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Abstract 

Geo-tagging is a fast-emerging trend in digital photography and community photo sharing. The 

presence of geographically relevant metadata with images and videos has opened up interesting 

research avenues within the multimedia and computer vision domains.  In this paper, we survey 

geo-tagging related research within the context of multimedia and along three dimensions: 1) 

Modalities in which geographical information can be extracted, 2) Applications that can benefit 

from the use of geographical information, and 3) The interplay between modalities and 

applications. Our survey will introduce research problems and discuss significant approaches. We 

will discuss the nature of different modalities and lay out factors that are expected to govern the 

choices with respect to multimedia and vision applications. Finally, we discuss future research 

directions in this field. 

1. Introduction 

We live in an information age touched by technology in all aspects of our existence, be it work, 

entertainment, travel, or communication. The extent to which information pervades our lives today 

is evident in the growing size of personal and community footprints on the web, ever improving 

modes of communication, and fast evolving internet communities (such as Flickr, Twitter, and 

Facebook) promoting virtual interactions. In some aspects, man has transformed from a social 

being into an e-social being. Images and video constitute a huge proportion of the Web 

information that is being added or exchanged every second. The popularity of digital cameras and 

camera phones has contributed to this explosion of personal and Web multimedia data. To 

motivate our readers, in Fig. 1, we visualize two different profiles of human presence or activity in 

the world; (a) The World at Night, captured aerially at night, where the lit areas represent human 

habitation and activities, and (b) The Photographed World, constructed using 1.2 million Flickr 

pictures, where the bright areas represent density of photographic activity.  

Readers should note that we do not superimpose a world map in Fig. 1 and it is the human eye 

that traces out the continents and coast lines. These boundaries are real in Fig. 1(a) where the Earth 

is viewed aerially but purely virtual in Fig. 1(b). Notice the similarity between the two maps 

making one jump to the conclusion that the more populated regions usually invite greater levels of 

photographic activity. While this is true in general, several pockets of high intensity in the map at 

the bottom suggest differences between inhabitation and picture-taking patterns perhaps in deserts, 

reserves, and national parks that have far more visitors than inhabitants. The former is just one 

example of a useful inference that can be drawn from a large amount of data. It is important to 

point out that mapping of the world pictures (Fig. 1(b)) would not have been possible if it were not 

for the people who geotagged their pictures. Therefore this paper is a tribute to geotagging and is 

devoted to surveying how this phenomenon is changing the face of multimedia research. 

Geotagging or geo-referencing is the process of adding geographical identification metadata to 

various media such as images and videos in websites, blogs, or photo-sharing web-services [2,4]. 

It can help users find a wide variety of location-specific information. For example, one can find 

images taken near a given location by entering latitude and longitude coordinates into a 

geotagging-enabled image search engine or just by clicking on a region in Google Map. 

Geotagging-enabled information services [81] can also potentially be used to find location-based 

news, websites, or other resources. Associating time and place with pictures has always been 

natural for people. In the past, this association was manifested in more tangible forms such as 

writing the date and place where the picture was taken on the back of the print. Geotagging has 

generated a wave of geo-awareness in multimedia repositories and research communities alike12. 

Yahoo Flickr has amassed about 4.7 million images and videos geotagged in the month this paper 

was written3. Flickr allows users to provide geolocation information for their pictures either as 

                                                           
1 http://zonetag.research.yahoo.com 

2 http://tagmaps.research.yahoo.com/ 
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exact or approximate geographical coordinates with the help of a map interface or as 

geographically relevant keywords. Geotagging can also be performed by using a digital camera or 

smart phone equipped with a GPS receiving sensor or by using a digital camera that can 

communicate with a standalone GPS receiver (e.g., through a Bluetooth® link). Photos can also be 

synchronized with a GPS logging device.  

It has become a serious challenge to manage such an overwhelming amount of multimedia data. 

Currently, commercial search engines and Web albums rely on text annotations associated with 

images for indexing and retrieval tasks. Richer and more accurate semantic annotation would 

benefit many applications including image search, sharing, organization, and management [3]. 

Recognizing the need for semantic annotation, the latest version of the Google™ Picasa™ now 

enables users to label images in terms of faces, places, and user-specified tags, as shown in Fig. 2. 

 
 

(a) 

 

 
(b) 

 

Figure 1:  Two iconic views of our world. (a) The World at Night, and (b) The 

Photographed World.   
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In the last several years, an important trend that has been noticed within multimedia 

understanding and computer vision domains is the increased emphasis on modeling and using 

contextual information [23,56,96,100,101]. Contextual modeling often gives an opportunity to 

derive more leverage from data than pixels alone can provide. A few sources of contextual 

information are:  (i) meta-data captured with pictures or videos [56,94], (ii) relationships between 

spatio-temporal segments in multimedia data [56], or (iii) patterns in multimedia collections as a 

whole [11,12,105]. Geographic information has been embraced by multimedia and vision 

researchers within a contextual modeling framework. However, possibilities of modeling and 

extracting value from geographical context are many and vary as will be discussed.  

Figure 3 shows the structure of our paper schematically. In Section 2, we discuss modalities of 

geo-information that have been found valuable in multimedia and vision research. Section 3 forms 

the majority of our discussion and focuses on geotagging driven multimedia applications wherein 

the roles of geo-modalities are implicitly discussed. We would like readers to note that while Fig. 

3 shows a fully connected bi-partite graph between geo-modalities and applications, all links may 

not appear equally weighted in our discussion. We believe that this is justified for two reasons: (a) 

geotagging is relatively new in multimedia domain and the geo-modalities that we discuss in 

Section 2 may not have been fully exploited yet in multimedia applications; (b) all modalities may 

not be suitable for all applications. Section 4 marks the conclusion of our paper and lays out 

certain trends and directions for future research. 

 

2. Geo-Information Modalities in Multimedia Research 

We have seen that GPS co-ordinates allow the possibility of images to be mapped on the globe 

(Fig. 1 (b)). If the globe were to be treated as a rectangular co-ordinate system, inference such as 

assessing the popularity (density of pictures) of picture taking locations or studying location traces 

in collections can be directly performed with GPS co-ordinates for making inferences about 

individual images or image collections as a whole. GPS co-ordinates can also be used as keys into 

other forms of geographic knowledge (from personal, public, specialized, or community sources 

[27]) that can enable finer understanding of images or collections. In literature, we find a variety of 

geographic knowledge spanning a wide spectrum from simplistic to complex, direct to implicit, 

textual to numeric, and individual to aggregate in nature. Here, we attempt to categorize and 

discuss the geographic knowledge sources or modalities based on how they have been used in the 

work that we survey in this paper. In Figure 4, we motivate the readers with some graphical 

visualizations of how geo-modalities are used with respect to certain example applications. We 

will return to the figure in the following subsections. 

2.1. Points of Interest Geographical Databases 

Points of interest (POI) or Geographical Information Systems (GIS) databases provide useful 

geographical knowledge about important landmarks or points of interest. A GIS database typically 

consists of detailed geographical information about places, such as latitude, longitude, country, 

population, and other demographics. Geonames is a GIS database available free of charge and 

 
 

Figure 2:  Personal images are often described in terms of people, places, and events 

(courtesy Google Picasa).  
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contains over 8 million geographical names and associated information collected and compiled 

from multiple sources. The process of querying a POI database given a GPS co-ordinate is known 

as reverse-geocoding. POIs can be used for providing geo-location based services to travelers 

[107], performing intelligent actions based on location demographics [52], summarizing the 

location with nearby points of interest tags to assist image understanding [40] (also depicted in 

Fig. 4(a)), or identifying persons in images [65]. 

Place-names and corresponding demographics, being purely textual or numeric entities, can 

inherently be handled using text or data analysis techniques. At the same time, GIS databases 

contain fairly reliable data collected professionally with serious human effort. Intuitively, reverse 

geocoding through entries in a GIS database should be specific enough to identify the location 

environment and help summarize a location. However, certain limitations to acquiring complete 

semantic knowledge through this process are: (1) A place is represented as a point (e.g., the central 

office in a zoo) in the database without any definition of the actual spatial extent; (2) Multiple 

environments can potentially co-locate in close proximity of each other – such as cemeteries, 

churches, schools etc; (3) GIS databases may miss details such as tennis courts or parking lots 

inside schools or parks. 

2.2. Aerial Image Databases 

Aerial image databases present yet another modality that can be tapped for acquiring and using 

geographical knowledge. Aerial image databases such as Google Earth and Microsoft’s Bird’s Eye 

View have virtually captured the entire globe at varying levels of detail and can reconstruct the 

terrain at user’s will. Such systems combine satellite imagery, aerial photography, and map data to 

make a virtual, interactive template of the world. Besides providing a wonderful virtual flying 

experience through the world, Google Earth also allows users to geotag their personal multimedia 

or view geotagged images and videos taken by others. Aerial images acquired from GoogleTM 

Earth can provide useful cues as to the location environment that can complement multimedia 

understanding systems. Researchers have used machine learning to infer the location environment 

 
 

 

Figure 3: Geo-information modalities and geotagging driven applications in multimedia 

research. 
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from aerial pictures as a key step towards event-activity recognition [57] (Fig. 4(b)). Although not 

an aerial image database, Google Street View is also a comprehensive multimedia resource from 

Google that is quite thorough in its coverage of the US and has been used for making viewing 

directional inference [67].  

The main advantage of employing aerial images to recognize picture-taking environments is 

apparent: free of distraction and influence by the actual event depicted in a ground-photograph (i.e. 

taken at ground level), which is often an adverse factor for computer vision algorithms. In fact, the 

aerial image is practically invariant relative to the current event, weather, and participants. 

However, complete reliance on aerial images can be risky especially for the following reasons: (1) 

Aerial images that capture location structure and environment often require very precise location 

information. Yet geotagging can be noisy because of inaccuracies in GPS sensors or human 

tagging. Errors in GPS co-ordinates can result in a shift in the corresponding aerial image that 

could at times lead to incorrect prediction; (2) Aerial images capture the environment of the 

picture taking location (of the camera) rather than the location depicted in the picture. Therefore 

for scenarios such as shots of far-away objects or scenes, dependence on aerial images can be 

rather misleading.  

2.3. Unstructured Geo-referenced Web Resources 

Websites, news, blogs, wikis, and social networks that contain information with geographic 

bearings can also be useful sources of knowledge for multimedia research. These can provide 

information of extremely diverse nature (in content and modality) contributed by common people 

(non-experts). Information can also be current and conversational about live events or major 

happenings. As an example, the micro-blogging service Twitter now provides a way to geo-tag 

one’s tweets by choice. Generic geotagged information such as tweets can be used to identify, 

gauge, and study community interests and reactions about hot-topics across space and time. Such 

analysis can help facilitate recommendation or prioritization of health services based on socio- and 

spatio-temporal behavior of information with respect to events such as spread of swine-flu [87] 

(Fig. 4(c)) or regional product popularity and political polling [39].  

 
 

Figure 4:  Example applications depicting use of geo-information modalities (a - top left) 

Points of interest geographical databases, (b - top right) Aerial image databases, (c - bottom 

left) Unstructured geo-referenced web resources, and (d - bottom right) Collection of geo-

referenced multimedia. 
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Information from community sources, though vast and diverse, comes with the following 

concerns: (1) Because such sources are constructed, contributed, and moderated by masses they 

are prone to a variety of noise. The verity of knowledge acquired from them cannot be easily 

established. Moreover, the objectivity of knowledge can also become questionable as there may be 

political, regional, communal, or personal biases; (2) Information from such sources is multi-

modal and unstructured. Making the information fit for multimedia research and applications 

would typically require a heavy pre-processing overhead. 

2.4. Collection of Geo-referenced Multimedia 

Collections of geo-referenced images and videos (as opposed to individual pieces of image or 

video data) have proven very useful in multimedia research. Such collections are becoming 

increasingly popular and accessible thanks to photo-sharing services such as Flickr and Google 

Picasaweb that have realized the need to tap into geographical information for search, sharing, and 

visualization of multimedia data. The interesting prospects that community geo-referenced 

multimedia databases present are: (i) The possibility of using brute force simplistic search methods 

for inferencing [31]; (ii) Constructing semantic geographical summaries using visual and meta-

data information [26][61]. Given a geographic location, meaningful labels can be obtained from 

pictures taken in the vicinity of the location [61] (Fig. 4(d)). The sheer volume of data can also 

help build trustworthy models for multimedia understanding [19]. While personal geotagged 

collections are typically small, they present the prospect of leveraging the correlations between 

location and time collectively to assign labels to individual pictures or picture collections at a 

personal scale [11].  

Among the papers that we review in this paper, the current geo-modality is the most abundant. 

While the human-assigned tags to pictures may be considered largely reliable here, certain 

pertinent challenges still persist in the form of: (1) Incorrect or alternate spellings associated with 

certain place-names (e.g., Eifel tower and Eiffel tower are both popular); (2) Inherent polysemy 

and synonymy of words in the English language. 

 

3. Geotagging Driven Applications in Multimedia and Vision Research 

3.1. Semantic Multimedia Understanding – Events, Scenes, and Objects Annotation, 

Organization & Retrieval 

Semantic multimedia understanding is a generic term encompassing a variety of research 

problems. As is evident from the name itself, understanding pertains to semantic interpretation of 

primarily the content of an image or video (sometimes audio and text data are also involved). 

Broadly speaking, semantics in images and video has been the subject of much computer vision 

research in the last decade. In multimedia research, concepts, scenes, or events define a controlled 

set of entities into which the pictures or video at hand can be necessarily classified [11,40]. An 

alternative paradigm, image annotation or tagging allows image labels to be less restrictive, free-

form, unstructured, and hence spawning a larger often user-given vocabulary with polysemy and 

synonymy among words [13]. A related and often co-discussed research issue is that of multimedia 

retrieval since retrieval engines derive their bearings from the picture content itself [5,6,7]. 

Concept, event, scene detection or annotation are all essential to understanding, managing, and 

selectively retrieving images and video from personal collections or large repositories, and hence 

research in retrieval is heavily tied to understanding of semantics [97].  

 

3.1.1 Event/Scene Understanding 

A key form of semantic understanding in the multimedia realm is identification of the type of 

event that the user has captured, such as a birthday party, a baseball game, a concert, and many 

others where pictures and videos are commonly taken. Typically, events such as these are 

recognized by using classifiers that are learned using a set of training images to permit the 

computation of a decision or a probability that a new image of concern is of a certain known event 

type. Here we discuss works that employ geographical context in innovative ways for event and 

scene understanding. 

Geometrical properties of traces put together from locations of pictures from collections can 

encode useful information to describe the event type. In [105], the authors use geographical trace 

information in association with certain informative compositional visual features to detect event 

types such as hiking, skiing, party, etc. Clearly, the inherent information that is tapped here is the 

motion patterns of the photographers and the photographed. Another source of derived knowledge 
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is geographical databases discussed in Section 2.1. In [53], Liu et al. proposed a personalized 

location recognition system that identifies semantic locations such as home, office, friends’ or 

relative’s home or business location using map traces and reverse geo-coding. Points of interest 

summaries were used to find associations between places, picture semantics, and location in [40]. 

The aforementioned work models salient geographical descriptive words or geotags with respect to 

generic event categories such as vacation, beach, hiking, etc. Aerial images, the knowledge 

modality described in Section 2.2, have been employed by Luo et al. in [57] for event recognition. 

The paper illustrates how ground images and the co-located aerial images complement one another 

for event recognition. Another interesting work [104] acknowledges seasonal and geographic 

differences for improved scene understanding. The basic motivation lies in the fact that seasonal 

and geographic information with pictures can help improve region labeling. For example, a white 

region is more likely to be snow in North Eastern US in the winters whereas it is more likely to be 

sand/cloud in Florida all year round. 

While analyzing an image is an indispensible part of the recognition process, patterns mined 

from image collections as a whole can often shed additional light on the events captured in them. 

Earlier we saw the use of image collections for deriving trace information in [105]. In [11], a 

hierarchical image annotation technique is explored for geotagged image collections. The 

distinguishing aspects of the work include incorporating (i) the relationship between collection-

level annotations (events) and picture level annotations (scenes), and (ii) the time-location 

constraints, into the modeling and annotation process. In a similar vein, [12] exploits image 

collection level semantic coherence for labels propagation. An unsupervised engine propagates the 

high confidence labels (obtained with supervised classification) using visual, geographical, and 

temporal similarity between pictures in a collection.  In [76], visual, textual, and spatial 

information has been used to perform object and event mining on a large-scale geotagged image 

collection. The work derives its novelty from linking semantic image clusters to articles in 

Wikipedia and reaffirming cluster assignments using content in Wikipedia pages. 

 

3.1.2 Multimedia Organization, Annotation, and Retrieval 

Semantic organization of multimedia has been one of the priced pursuits of the multimedia 

research community. While complete multimedia semantics is still an open problem in itself [69], 

meaningful semantic organization, in its current scope, usually entails grouping entities based on 

their visual appearance and other attributes. One of the earliest works employing geo-location 

information for image organization was proposed by Naaman et al. in [62]. The cited paper used 

spatial and temporal information to produce location and event hierarchies. Similarly, Pigeau et al. 

employed hierarchical geographical and temporal partitions for image collection management on 

mobile devices [72]. In a more recent work, Ephstein et al. describe an innovative approach that 

uses location and orientation information obtained from multiple cameras to discover 

geographically salient objects [24]. This is followed by a hierarchical organization of scenes or 

views for efficient browsing.  

While research using geotagged images has gathered considerable momentum, geotagged videos 

are still a relatively rare entity. Indexing, organization, and retrieval of videos captured using 

wearable cameras, GPS receivers, and gyroscope was introduced in as early as 2002 in [99]. 

Certain recent papers again focus on geo-referenced videos [5,6,7,46] and employ spatial and 

temporal video properties for ranking and search. Under the experiments described, the cameras 

collecting video data are equipped with GPS sensors and 3D digital compasses. The goal is to 

capture and model the “viewable scenes” or the “fields of view (FOVs)” relative to a location. A 

user typically interacts with the system by specifying a query region using a point, a line, or some 

form of a polygon area on a map. The retrieval process involves (i) performing spatio-temporal 

filtering to get relevant videos, (ii) ranking videos by the overlap of their FOVs with the query 

region. On a similar note, spatial queries using map interface have been used in [22] for story 

retrieval.  

Image annotation or tagging research has also been increasingly focused around geotagging. 

Naturally, annotation models require establishment of structure or association among words or tags 

and hence natural language processing is often necessary. A location dependent pLSA model (LD-

pLSA) was proposed for joint modeling of visual and geographical information in [20]. The model 

attempts to extract two different kinds of latent classes, visual topics and geo-topics (the latter 

influencing the former), underlying the observed data. The work aims to perform a geo-visually 

coherent image categorization automatically using the dual topic modeling approach. Annotation 

of pictures using very large collections of community geo-referenced pictures is vastly becoming 

popular in multimedia research. In [47], a 1.2 million Flickr image collection is used to build a 

geo-profile which is then employed to annotate images. The first step involves prediction of 

geographic co-ordinates of the input image using K-NN approach as in [31] that the user can 
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choose to refine. The geographic location is then used to suggest likely tags in the identified 

location as learned from the image collection. In rhyme with the above work, [61] presents Spirit-

tagger tool that mines tags from geographic and visual information. The sheer volume and 

diversity of geotagged images on the Web have been used to explore and exploit deeper 

correlations between visual features and their annotations using Logistic Canonical Correlation 

Regression (LCCR) in [13].  

 

3.1.3 Social and Cultural Semantics in Multimedia 

Location context has also been shown to assist identification of people in pictures. One of the 

earliest attempts toward using geographical context for face recognition was made in [21]. The 

cited work geographically clusters images with GPS and uses visual, spatial and temporal cues for 

prediction. A similar approach is also explored in [63] where co-occurrence and re-occurrence 

patterns of people with respect to locations and events have been modeled for resolving people 

identities in consumer collections. A content and context based photo management system 

MediAssist [64,65] employs contextual information such as clothing and geographical information 

for person identification. However, the previous work does not handle multiple people in an 

image, a problem that has been explored in detail in [25]. Yanai et al. have given geotagged image 

mining an interesting twist in [102,103] by discovering cultural semantics across different 

geographical regions. The authors visually depict and discuss regional, visual, and semantic 

variations of words like cake, noodles, etc.   

3.2. Geolocation and Landmark Recognition 

It is usually easy for a person to identify the location of an image of a well-known landmark such 

as the Eiffel tower, the Washington Monument, or the Sydney Opera House [75]. Even when an 

image does not contain a well known landmark, there is often enough information in the image for 

a person to identify the region of the world; or at least to take an educated guess at the location of 

the image. For example, printed text in a scene often conveys the local language, which is strongly 

related to position on the globe. Or, the building materials, architecture, and natural features may 

supply clues related to the scene location. In the application category of geolocation recognition, 

the goal is to determine the (unknown) location of an image, video, or series of images. The 

problem can be subdivided into the finer categories of landmark recognition and non-landmark 

location recognition. In either case, collections of geotagged images are employed to help infer the 

location of unknown images. Further features that are exploited include text tags, and sequential 

image captures.  

Because landmarks are just that (i.e. stationary and somewhat unique objects), recognition of 

landmarks is equivalent to determining the location of a test image. However, landmark 

recognition is a subset of the work directed toward determining the location of an image. 

Typically, these algorithms leverage collections geo-located images for training or matching. 

Further, landmark recognition method generally attempt to directly match feature points or 

structures from an unknown image to images having known geolocations.   

Of course, estimating camera geolocation is closely related to the fields of camera calibration 

and bundle adjustment, for example [28], where image features that are visible in two or more 

images of a scene are used to recover both the coordinates of the image features in an external 3D 

coordinate frame and recover the camera parameters (also including the location of each cameras 

in the 3D coordinate frame.) This approach, directed toward 3D reconstruction, is explored, for 

example, in [80][98] and more recently [89]. When this 3D coordinate frame is placed within the 

context of the coordinate system of the Earth, geolocation recognition has been accomplished.  

It should also be noted that many commercially available cameras, especially cameras in cellular 

phones, can determine location of the user by hardware (GPS hardware, or cellular tower 

 

 
 

Figure 5:  The first three scenes are iconic and well-known landmarks (Eiffel tower, 

Washington Monument, and Sydney Opera House) that are relatively easy to geo-locate. The 

other images contain cultural features that only allow for coarse geo-location.  
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proximity). The GPS location can be automatically embedded into the image header. In some 

cases (e.g. with the iPhone), the compass direction of the camera can also be recorded. On one 

hand, these devices provide a method for tagging images with location without analysis of image 

data. However, determining the location of an image from the image data is still an important 

research question for several reasons. First, many images have been or will be captured without 

this hardware-based technology. Second, it is important to know what location information can be 

extracted from the image itself for either ensuring privacy or security.  

 

3.2.1  Landmark recognition with feature point matching 

Early work on determining geolocation from matching regions across multiple images was 

performed for the “Where am I?” contest at ICCV 2005 [91], where a series of geotagged images 

were presented to an algorithm for training. The task was to determine the GPS coordinates of 

each test image, all of which contained at least some overlap with a training image. The winning 

approach [106] (and indeed also the runners up) implemented a framework where interest points 

are found in all images. The interest points (such as SIFT [55], SURF [9], or MSER [60]) from a 

test image are matched to interest points in one or more training set images. In [106], the location 

estimate is further refined using a triangulation procedure based on planar homographies to the top 

image matches.  

Schindler et al. [82] extends this work to investigate the use of large vocabulary trees for finding 

the location of query image by matching to a training set of 30,000 images. A vocabulary tree is 

used to organize the large number of detected interest points by hierarchically clustering the data 

points at each level of a tree. To efficiently find matches, at each level the tree’s nodes are 

compared to the SIFT features of the query image to find the closest matches.  In this work, the 

tree has a large number of nodes (106) and during construction, information gain is used to select 

visual words that are informative about a particular location.  

Interest point-based approaches are extended to large scale recognition of many tourist 

landmarks in [51,110]. In [110], blogs (Wikitravel) and geotagged images from the Internet are 

mined to establish a list of 5312 tourist landmarks that are recognized with nearest neighbor. In 

[51], a set of 500 landmarks are discovered from Flickr images, and recognition is performed with 

a structured SVM.   

Landmark recognition can also incorporate the 3D information related to the landmark itself. In 

[50], a landmark recognition algorithm is described where recognition is performed by first finding 

a set of candidate matches (to a set of automatically discovered iconic images that represent each 

landmark) to a test image using either interest points or GIST [66]. Next, each candidate receives a 

score (the number of inlying interest points between a two-view transformation) that is based on a 

geometric verification between the candidate and the test image. Then, the top scoring image is 

used to determine the landmark classification of the test image. Although tested on only a small 

number of landmarks, the improvement produced by the geometric verification is startling, and is 

present for either feature type. 

One difficulty of using interest point matching in recognition is that in urban environments, 

structures tend to repeat many times on one or multiple surfaces. This results from the repetitive 

nature of building facades (e.g. the same window often covers an entire façade). Therefore, 

matching a single interest point from a query image does not necessarily pinpoint the location of 

the camera. In [83], the repeating nature of building facades is exploited by detecting the façade 

lattice and matching the lattice rather than individual points. This allows for the further benefit of 

recovering camera pose, so location, compass heading and tilt are all recovered.  In other 

scenarios, the location of a single image or set of images can be estimated with surprising 

accuracy. 

 

3.2.2 Non-landmark location recognition  

Several interesting approaches have been devised to perform non-landmark location recognition. 

In this problem, a training dataset cannot be relied on to contain an exact match to a particular 

image. In [31], a method is presented for finding a probability distribution on the globe for the 

location of an unknown image. The idea is to use a data-driven scene matching approach. An 

image is summarized with typical scene descriptors (e.g. color histograms, GIST [66], texton 

histograms) and compared to a dataset of over 6 million GPS-tagged images. The approach is able 

to estimate the locations of images of non-distinct European alleys, tropical beaches, and African 

savannah scenes not by finding exact feature point correspondence, but rather by summarizing the 

likelihood that such an image could be captured in a particular part of the world. In essence, the 

training dataset is used to represent the general appearance (e.g. the color, the amount of 

vegetation, the type of architecture) of different locations. Surprisingly, the estimated location is 

correct to within 200 km about 16% of the time. This work was extended in [26,41,84] by also 
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considering text tags associated with the images to improve performance.  In another extension 

[42], a sequence of images from the same photographer is used along with a model that represents 

traveling from one location to the next in a given time interval. By jointly geo-locating the series 

of images, performance is further improved. Note that a similar result was achieved for landmark 

recognition in [51].  

 

3.2.3  Location recognition from stationary cameras 

A creative approach was used to solve the geolocation estimation problem by using an image 

series from a stationary web camera [35]. Rather than relying on the scene content itself, their 

method exploits knowledge of solar geometry to correlate the patterns of daylight an night in the 

images from a web camera to determine the location of the camera on the globe. Most cameras are 

geo-located to within 50 miles of the actual location. A variant of this approach is described in 

[92], where the sun’s position is recovered by observing its photometric effect (i.e. color changes) 

and on the scene. When the image capture time is known, this provides both geo-location and geo-

orientation without requiring the sun to be in the camera’s field of view. 

3.3. Media Visualization 

With the availability of associated geotags, photos and other media can be visualized in a whole 

new dimension by location. This can be accomplished in a number of ways, including visual 

summary of media collections, visual summary of landmarks, visualization of travel trajectories 

and routes, visualization of tourism and life patterns, as well as more sophisticated visualization in 

terms of viewing directions and 3D experiences.  While most of the visualization is geared towards 

tourism, it can also benefit visual recognition and other applications.  

 

3.3.1 Visual summary of collections 

Torniai et al. [93] propose an early system to provide a new browsing experience of photo 

collections based on location and image header metadata. For a large collection of geo-referenced 

photographs, Jaffe et al. [36] develop a framework for automatically selecting a summary set of 

photos, because such large collections would require making summaries in order to be rendered 

accessible. Their summary algorithm is based on spatial patterns in photo sets, textual-topical 

patterns, and user (photographer) identity cues. In addition, they present a modified version called 

Tag Maps, which serves as a basis for a new map-based visualization of large collections of geo-

referenced photos. In essence, the Tag Maps visualize the data by placing highly representative 

textual tags on relevant map locations, providing an idea of the location distribution of important 

concepts embodied in the collection. 

 

3.3.2 Visual summary of landmarks 

In a broader context, a series of work has been reported on generating visual summaries of 

landmarks using geotagged photos on the web. In [44,45], Kennedy et al. use the bag of visual 

words approach to generate diverse and representative images, or a visual summary, of a location 

based on geotagged community images. More recently, Chen et al. [17] further generate a tourist 

map by automatically identifying popular points of interest (POIs) from community photo 

collections, and rendering the representative landmark icons based on importance. At a larger 

scale, Crandall et al. [19] use a dataset of about 35 million images collected from Flickr. Their 

system combines content analysis based on text tags and image data with structural analysis based 

on geospatial data. They exploit the interplay between this structure and the content, using 

classification methods to predict landmark locations from visual, textual and temporal features of 

the photos. They were able to discover and display various interesting properties about popular 

cities and landmarks at a global scale. Ji et al. [37] use an alternative resource of blogs to mine 

popular city landmarks for personalized tourist suggestions. The main idea is a graph modeling 

framework to discover city landmarks by mining blog photo correlations with community 

supervision.  More interestingly, they also investigate how city popularities, user locations, and 

sequential events (e.g. Olympic Games) influence their Landmark discovery results and the tourist 

suggestions. 

 

3.3.3 Visualization with camera viewing directions 

As discussed in Section 3.1, recent research results have shown that the additional GPS 

information helps visual recognition for geotagged photos by providing location context. 

However, the current GPS data only identifies the camera location, leaving the viewing direction 

uncertain. Even with a digital compass, the recorded camera direction may still be inaccurate 

(Nokia Challenge: http://comminfo.rutgers.edu/conferences/mmchallenge/2010/02/10/nokia-
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challenge/). For a given geo-location, many photos with view directions not pointing to the desired 

regions are typically returned through location-based search. To address this problem, a method is 

presented in [59] to estimate the viewing directions of photos and furthermore obtain the camera 

pose in 2D referenced on the Google Maps using the geographic metadata of photos. The main 

idea is to first generate subsets of images from a large number of photos taken near a place, and 

then reconstruct the scene expressed by those subsets using a normalized 8-point algorithm to 

estimate the camera rotation and translation. In particular, this system extracts SIFT features of all 

photos in the database, indexing them using the KD-tree algorithm. Given a query example of an 

underlying scene, a set of matched photos of a place are found from the database using SIFT Flow. 

Finally, after registering the photos by viewing directions, the photos with view directions pointing 

to the user-indicated region are returned by the system called ViewFocus [58]. More recently, to 

produce more precise location information, including the viewing direction, for a single geotagged 

photo, Park et al. utilize both Google Street View and Google Earth satellite images [67]. Their 

system is two-pronged: 1) visual matching between a user photo and any available street views in 

the vicinity determines the viewing direction, and 2) when only an overhead satellite view is 

available, near-orthogonal view matching between the user photo and corresponding overhead 

satellite imagery estimates the viewing direction. A related camera pose estimating system based 

on 2D building outline maps is described in [15], as well as another system that relies on vanishing 

points [48]. 

 

3.3.4 Visualization of travel trajectories and routes 

GPS data can help visualize locations related to media. Moreover, the trajectories or traces formed 

by connecting a sequence of GPS locations can help visualize people’s movements (sometimes as 

they capture images and videos) [16, 70], and are further useful for inferring high-level activities. 

To remove the uncertainty or noise in the GPS trajectories due to GPS errors, Pelekis et al. [71] 

developed a method for clustering trajectories of moving objects and then computing the centroid 

trajectory of a group of movements. In [52], a typical trace consists of approximately one GPS 

reading per second. A GPS trace is segmented to generate a discrete sequence of activity nodes, 

each of which represents a set of consecutive GPS readings that are within a certain area. 

Subsequently, one can extract a person’s activities and significant places from traces of GPS data.  

Also using GPS log data, Zheng et al. [109] perform data mining to discover interesting locations 

and travel sequences from GPS trajectories of many users. In a similar vein but using only sparse 

(as opposed to continuous) GPS traces formed from the GPS locations of a relatively small 

number of geotagged photos, Yuan et al. [105] show that even such GPS traces are useful for 

characterizing the underlying movement patterns of various event and activity types. They further 

derive informative features from a discrete sequence of GPS coordinates and a bag of visual 

words, both based on the entire collection as opposed to individual photos, for improved event 

recognition.  

 

3.3.5 Visualization for Photo Tourism 

In a series of ground breaking work [85,86,88,89,90], Snavenly et al. developed a system 

commonly referred to as Photo Tourism. It is a system for browsing large collections of 

photographs in 3D. Their approach takes as input large collections of images from either personal 

photo collections or Internet photo sharing sites, and automatically computes each photo's 

viewpoint and a sparse 3D model of the scene using robust SIFT features. Upon scene 

reconstruction, their photo explorer interface enables a viewer to interactively move about the 3D 

space by seamlessly transitioning between photographs, based on user control. More recently [1], 

they have scaled up the algorithms behind Photo Tourism using a parallel distributed matching 

system to work on an entire city with a million or more images. Such large scale data collection 

represents an increasingly complete photographic record of the city, capturing every popular site, 

facade, interior, fountain, sculpture, painting, cafe, and so on. Therefore it becomes possible to 

richly (and virtually) reconstruct, explore and study the three dimensional shape of the city. In a 

related work [43], the same research group also investigates ways to align 3D Point Clouds to 

overhead satellite images. At a personal level, to help people relive their travel experience they had 

recorded in photos, Hsieh et al. [34] present a system called Photo Navigator to enhance photo 

browsing experience by creating a new browsing style with a realistic feel to users as being into 

the scenes and taking a trip back in time to revisit the place. This system is characterized by two 

main features. First, it reveals the spatial relations among photos and offers a strong sense of space 

by allowing users to fly into the scenes. Second, it is fully automatic and makes easy for users to 

utilize the 3D technologies that are traditionally complex to manipulate.  
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3.4. Service/Product Recommendation 

Geo-tagged media such as image, video and blogs often reveal important information for many 

location-based service or products. For instance, people can select their vacation destinations 

based on web images and travelogues. They can also be prompted of local events or attractions 

based on their current locations and interests. Research works in this direction share a general goal 

of mining the user generated contents for geo-services, which needs to overcome many challenges 

such as noisy content, location ambiguity, and semantic gap. The subjects of the research work in 

this area can be further categorized into four groups: (1) real-time recommendation delivery, 

recommendation inference via (2) geo-tagged images (3) travelogues and (4) GPS trajectories, 

which is discussed in detail in the following subsections. 

 

3.4.1 Real-time recommendation delivery 

Early works in this area focus on the software infrastructure of integrating location sensing and 

recommendation delivery, where the recommendation is assumed to be stored in or automatically 

generated from an existing database. For example, Chen et al. study the integration of location-

aware services from a software system perspective in [18]. They design a location operation 

reference model (LORE) as a middleware to support many location-related services and operations 

such as location data capture and fusion, location tracking and notification (as in [54]). 

Interestingly, they also spend considerate effort on implementing control mechanism for privacy, 

security and management issue of client location data, which has not been widely studied by other 

work in the literature. In another work, Hinze et al. make a notable contribution of considering 

user profiles and query histories in order to extract personalized tourism information [33]. They 

also note that privacy issues in leveraging user profiles pose challenges and should receive 

significant attention.  

 

3.4.2 Travelogue mining 

Many online communities and blogs contain travelogues that provide first-hand user comments on 

tourism attractions, activities and even costs. Pioneering research work in this area has been 

conducted by a group of researchers in Microsoft Research Asia. They demonstrate a travel 

recommendation system called “TravelScope” in [29]. It collects and analyses over 20000 

travelogues on the web to first identify cultural and natural attractions. For each attraction, it can 

further extract the representative views that include associated popular tags and photos. When user 

selects/clicks on a picture or tag, the system also displays the original travelogues that mentioned 

them to provide more detailed information. The authors also introduce a method to detect the 

attractions. It uses a generative framework to model the latent topics that governs the distribution 

of words in travelogues associated with different locations. Different from well-known techniques 

such as PLSA, the authors divide the topics into two categories: global and local. The paper 

defines the global concepts, such as taxi and airport, as shared by most locations and the local ones 

such as beach as specific to only a subset of locations. To extract local topics, mutual information 

is further adopted to model the correlation between local topics and locations. Finally, the tags 

generated by the local topics along with the location names are used to retrieve the representative 

images for different locations. More recently, in [30], a more comprehensive model is designed to 

model the local and global topics depicted in travelogues. Instead of using bag-of-words as in the 

previous work, it assumes a block of consecutive words, e.g. words in paragraphs and sentences, 

share the same location and topic assignment. Fitting such a model allows the estimation of local 

topic distribution for each location and query words. Therefore, the similarity between location 

and query words can be evaluated in the local topic space that is relevant to attraction 

recommendation tasks. In addition, new methods for discovering representative words are 

designed using the learned distribution of location and words.  

 

3.4.3 Geo-tagged image mining 

Thanks to advocating by commercial web services such as Yahoo Flickr and Google Picasa, geo-

tagged images are arguably the most popular geo-tagged multimedia format and attract a lot of 

attention from the research community.  

Recommending tourism locations from large-scale geo-tagged image database is investigated by 

Cao et al. [14]. They match user-provided images or tags with the representative ones from the 

image database, which naturally requires efficient clustering of the images. To achieve that goal, a 

new flat kernel is designed to measure the similarity of 2-D coordinate vectors. The representative 

images are selected from individual clusters using affinity propagation. Human evaluation of the 

recommendation accuracy demonstrates the feasibility of the proposed method. To mine 

representative landmarks and produce personalized tourism recommendations, Ji et al. [37] model 
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the relationship of scene/landmark, scene and authorship as a graph and adopt two popular link 

analysis methods, PageRank and HITS. They specifically design a method to extract tourism 

information from millions of travel blogs on the web. It is worth mentioning that on these blogs 

the photos are not explicitly geo-tagged as in photo-sharing websites. However, the relationship 

between photos and locations can still be inferred by matching image titles and surrounding text 

with a gazetteer. For a certain landmark, the representative photo is selected using a PhotoRank 

method, which extends the well-known PageRank method by weighting the visual and text words 

based on their importance. To extract the landmarks in cities, the authors integrate authorship with 

photo and scene similarity in a HITS model.  

Although most of the geo-related research focuses on outdoor images, indoor geo-tagged images 

may also carry important location information. Paucher et al. [68] leverage geo-tagged indoor 

images along with the accelerometer and magnetometer on cell phone to realize augmented reality 

on mobile devices. They use GPS to locate the rough location of a user in an indoor environment 

where sample images have been extracted. By matching the user captured images with the 

exemplars, the pose that is initially estimated by the accelerometer and magnetometer can be 

significantly refined. It is worth mentioning that their algorithm requires minimal computational 

power and can run on the mobile phones. 

Different from the above mentioned works that analyze the visual content of geo-tagged images 

for tourist suggestion, Popescu et al. [73,74] leverage only the context information. It aims at 

mining the geo-tagged images to find visiting time needed for popular attractions. Comparing with 

the visit time recorded by real users, the inferred time is considered relatively reliable. Similarly, 

Rattenbury et al. show that analyzing only the flickr tags can discover two important semantics: 

“event” and “place” [77,78]. They define the event tags as having significant temporal patterns and 

place tags as having significant spatial patterns. After analyzing the location and time metadata 

available in geo-tagged images on Flickr, the authors were able to detect the temporal and spatial 

patterns and categorizing the relevant tags with reasonable accuracy. 

 

3.4.4  Geo-trajectory mining 

With the increasing popularity of geo-enabled devices, it is possible to record user’s travel 

experience with precise GPS coordinates. It is desirable to recommend suitable locations and 

activities based on user interest and the wisdom of the community. Zheng et al. [109] pioneer the 

research on analyzing tourists’ GPS trajectories and finding interesting locations and visiting 

sequences. Their work starts with clustering the locations in a hierarchical order so that tourism 

recommendation can be conducted at different scales. First, the users and locations are connected 

by the visit activities in the trajectories. Then, they propose to use HITS-based method to calculate 

the hub and authority scores for users and locations, respectively. Combining these two scores can 

further rank the visit sequences in the GPS trajectories. Zheng et al. [107] extend this work to 

tackle the problem of suggest popular locations/query for the activities/locations of user query. 

Interest regions are also clustered from the user trajectories and the corresponding activities can be 

extracted from user comments. However, the big problem is that such correspondence is sparse. 

The authors propose to first extract more information about the interest regions and activities 

correlations by mining related web-pages. Then, the enriched information is fused together by 

factorizing the correspondence matrix into the product of two low-rank matrixes. In another 

extension, Zheng et al. [108] introduce a social networking service, called GeoLife, through 

understanding trajectories, locations and users, as well as the correlation between users and 

locations. GeoLife allows sharing life experiences based on GPS trajectories; popular travel 

recommendations based on travel sequences and travel experts in a given region, and finally 

personalized friend and location recommendation.  

In many applications, the geo-related information is stored in the form of GPS coordinates or 

precise street address. However, the semantic meaning of the location to a user, e.g. home, office, 

interested restaurant, is still unclear. Liu et al. [53] propose a method to extract such information 

from GPS trajectories and extensive metadata that include user calendar, address book, phone call 

list and user feedback. After analyzing the outdoor GPS trajectories of a user, it first finds the 

important locations where user stays for longer than a pre-defined threshold. To extract the 

semantic meaning of these locations, reverse geo-coding is applied to obtain a set of business 

names for the GPS coordinates or street addresses. A rule-based matching method is further 

developed to predict the semantic location type based on user profile information such as calendar 

and phone call history. It is clear that research work on geographical recommendation prospered in 

the past decades. It is reasonable to expect it will attract even more attention due to the increasing 

popularity of GPS-enabled phones. 
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3.5. Social Networking Applications 

Recent years witness an explosive growth of social network services. Popular websites such as 

Facebook and Twitter attract millions of user. The user profiles often contain significant 

geographic information that can be leveraged to understand their social activities.  

Sakaki et al. [79] propose to mine user tweets and discover the time and location information 

related to certain event such as earthquake and typhoon. They model the users as social sensors 

and their tweets related to the interested events as noisy responses. Two methods based on Karman 

filter and particle filter produces fairly reasonable estimation of the location of earthquakes and 

trajectory of typhoons. Backstrom et al. [8] investigate the relationship of social connections and 

geography. They find that friends who live close to each other are more likely to have more 

interactions in online social network communities. Based on that observation, they propose a 

probabilistic method to estimate the location of a user based on the public location information 

from his/her friends. Further study indicates that iterative updates of the users’ locations produce 

more prediction accuracy.  

Geography information of users’ residency and the multimedia content that they published 

online can jointly discover many events in spatial and temporal domain. Singh et al. [87] consider 

user’s twitter and Flickr uploads as responses from “human sensors” across the globe. By 

aggregating such responses to certain event/query, they obtain visualization of event awareness 

called “social pixels”. Systematic query algebra is further developed to efficiently mining the 

social pixels without understanding every details of the aggregation process. Experiments suggest 

it can effectively visualize the propagation of social events, such as swine flu, in the social world.  

3.6. Mapping Applications 

The history of using images for gathering data about our surroundings is indeed a rich one. In the 

1850s, Gaspar Felix Tourachon (pseudoname Félix Nadar) of France was credited with being the 

first person to take aerial photographs, and was granted a patent teaching aerial photography.  

Shortly after cameras became airborne, people began to use cameras for the purpose of mapping. 

Early use of aerial cameras included military tactics where military operations were planned based 

on the positions of enemy troops. Technological developments in both flight and photography 

allowed for steady advances in aerial photography and mapping.  

For the purposes of this survey, we are interested in approaches where images are used in an 

automated fashion to produce maps that indicate the position of either manmade (e.g. roads, 

buildings, cities) or natural (lakes, rivers, mountains) features.  In a broad sense, these applications 

show “what is where” from images. In order for distances on an image to correspond with actual 

distances in the world, the image must be rectified so that there is no perspective distortion. The 

image must correspond to an orthographic perspective of the earth’s surface.  Images with this 

quality are called orthophotos, and are produced either with specialized. In many cases, the images 

capture information in spectral ranges beyond the human visual system sensitivity. Algorithms 

have been developed to automatically map roads, buildings, parking lots, and other natural features 

from airborne or satellite images [10][38][95][32]. There is a huge volume of work in this area, 

and the referenced works should be considered as representative of the field.  

Such mapping applications can also employ images captured at ground level. For example, [20] 

shows that many geo-located images can be clustered by considering both spatial proximity and 

image similarity to produce segments on a map that look something like political states or 

countries. In recent work, [49] show that collections of geotagged images from Flickr can be used 

to produce land usage maps. For example, if a specific location contains images with many green 

pixels, then it is likely to be an undeveloped area.  

4. Conclusions and Future Research Directions 

In this paper, we have surveyed over 100 geo-tagging related research papers within the context of 

multimedia and computer vision. Our discussions encompassed major modalities of geographical 

information, as well as major geotagging driven applications.  

We now summarize several marked trends across the field with future research directions. We 

categorized the sources of geographic information coarsely as point-of-interest databases, aerial 

and satellite images, geotagged images, and general geo-referenced multimedia. Certainly, with 

the availability of the Internet, GPS devices, and smart phones, the proliferation and availability of 

geotagged media will continue to expand. The applications of geographic information in 

conjunction with multimedia are numerous, but can be roughly categorized as location recognition, 

object or event recognition, visualization, recommendation, social networking, and mapping. More 

generally, many of the applications are directed at helping a computer understand one or more 
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images, based on known relationships that record which objects are likely to be where in the 

world. Other applications consolidate a large-scale dataset of geo-tagged information to produce 

maps that indicate where things are in the world. We expect future geotagging-driven research and 

applications to develop in several directions, including dealing with large-scale data, fusion of 

multi-modality information, links to social media, as well as 3D, augmented and immersive 

experiences.  
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