

References

[1] D.H. Ballard, C.M. Brown, Computer Vision,
Prentice-Hall, Inc., Englewood CliMs, NJ, 1982.

[2] K. Kanatani, Geometric Computation for Machine Vision,
Oxford University Press, Oxford, 1993.

[3] B. Ernst, The Magic Mirror of M.C. Escher, Random
House, New York, 1995.

[4] S. Barnard, Interpreting perspective images, Artif. Intell.
21 (1983) 435–462.

[5] D. Hilbert, S. Cohn-Vossen, Geometry and the
Imagination, Chelsea, New York, 1952.

[6] M. Magee, J. Aggarwal, Determining vanishing points
from perspective images, Comput. Vision, Graphics,
Image Process. 26 (1984) 256–267.

[7] B. Brillault-O’Mahoney, New method for vanishing point
detection, Comput. Vision, Graphics, Image Process.:
Image Understanding 54 (2) (1991) 289–300.

[8] L. Quan, R. Mohr, Determining perspective structures
using hierarchical Hough transform, Pattern Recognit.
Lett. 9 (4) (1989) 279–286.

[9] R. Collins, R. Weiss, Vanishing point calculation as a
statistical inference on the unit sphere, Proceedings of
the Third International Conference on Computer Vision,
1990, pp. 400–403.

[10] J. Shufelt, Performance evaluation and analysis of
vanishing point detection techniques, IEEE Trans. PAMI
21 (3) (1999) 282–288.

[11] E. Lutton, H. Maitre, J. Lopez-Krahe, Contribution to the
determination of vanishing points using Hough transform,
IEEE Trans. PAMI 16 (4) (1994) 430–438.

[12] J. Burns, A. Hanson, E. Riseman, Extracting straight lines,
IEEE Trans. PAMI 8 (4) (1986) 425–455.

[13] P. Hough, Method and means for recognizing complex
patterns, US Patent No. 3069654, 1962.

[14] P. Kahn, L. Kitchen, E. Riseman, A fast line -nder for
vision-guided robot navigation, IEEE Trans. PAMI 12
(11) (1990) 1098–1102.

[15] W. Yu, G. Chu, M. Chung, A robust line extraction
method by unsupervised line clustering, Pattern Recognit.
32 (1999) 529–546.

[16] J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, Morgan Kaufman
Publishers, Inc., San Francisco, 1988.

About the Author—ANDREW C. GALLAGHER was born in Erie, Pennsylvania, on January 13, 1974. He received his B.S.E.E.
in electrical engineering in 1996 from Geneva College in Beaver Falls, Pennsylvania, and the M.S. degree in electrical engineering
from Rochester Institute of Technology in Rochester, New York, in May 2000. Since 1996, he has worked as a research scientist for
the Eastman Kodak Company in Rochester, NY in the Imaging Science Technology Laboratory. Current research interests include
image enhancement, pattern recognition, and image understanding.


