
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#40

ECCV
#40

Combining Monocular Geometric Cues with Traditional
Stereo Cues for Consumer Camera Stereo

Anonymous ECCV submission

Paper ID 40

Abstract. This paper presents a framework for considering both stereo cues and
structural priors to obtain a geometrically representative depth map from a narrow
baseline stereo pair. We use stereo pairs captured with a consumer stereo camera
and observe that traditional depth estimation using stereo matching techniques
encounters difficulties related to the narrow baseline relative to the depth of the
scene. However, monocular geometric cues based on attributes such as lines and
the horizon provide additional hints about the global structure, that stereo match-
ing misses. We merge both monocular and stereo matching features in a piecewise
planar reconstruction framework that is initialized with a discrete inference step,
and refined with a continuous optimization to encourage the intersections of hy-
pothesized planes to coincide with observed image lines. We show through our
results on stereo pairs of manmade structures captured outside of the lab that our
framework exploits the advantages of both approaches to infer a better depth map
of the scene.

1 Introduction

Recent developments in consumer electronics have paved the way for handheld stereo
cameras such as Fujifilm FinePix 3D® and Sony Bloggie 3D®, which allow users to
capture stereo pairs in the wild (i.e. outside the lab). Using a single stereo pair captured
in the wild using such a camera, we observe that while standard depth from stereo al-
lows us to observe the ordering of various objects in the scene, even the state-of-art
algorithms fail to give a good depth map that captures the geometry of the scene such
as, the 3D structure of the facades of distant buildings and the depth of homogeneous
surfaces (Fig. 3). The problems of stereo matching in case of these stereo pairs include:
narrow baseline (typically 77 mm, similar to our eyes) that limits the depth from par-
allax; scene irregularities such as ill-effects of lighting, specularities and homogeneous
surfaces. In addition, camera properties such as image resolution, mismatch between
sensors and cameras in terms of contrast, exposure, focus, and distortion adds to the
challenge of the stereo matching task.

However, humans (with eyes arranged similar to the cameras of a stereo camera),
effectively use monocular cues from the scene to infer the 3D structure of the scene as
illustrated in Fig 1a. While the depth perception from stereo of the human visual sys-
tem is also restricted to only a few meters due to the narrow baseline, we have enough
cues from monocular geometric cues and prior learning, to obtain the global geometric
structure of say, a building beyond the maximum depth from stereo. A number of recent
works on depth from a single image have shown that one can obtain a fairly detailed
depth map using trained models [8, 15, 16, 24]. Prior work on single view 3D reason-
ing [7, 21] and cognitive science have shown monocular geometric cues like lines and
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(a) (b)
Fig. 1: (a) Monocular geometric cues: (Left) Müller-Lyer illusion: Equal line segments appear
different since we tend to interpret them from a 3D geometry point of view; (Right) Prominent
monocular geometric cues like vanishing points not captured in generic stereo matching reveal
the structure of a scene even in the absence of texture cues; (b) Stereo cues: Ames room, a famous
illusion gives you the above illusion when you look though a peephole (or a monocular image).
Viewing it as a stereo pair, would rid of the illusion revealing that the girl on the left is far away
compared to the girl on the right.

(a) (b) (c) (d)
Fig. 2: Overview: (a) Input stereo pair with the lines detected and superpixel map which help
capture some of the monocular cues; (b) Resulting labeling using proposed algorithm; (c) Syn-
thesized depth map (white is close, black is far); (d) 3D reconstruction from novel viewpoints.

edges to be a critical aspect of human vision [3, 14]. While these help obtain a globally
consistent structure, stereo cues can further disambiguate details or the depth ordering
of objects in the scene as illustrated in Fig 1b. An overview of our approach and sample
results are shown in Fig 2 and Fig. 3. The main contributions of this paper are:

– We propose a unified framework to combine stereo cues with monocular structural
priors (e.g. lines, horizon and plane intersections), that are not considered in generic
stereo matching and prior works that combine monocular and stereo cues [23].

– We introduce monocular cues in two ways:
1) By proposing possible parameterized planes. Stereo matching is used to then
find the cost of assigning each plane to each superpixel. This is the discrete step.
2) By continuous optimization that performs fine adjustment to encourage planes
to meet at observed lines in the scene.

– We propose a novel use of distance transforms to encode monocular information
image lines within the discrete and continuous optimization.

– We show the effectiveness of the algorithm via a thorough comparison of the 3D
reconstruction using a user study allowing users to fly-through the 3D rendering.

2 Related work

3D reconstruction of a scene is an active field in the community. Given a a single stereo
pair of images, we give an overview of prior work to reconstruct the scene.
Depth from a single image.

On one end of the spectrum is single-view modeling, which exploits solely monoc-
ular image cues [7, 8, 15, 16, 21, 24]. Some of these use trained models based on image
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(a) (b) (c)
Fig. 3: Comparison with stereo matching (white is close, black is far for the depth maps): (a) Left
image of stereo pair; (b) Depth map from stereo matching [28] shows errors such as the depth of
the ceiling, and the depth of the piano; (c) Our result is better.

features [15, 16, 24], under weak assumptions such as colinearity or coplanarity. A key
idea that pervades single image reconstruction work is that some scene compositions
(e.g. ground plane with perpendicular vertical planes) are more likely than others. We
build on these cues by adding stereo analysis to our framework.

Multiview stereo. On the other end of the spectrum for 3D reconstruction is multiview
stereo. A number of these approaches work with many images to obtain a fairly dense
reconstruction [12,26]. Recent works propose piecewise planar multiview stereo by us-
ing a discrete labeling over a set of hypothesized planes [10, 11, 13, 22, 27]. However,
with a consumer stereo camera we face two problems: hypothesizing planes using a
depth map is unreliable, and using multi-view stereo approaches using only photocon-
sistency across views does not perform well.

Depth from stereo. A natural approach to obtain depth from a stereo pair is to use dense
stereo matching [1, 25]. While the stereo matching algorithms have been extensively
evaluated on benchmarking datasets, we find that these algorithms are very sensitive
to the data. Saxena et. al. [23] proposed making a depth map from traditional stereo
matching. Holes in this map were filled using his learned single-view depth estimate. In
practice, this tends to prefer a smooth reconstruction and given the poor performance of
stereo matching on the consumer stereo pairs it would not recover geometric structures
(intersecting planar surfaces).

In this work, we show that irrespective of inaccurate depth from stereo obtained due
to scene irregularities, we can leverage the monocular geometric cues with the stereo
cues to obtain a better, geometrically representative depth map.

3 Unified framework

In this section, we describe our algorithm in detail. We obtain the depth map of the
scene in a two-step process. The first step is a discrete optimization that estimates a
coarse structure of the scene, followed by a continuous optimization that refines the
structure to render a geometrically representative depth map.

3.1 Discrete optimization

Motivated by recent works in piecewise planar stereo [11,13,22,27] we try to achieve a
globally consistent depth map of the scene by formulating depth estimation as a discrete
optimization problem, where each pixel belongs to one of many hypothesized planes.
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Plane hypothesis. We first calibrate the stereo camera to obtain the camera parameters
(relative translation and rotation) of the two cameras. Given the camera parameters and
matched SIFT features on the stereo pair, we estimate the 3D positions of the points re-
sulting in a sparse point cloud. We hypothesize a set of dominant planes (L) by analyz-
ing the distribution of depths of the 3D points along each hypothesized normals ( [27]).
Note that other plane hypotheses approaches can be used for this initial step [4, 13].

Energy minimization formulation. Let i ∈ S denote superpixels in an image com-
puted using color features using [9]. We describe an energy minimization formulation
to estimate a labeling l, where each superpixel i is given a label li ∈ L. We define an
MRF with the set of superpixels S as nodes, and all adjacent superpixels denoted as N
as edges. We compute the labeling l that minimizes the following energy.

E(l) =
∑
i∈S

Ei(li) +
∑

(i,j)∈N

Ei,j (li, lj) , (1)

where, Ei(li) is the unary term indicating the cost of assigning a superpixel i to a label
li, while Ei,j (li, lj) is the pairwise term used for penalizing label disagreement when
neighboring superpixels i and j take the labels li and lj , respectively.

Unary term Piecewise planar stereo algorithms typically capture this using a photo-
consistency term measured over the multiple views. However, in case of a single narrow
baseline stereo pair, this alone does not suffice. We therefore model the term using
monocular geometric cues in addition to the stereo photoconsistency term, as,

Ei(li) = Ψ(i, li) ∗
(
EP

i (li) + EN
i (li)

)
, (2)

where, EP
i (li) is the photoconsistency term, EN

i (li) is a surface normal term and
Ψ(i, li) are additional monocular hard constraints we add to the unary term. We now
explain these terms in detail.

Photoconsistency term (EP ). The photoconsistency term is similar to recent multi-
view stereo algorithms. For each superpixel on the left image (say), for every plane
hypothesis we estimate the warp error (via homography) from the right to the left view,
quantified using normalized cross correlation (NCC). We refer the reader to [27] for
more details. We compute the NCC using the superpixel as support at each pixel as
opposed to a constant window.

Surface normal term (EN ). With a narrow baseline stereo pair, the two cameras lack
enough parallax to differentiate between planes beyond a certain depth. Monocular cues
such as the lines and vanishing directions provide enough support to penalize the planes
that results in a globally inconsistent reconstruction.

We estimate the likelihood of each pixel belonging to a particular surface normal
direction by developing a novel approach to exploit this information using the lines
detected in the image. These lines were used to estimate the vanishing directions and
hence hypothesize plane normals spanning the scene1. The lines are first assigned to one
of the vanishing directions {VD} as shown in Fig 4. Now, for each vanishing direction

1 Vanishing points and horizon were computed using the implementation of the algorithm by
Kosecka et. al. [19] by Hoiem et. al.
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Input image 

Line segments   
grouped according to the VD 

Vanishing directions 

Fig. 4: Illustration of the surface normal term. Given the lines in the image, they are first grouped
according to the vanishing directions (three in this case). The distance map for each vanishing
direction is an ensemble of distance transforms with respect to the lines grouped to that direction.
For example, the figure in the bottom shows the distance map for the green vanishing direction
where, blue is a small distance transform value and red is large. Details in Section 3.1.

vp ∈ {VD}, we compute a distance map
(
δvp

)
using all the lines assigned to vp.

δvp = min
line∈vp

DT (line), (3)

where, DT (line) is the normalized distance transform, i.e., the distance of a pixel to
the nearest point on the line. Now, considering the normal nli of a plane li obtained
using the cross product of two vanishing directions vp and vq . The per-pixel distance
likelihood map for the surface normal nli is estimated as:

Dnli =
(δvp + δvq )

2
, (4)

The surface normal term representing the cost of superpixel i taking plane label li is:

EN
i (li) = median

(
Dnli

(
pi
))
, (5)

where pi represents all the pixels within superpixel i.

Monocular constraints (Ψ). The monocular constraints for each superpixel i, Ψ(i, li)
gives the cost of choosing a plane that leads to an improbable scene. Note that this
depends on the normal of the hypothesized plane. We estimate the position of the hori-
zon [16]. We add a large penalty for a superpixel above the horizon from choosing a
plane with normal pointing upwards and a superpixel below the horizon, choosing a
plane with normal downwards. For the space below the horizon, the penalty linearly
decreases from 1.0 at the horizon to 0.0 at the bottom of the image. In case we fail to
detect the horizon then this penalty is always 1.

Pairwise term We model the pairwise term using the well-known contrast-sensitive
Potts model.

Ei,j (li, lj) = I (li 6= lj) exp(−βdij), (6)

where I (·) is an indicator function that is 1(0) if the input argument is true(false), dij
is the contrast between superpixels i and j and β is a scale parameter.
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Fig. 5: Result of the discrete optimization. The discrete optimization stage assigns the correct
normal, but it fails to distinguish between two parallel planes at different depths splitting the left
wall into two regions (as shown by the two different shades of green) at different depths.

Modeling the contrast term. (dij) The contrast is modeled as,

dij = Oij ∗
(
λS d

S
ij + λC dCij

)
, (7)

The first term (dSij) is the stereo matching term. While the depth from stereo is not ac-

curate it does capture depth discontinuities. We model dSij as |di−dj |
dj

where, di and dj is
the mean disparity of the pixels within superpixel i and j respectively. The neighboring
superpixels with disparity discontinuity are penalized if they take the same plane (and
vice-versa). The second term (dCij) is the normalized score from a coplanar classifier that
captures the contrast between the features of adjacent superpixels [20]. If the coplanar
classifier gives a high score for neighboring superpixels, it is penalized for not taking
the same plane (and vice-versa). In order to handle inaccuracies in the contrast terms
we obtain a soft normalized occlusion map [17]. We weight the pairwise term by the
occlusion map, which intuitively captures the ambiguity of stereo matching algorithms
in case of occlusions and allows label discontinuity across occlusions. The occlusion
weight Oij between superpixels i and j is given by the maximum occlusion confidence
along the boundary between the two superpixels. λS and λC are regularization param-
eters that are manually tuned by observing the result on one stereo pair but are constant
across all the datasets. In practice, equal weights gave good results on all stereo pairs.

Given the unary term and the pairwise term, we use graph-cuts with α-expansion
to compute the MAP labels, using the implementation provided by Bagon [2] and
Boykov et. al. [5, 6, 18]. The result on our sample stereo pair is shown in Fig 5.

3.2 Continuous optimization

The discrete optimization helps quantize the 3D space into meaningful planes that al-
low us to obtain a geometrically pleasing reconstruction. With a single stereo pair, the
lack of parallax results in errors in the reconstruction; for example, it does not help dis-
tinguish between parallel planes at different depths (Fig 5). We counter this problem by
again using monocular cues, via a continuous optimization. The refinement stage will
try to enforce the monocular constraint that we observe strong edges (or lines) when
two non-coplanar surfaces meet.

Consider the erroneous region shown in Fig 6b. We observe that the two adjacent
planar regions say, πm and πn are segmented in the 2D fairly accurately however, on
projecting the 3D line of intersection onto the image, we observe that the plane estimate
is inaccurate, Fig 6c. We denote the projected line of intersection by the two points
where the line meets the image boundary (xmn,1, ymn,1) and (xmn,2, ymn,2). We fix
the plane normals, and using the 2D edge between the two segments we search the
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(a) (b) (c) (d) (e)
Fig. 6: Continuous optimization: (a) shows the result from discrete optimization; (b) highlights
two regions that after the discrete step are labeled with the correct normals, but incorrect depths
such that they are not connected (at the apparent intersection in the image); (c) shows the 2D
projection of the line of intersection of planes represented by the highlighted regions (in red); (d)
shows the target line of intersection which obeys image cues (in blue); (e) shows the final result,
after the continuous optimization and refining the segmentation.

space of possible lines of intersection using the lines detected in the image. Once we
obtain a target line of intersection defined by (x′mn,1, y

′
mn,1) and (x′mn,2, y

′
mn,2), Fig

6d we optimize the plane parameters by minimizing the error function,

err(πm, πn) = |xmn,1 − x′mn,1| (8)

+ |ymn,1 − y′mn,1|+ |xmn,2 − x′mn,2|+ |ymn,2 − y′mn,2|

The continuous optimization algorithm summarized in Algorithm 1. Fig 6e shows the
final result obtained by refining the segmentation using the new plane parameters.

Algorithm 1 Continuous optimization algorithm
1) Consider each region rm where, m ∈ {1, 2, . . . , N} with plane parameters, πm =
(n̂m, p(0,m))
2) Fix the normal n̂m and optimize for p(0,m)

3) Start from region ri with highest number of non-parallel neighbors say nei(ri) =
nei1, nei2, . . .
Do for each region ri: {

Optimize for the vector of parameters,

p0 = [p(0,i), p(0,nei1), p(0,nei2), . . . ]
′

Constrained continuous optimization - bound the deviation of neighboring planes

argmin
p∗0

∑
j∈nei(ri)

err(πi, πj)

s.t :∀j 6= i, p0,j − γ < p0,j < p0,j + γ

where, γ decides the amount of deviation allowed for the neighboring planes.
}

4 Results and discussions

We perform our experiments on stereo pairs captured using a recent consumer stereo
camera, Fujifilm FinePix 3D W1®, which has a narrow baseline of 77mm (see supple-
mentary material for stereo pairs). Given a stereo pair, we apply our algorithm to ob-
tain the discrete labeling, followed by the continuous optimization to refine the planes.
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Plane labeling 3D rendering from novel viewpoints Synthesized  
depth map 

Stereo pair 

Fig. 7: Results (white=close and black=far for depth maps). Note that while the depth of the
scene is more than 3 - 4 meters, given a single stereo pair of each scene we obtain depth maps
that are geometrically representative. Row 2: while the stereo cues helped infer the porch being in
front of the main facade, it is not strong enough (due to the depth of the scene) to infer the details
of the porch. Row 4: the bench is correctly inferred as a horizontal region above the ground.

Given the 2D labeling and the plane parameters, we back-project to estimate the 3D
position of each pixel. This allows us to synthesize the depth map, as well as render
fly-throughs of the scene. We show the results of the algorithm in Fig 7.

We note the importance of the continuous optimization stage via some statistics.
On an average, the algorithm resulted in eight unique plane labels for each scene in
our dataset of ten stereo pairs. Each of these regions share support from an average
of three non-parallel regions that contributes to refining the structure in the continuous
optimization stage. The average error per region being optimized, computed using (8)
decreased 72%, from 87.1 to 24 pixels as a result of our continuous optimization stage.

4.1 Comparisons

We compare our work, with other possible approaches to obtain the depth map of the
scene with a single stereo pair.

We first compare the depth from stereo matching using [28] against our result in
Fig 3 and note that we perform better. Recent works have shown that we can obtain a
reasonable depth map from a single image with prior trained models [8, 15, 16, 24]. We
show some results in columns 1 and 2 in Fig 8, and compare with our result. While
Saxena et. al. try to enforce a smooth reconstruction without respecting the monocular
geometry, Hoiem et. al. tend to rely on the ground segmentation resulting in inaccurate
cutting and folding; we perform better than depth from a single image, which serves as
a sanity check. While we do not re-implement work by Saxena et. al. [23], we note that
due to the inaccurate depth map we would obtain a smooth reconstruction similar to



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV
#40

ECCV
#40

ECCV-12 submission ID 40 9

column 1 in Fig 8. Multi-view stereo approaches strongly rely on the photo-consistency
constraint, and fails to differentiate between differently oriented planes as as shown
in column 3 in Fig 8. Micusik et. al. [22] encode some normal information using the
spatial structure of the superpixels however without the continuous optimization the
result would be inaccurate Fig 5, which we improve upon.

Fig. 8: Comparison with other approaches.

Qualitative comparison: User study We perform a qualitative comparison of our re-
sult, with single view modeling and multiview stereo via a psycho-visual study using 7
subjects. Each subject was presented results on ten stereo pairs without giving any indi-
cation about which of the three results they were looking at. They were given complete
control to fly through the reconstructed scene and instructed to rank the three results
from 1 (best) to 3 (worst) based on the geometric accuracy of the reconstruction. We
expect the responses to be more consistent with relative ranking because absolute scores
are hard to give, and need calibration across subjects. The average rank for single view
modeling2, multiview stereo and the proposed approach were obtained. The proposed
approach was ranked as the best 69% of the time, more than triple the next best. This
provides strong evidence that indicates the effectiveness of our approach.

5 Conclusions

We propose a unified framework to combine stereo cues with monocular structural pri-
ors to obtain geometrically accurate depth maps using stereo pairs captured in the wild
using consumer stereo cameras. We introduce the idea of using both discrete and con-
tinuous optimization for 3D reasoning. Our approach leverages the use of monocular
cues and exploits the benefits of discrete optimization to obtain a superpixel-to-plane
labeling, followed by continuous optimization for refinement. We show through our
results and comparisons that the proposed approach works well even in presence of ho-
mogeneous surfaces and specularities. The framework we propose can be used with any
existing stereo matching algorithm, and additional monocular cues can easily be added
to the same framework. For example, we can incorporate monocular cues such as depth

2 The subject used the better result between [16] and [24] for ranking.
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from focus as a prior over the depth of different regions of the scene. We will make this
dataset publicly available for further study and exploring consumer stereo pairs.
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