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Abstract—Imaging systems have incorporated numerous tech-
nological innovations such as 3D television and handheld devices.
Despite these advances, these techniques still require the human
eyes to refocus until the sense of depth perception is achieved
by the observer. The more time this takes, the more eye muscles
become fatigued and the brain tires from confusion. However,
the exact intricacies involved are far more complex. To alleviate
these problems, we introduce a learning framework that aims
to improve the quality of stereo images. Instead of attempting
to cover all factors that affect the quality of stereo images, such
as image resolution, monitor response, viewing glass response,
viewing conditions, viewer differences, and compression artifacts,
we first introduce a set of universally relevant geometric stereo
features for anaglyph image analysis based on feature point
correspondence across color channels. We then build a regression
model that effectively captures the relationship between the stereo
features and the quality of stereo images and show that the model
performs on par with the average human judge in our study.
Finally, we demonstrate the value of the proposed quality model
in two proposed applications where it is used to help enhance
the quality of stereo images and also to extract stereo key frames
from a captured 2D video.

Index Terms—3D, Quality, Improvement, Stereo Keyframe.

I. INTRODUCTION

IN the first half of the 19th century, not many years after the
dawn of photography, imaging systems began to capture

scenes in stereo. The human viewer perceives depth when
each eye perceives a scene from a slightly different viewpoint,
corresponding to human physiology (i.e., the arrangement of
the eyes on the face). A number of different systems (e.g.,
anaglyph images, stereoscopes, and, recently, shutter glasses
and displays) have been proposed so that each eye receives its
intended view.

While many problems related to stereo capture have been
studied by researchers (e.g., stereo correspondence [29]), there
are some areas of stereo image processing that have yet to
receive much attention. This paper addresses one such topic:
the automatic assessment of stereo image quality. Figure 1
illustrates the overview of this research. For an input 3D
image, we intend to extract a set of features, mostly related to
geometry and useful for characterizing the quality of the input
stereo image. Next, we explore a regression model that can
capture the connection between the quality ratings of stereo
images and the extracted features in order to derive a model
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Fig. 1. Overview of the paper: (a) Training images. (b) Human input is
collected and features are computed for the training images. (c) The regression
model is trained and its performance is measured. (d) Input stereo image. (e)
Extracted features for input stereo image (d) are input to the trained regression
model. (f) Stereo quality of (d) is estimated. (g) Novel applications using (e)
and (f) to improve the stereo image quality and to extract good 3D frame
pairs from 2D video.

or metric for stereo image quality. Such a model can then
find use in many applications that involve 3D images, such as
stereo image enhancement.

In our work, we analyze anaglyph images to determine
geometric stereo features and show their relationship to stereo
image quality. The stereo image quality is a characteristic of
an image that measures the quality of the perceived depth
of the scene in the image. The geometric features should
capture characteristics of the geometry of stereo cameras such
as viewing angle and length of baseline between the two
cameras. Although many other factors are in fact important to
stereo image quality perception, these geometric features are
expected to be universally relevant regardless of the viewing
conditions. These features and a quality metric that is built
upon them can be used for applications that require a ranking
of stereo images by quality, or for improving the quality of
stereo images. While our study currently focuses on stereo
images in the form of anaglyphs due to its simplicity and low
cost, we believe that our contributions will extend to other
stereo image presentation methods (e.g., lenticular imagery
or shutter glasses) because the model is built on universally
relevant geometric features. We are also encouraged that the
model can, to some extent, tolerate various viewing conditions
(this will become more clear later).

Our main contributions are the following:

• We introduce a set of geometric stereo features for
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measuring anaglyph image quality based on feature point
correspondence across color channels.

• We produce a regression model that captures the rela-
tionship between the stereo features and the quality of
anaglyph images.

• We present two proposed applications where the regres-
sion model proves instrumental.

In Section II, we review related work. In Section III, we
define a four-level rating scale of stereo image quality. We
then describe how we collect a stereo image dataset for our
study, and the procedures for collecting human ratings as
ground truth. In Section IV, we introduce a set of geometric
features and describe the training and testing procedures for
the proposed regression model of stereo image quality (Section
III-A). After we evaluate the effectiveness of the regression
model in comparison with human judges at the end of Section
IV, we present two applications to demonstrate the promise
of the model in Section V. Finally, we conclude the paper in
Section VI.

II. RELATED WORK

This work relates to the fields of assessing and improving
stereo image quality based on geometric features that capture
characteristics of geometry of stereo cameras such as viewing
angle and length of baseline between the two cameras. As
such, various aspects of this work have been explored in
different but related contexts. In the area of automatically
assessing image aesthetic quality, there has been work to
distinguish between amateur and professional photographers
[18] as well as to rate the quality of the photo [7], [21], [35].
In general, these works extract low-level features from single
images and use ratings gathered from the Internet. A recent
approach uses high-level attributes to estimate image aesthetics
[8]. However, these computational approaches do not consider
the direct estimation of the quality of stereo images from
analysis of the image content.

There is a great deal of research devoted to the analysis of
stereo (or multi-view) captures of a scene. We refer the reader
to [29] for a description of algorithms in this area. In general,
this line of work is devoted to processing multiple images
of a scene to compute either dense or sparse depth. Many
of our features are inspired by the work in this area, but we
use these features for a new purpose: determining the quality
of a stereo image. In one particularly related work, [10] uses
stereo analysis between channels of an image to determine if
the image is a stereo anaglyph or not. In this work, we tackle
the problem as more than a binary classification problem by
estimating the quality of a stereo image, and then using this
estimate to improve the stereo quality.

In the psychophysics of stereo images, researchers have
investigated the impact of various modifications to images
in a stereo pair on the overall quality or depth perceived
by a viewer [2], [14]. For example, the effect of wavelet
coding on stereo perception is investigated in [5]. Further,
the effect on the quality of a stereo pair by filtering one
image of a stereo pair is smaller than filtering both images
[3], [34]. Seuntiëns et al. [31] have investigated the impact

of noise level on “viewing experience” and “naturalness” of
3D images. The finding in the work of Seuntiëns et al. [31]
is that there is a significant difference in the assessment of
2D and 3D images. Solh and AlReigb [32] investigated effect
of photometric and geometric distortion on the multi-camera
image quality. The geometric distortion described in [32] is 2D
perspective distortion simulating 3D distortion. However, our
proposed geometric feature is one that enables the estimation
of stereo camera configuration such as viewing angles and
length of baseline between two cameras.

In another line of work, researchers have described tech-
niques to enhance 2D image appearance using algorithms to
modify attributes such as contrast, sharpness, and crop window
[17], [22]. In processing stereo images to produce anaglyphs,
researchers have found ways to improve the subjective appear-
ance, such as by registering the images [13]. An automatic
algorithm is presented in [25] to reduce eye strain in real
stereoscopic images and sequences through horizontal image
translation and corresponding image cropping, based on a
statistical description of the estimated disparity within a stereo
image pair. In [26] the mismatch between accommodation
(focus) and convergence (fixation distance) in 3D displays is
discussed, along with ways to remedy the problem. Lang et
al. [20] address the problem of remapping the disparity ranges
of stereoscopic images and video to remedy eye strain. Our
work is intended to extend or complement these ideas into the
realm of stereo image processing, with the ultimate goal to
produce the most pleasing stereo anaglyph images.
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Fig. 2. Thirteen research scientists and technicians who had experience in
assessing 2D and video quality in Kodak Research Laboratories and the other
six non-experts participated in the rating. All of the participants had normal
stereopsis for evaluations of static 3D images.

III. STEREO QUALITY RATINGS BY HUMANS

Assessing the objective quality of (2D and 3D) images
with human input is still a somewhat open problem. The
perception of quality is affected by the viewing environment
(including display and illumination), image size, and even
factors inherently associated with the human observer such
as fatigue, color blindness, or visual acuity [19]. Designing
a viewing experiment that controls each of these factors in a
deterministic manner is an expensive endeavor. The situation
is further complicated in stereo viewing scenarios, where
perception of various depths depends on the viewer, and
factors such as the mismatch between the focal plane of the
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image and the plane of the display and stereo convergence (the
distance at which convergence occurs) [12].

Rather than explicitly controlling each of these factors,
recent work on 2D image quality prediction has relied on
gathering input from many people (including through the
Internet). For example, quality ratings were gathered from
photo.net [7], dpchallenge.com [18], and solicited from Ama-
zon Mechanical Turk [21]. As there are no standard datasets
that have corresponding subjective quality ratings, we need
to gather subjective quality ratings related to the perception
of depth in anaglyph images. Standards have been suggested
for assessing the subjective quality of stereo images [14], but
again, these standards generally require dedicated lab space
that cannot be deployed easily to the uncontrolled displays that
a typical user may use to view anaglyph images. In addition,
using a dedicated lab space for the experiments makes adding
additional images at a later time more difficult than with
our approach of performing the evaluations on the users own
display.

Instead, we take a practical approach similar to the recent
work on 2D quality prediction, and ask volunteers to rate the
quality in the perceived depth in a set of stereo images on their
own computer display. As in the case of 2D image quality
assessment and prediction, we find that the human input we
gather is useful for the task of 3D image quality prediction,
despite the fact that we do not explicitly control all of the
factors that could conceivably affect 3D perception.

In this Section, we describe our efforts to gather human
rating input on the perceived quality of anaglyph stereo
images. Such human input serves as the training and testing
data for our quality assessment model.

A. Images

A total 4500 anaglyph images were gathered from a number
of sources, including:

• using a query for “anaglyph images” from flickr.com.
Note that for these images, we have only the composite
anaglyph images and not the original left and right stereo
pairs, and we do not know how these images were
actually produced.

• using a stereo Fujifilm FinePix 3D R© camera to capture
stereo pairs and to produce anaglyph images.

• using sequential image capture [6] (i.e., capturing a first
image with a standard single-lens camera, translating the
camera horizontally, and then capturing a second image to
form a stereo pair) and then producing anaglyph images
from the pair.

We then took these 4,500 anaglyph images and first
applied a crude quality classifier to roughly screen the
stereo images. From the resulting crude scores, we selected
400 images such that the images were roughly uniformly
distributed in the crude score space. This sampling is
intended to provide an image dataset that spans the range
from high to low quality and gives us a fairly balanced dataset.

A Crude Quality Classifier: We first train a SVM-based
binary classifier to classify 3D images versus non-3D images.

We use a support vector machine (SVM) with a radial basis
kernel K(xi,xj) = φ(xi)

Tφ(xj) = exp(−γ||xi − xj||2). We
use the same feature, which will be introduced in Section IV.
Training is achieved by minimizing the objective function
given by equation (1) with respect to w, b (support vector)
and ξ (slack variable for non-separable data). For this purpose,
we use the OpenCV Machine Learning toolbox [4].

minw,b,ξ
1
2w

Tw + C
∑N
i=1 ξi

yi(w
Tφ(xi) + b) ≥ 1− ξi , ξi ≥ 0

(1)

The parameters C and γ are iterated on a logarithmic grid
and selected based on a 10-fold cross validation estimate of
error rate given by the ratio of the number of misclassified
samples over the number of test samples.

Training Samples and Training Error: We collect a
dataset that consists of positive stereo pair samples and
negative samples. Positive samples came from: 1) stereo
image pairs from the Middlebury stereo website [29] [30], 2)
stereo image pairs captured using a Fujifilm FinePix 3D R©1,
and 3) (pseudo) image pairs captured by a single-lens camera
with mostly translational (horizontal) movements of static
objects in the scene.

Negative samples came from: 1) image pairs captured by a
single-lens camera that rotates slightly around its optical axis
and 2) image pairs captured by a single-lens camera with slight
vertical movements. The negative samples contain overlapping
image content; however, they do not contain views of the scene
from horizontally translated viewpoints and thus cannot invoke
correct 3D perception for human viewing.

The number of positive and negative samples are 332 and
403, respectively. The 10-fold cross validation estimate of
error rate is 1.54%.

Sampling Procedure: We run the trained classifier on
4500 images and divides 4500 images into four groups
according to the classification result. The first group consists
of images classified as non-3D images. The second, third, and
fourth groups consist of images classified as 3D images and
equally divided into three groups according to the variance
of horizontal optical flow, var(vx). For this purpose, we
compute var(vx) between left and right image pair, then sort
stereo images by the var(vx), and set equally spaced two
thresholds to divide all images classified as 3D images into
three groups.

The higher var(vx) indicates the more structures in different
depths, resulting in better 3D perception, since horizontal op-
tical flow in stereo images originated from parallax and more
variations of the horizontal flow means the more variations
on the depth. Finally, we selected 400 images such that the
images were roughly and uniformly distributed in the crude
score space indicated by four groups.

B. Rating Scale
Our proposed learning-based framework can be used to

learn a regression model that can quantify the quality of

1http://www.fujifilm.com/products/3d/camera/finepix real3dw1/
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(a) level 0 (b) level 1 (c) level 2 (d) level 3

Fig. 3. From left to right, these example anaglyph images are based on human input, from the lowest (level 0) to the highest quality level (level 3).

stereo images by using features related to resolution, color
rendition, motion portrayal, overall quality, sharpness, depth,
depth resolution, depth motion, puppet theatre effect, and
cardboard effect,2 and so on. However, our current goal is to
identify the relationship between the quality of stereo images
and universally relevant geometric stereo features regardless
of the viewing conditions of human observers. Therefore,
design of the rating scale and definition should reflect the
characteristics of geometric stereo features.

Although Section 1 in ITU-R BT.1438 [14] recommends
following ITU-R BT.500 [15] for the conventional factors
such as general picture quality, sharpness, and depth using the
double-stimulus continuous quality scale (DSCQS) method,
this cannot be applied to our case, as there is no reference
image available because the best camera geometry for a given
3D scene is unknown.

We could possibly use the five-scale adjective categorical
judgment methods according to Section 6.1.4.1 in ITU-R
BT.500 [15]. However, our judges encountered difficulties
distinguishing between the five points of the scale during
the design of the study due to the ambiguity and subtlety
of the task. Therefore, justified by Section 6.1.4.1 in ITR-
R BT.500 [15] which indicates that categories may reflect
judgments of whether or not an attribute is perceived, and
Sections 1 and 2 in ITU-R BT.1438 [14] state that further
studies are required to identify other factors to establish phys-
ical definitions and to assess particular factors of stereoscopic
television systems, we propose the simplified four levels with
definitions of certain attributes for each level as follows:

• level 0: No or slight depth perception.
• level 1: Inconsistent or difficult depth perception.
• level 2: Good depth perception.
• level 3: Very good depth perception.

The levels represent points on a continuous scale. Defini-
tions and example images were used to calibrate the subjects.
The level 0 images induce minimal or zero depth perception
or have severe artifacts or very poor quality; with the level 1
images, the subject may perceive depth, but of poor quality
(e.g., eye strains or other difficulties); the level 2 images
should enable good depth perception without difficulties and
eye strains; and the level 3 images should enable excellent
depth perception without difficulty and eye strains.

2ITU-R BT.1438 [14] lists factors affecting the quality of a stereo image.

Our use of the specific definition of each level is also
supported by the results of Seuntiëns et al. [31] where human
raters could take the added value of 3D over 2D images into
account only when the raters are asked to rate the “viewing
experience” and “naturalness” rather than the overall quality
of stereo images. Although this scale might not be perfect, our
subjects found it useful as a guide. It has the advantage that as
artifacts increase, the perception of depth decreases, and both
of these characteristics push the quality scores toward zero.

C. Human Judges and Rating Condition

A total of 19 human judges participated in the human rating
study. Among all 19 human judges, 13 were imaging scientists
who had experience in assessing 2D image and video quality in
Kodak Research Laboratories, and 6 judges were non-experts.
More detailed statistics on human judges by gender, age group,
and expertise can be found in Figure 2.

Participants were supplied with standard red-cyan anaglyph
glasses to view the anaglyph images and all had undergone a
short training and Q&A session on how to assess stereo image
quality using the defined four-level rating scale. Note that
we screened the observers such that those who are incapable
of perceiving 3D from stereo images or are not comfortable
looking at stereo images were not part of the quality evaluation
process. All judges had normal stereopsis for evaluating static
stereo images.

As we said at the beginning of the Section III, rather
than explicitly control the viewing environment, we follow
the strategies of recent works [7], [18], [21] on 2D image
quality prediction where the authors have relied on gathering
input from many people (including through the Internet).
We take a practical approach similar to the recent work on
2D quality prediction, and ask volunteers to rate the quality
in the perceived depth in a set of stereo images on their
own computer displays. We ask all judges whether they can
perceive depth on the training set using the provided red-cyan
anaglyph glasses. The judges are asked to rate the test set
only when they can perceive depth on the training set. Each
rated between 40 and 400 anaglyph images, producing about
8 ratings on any given stereo image in the dataset.

D. Human Rating Results

Figure 3 shows several example images from the human
experiment for which there is good agreement between all
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human ratings. Overall, we were encouraged that the ratings
have fair agreement by Fleiss’ Kappa measure [9] with p-value
less than 10−6. For 77.00% of the images in our dataset, the
rating is agreed upon by at least four people.

We use these 77.00% images (308 images) and their ma-
jority ratings to construct the final dataset with ground truth
labels (i.e., the quality levels) of stereo image quality. Note that
eventually the images are not uniformly distributed in terms
of stereo quality levels. The numbers of images for levels 0
through 3 are 21, 132, 128, and 27, respectively, reflecting the
fact that most images in the real world are in the medium range
of the stereo quality scale. As in the case of 2D image quality
assessment and prediction [7], [18], [21] where the human
input is gathered without controlling the viewing environment,
we find that the human input that we gather is useful for
the task of stereo image quality prediction, despite the fact
that we do not explicitly control all of the factors that could
conceivably affect 3D perception.

We would like to point out that the measurement of 3D
perception is still an evolving topic of research. In this work,
we attempted to adapt the standard [14] to our scenario of
distributed internet-based viewing and quality rating. Although
we made some of the mentioned nonstandard choices, our
human ratings are statistically significant (p-value less than
10−6) and have fair agreement by Fleiss’ Kappa measure [9].
It is possible that the methodology we designed to collect
the human quality ratings will be improved upon as progress
in 3D perception and quality rating is achieved. We would
expect that improvements to this field should provide further
improvements to our learning-based methods to assess and
improve stereo image quality.

In Section IV, we will describe a regression model that
incorporates geometric features to infer the stereo image
quality.

IV. QUALITY RATINGS BY A REGRESSION MODEL

In this section, we introduce a set of geometric features.
Next, we describe the training and testing procedures for
the proposed regression model of stereo image quality. Last,
we evaluate the effectiveness of the regression model in
comparison with human judges.

A. Feature Extraction

We first resize images to the same width of 320 pixels for
all images before we extract all of the 2D corner points then
track these points over the image pair or different channels
(from red channel to green channel if the input image is an
anaglyph) to establish optical flow, and we compute additional
geometric features from the computed optical flows.

The corners are local maximums of M given as:

M = I2xIyy + I2yIxx − 2IxIyIxy (2)

where Ix and Iy denote first image derivatives and Ixx and
Iyy denote second image derivatives. Tracking is performed on
the detected local maximums of M using the Lucas-Kanade
tracking algorithm [24].

Although scale and rotation invariant keypoints such as
SIFT [23], SURF [1], and Harris affine [27] can be used to
compute geometric features introduced in this Section without
loss of generality, the benefit of scale and rotation invariance
are minimal in stereo images since the features in the left and
right images have the same scale and are rotation free around
the z axis (axis perpendicular to the image plane). Moreover,
the computation of scale- and rotation-invariant features (e.g.,
SIFT) is much more expensive than computing simple corner.
Our proposed corner tracking is in real time.

To compute geometric features, we then perform the
RANSAC algorithm to estimate the epipolar geometry [11].
Estimation of the camera geometry by epipolar geometry is a
standard method in computer vision [11]. Next, we group each
tracked 2D point using the RANSAC algorithm into inliers and
outliers. Inliers are tracked points that are consistent with the
estimated epipolar geometry, and outliers are the remaining
tracked points. Then, a collection of geometric features is
computed from the tracked points to characterize the relative
camera motion with respect to the scene. Since all of the
computed optical flows in a stereo image pair is originated
from the 3D structure of the scene and those flows are used
to estimate the epipolar geometry, we call them collectively
geometric features. A complete set of all computed features
(81 features) and their descriptions are shown in Tables I and
II. Symbols used in Table II are defined in Table I.

Let us explain some of these features. For example, we can
infer from features avg(∠E) and var(∠E) if there is camera
rotation only, translation only, or both. If the features avg(∠E)
and var(∠E) are close to 0, there is only a horizontal camera
translation. Also, the number of 3D points reconstructed using
2-view epipolar geometry and their mean and variance can
indicate the existence and degree of depth, although the
number can be affected by texture or error due to incorrect
intrinsic camera parameters. Also, the degree of 3D can be
inferred from var(v

(in)
x ) and var(v

(in)
y ) since a scene that

does not contain objects at different depths would produce
low variances for optical flows. Although some of the 81
features may be somewhat correlated to each other, they are
all important in a sense that certain features are more reliable
than others under certain conditions.

B. Building a Regression Model

Since the resulting number of images for each level is un-
balanced, we resample in categories 0 and 3 to achieve a better
balance and use modified random trees originally introduced
by Leo Breiman and Adele Cutler [33]. The regression model
using our modified random trees works as follows. The random
trees classifier takes the input feature vector X, classifies it
with every tree yi = Tri(X) in the forest, and outputs the level
label C that receives the majority of “votes.” Next, we perturb
C by all yi 6= C. The motivation of this modification is to also
account for votes of minorities, i.e., yi 6= C, since the proposed
stereo rating scale levels are meant to form a continuum of
values. If there are more yi > C than yi < C, C becomes
C + ε; otherwise C becomes C − ε. We use ε = std(yi 6= C)
where std(.) is a standard deviation operator. For this purpose,
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Fig. 5. Sample ratings by the regression model (We round the regression response to produce levels): The 1st, 2nd, 3rd, and 4th rows show stereo images
with levels 3, 2, 1, and 0, respectively. The value of the y axis C is the rounded value of the regression model output and the value of the x axis varies from
C− 2δ to C+2δ where δ is the standard deviation of the regression response at that level. The bottom left image has the lowest quality rating by the model
and the top right image has the highest quality measure.

we modify the OpenCV libraries [4] to add this perturbation
feature. Formally, the trained regression model function with
this perturbation is given as:

Qlearned = Rforest(X) (3)

C. Evaluating the Regression Model

We evaluate the trained regression model using 10-folds
cross validation and we take the rounded value of Qlearned =
Rforest(X) to measure the classification accuracy. The overall
accuracy of the trained regression model is 69.81% while the
average accuracy of all 19 human judges is 65.89%. As shown
in Figure 4, the trained regression model is comparable to the
average human performance. Finally, it is noteworthy that the
misclassification rate by more than one level is only 6.49% and
the mean absolute error of estimation avg(|GT − Qlearned|)
is 0.53. The confusion matrix of the regression model is also
shown in Figure 4.

In addition, we also use Pearson linear correlation co-
efficient (CC), Spearman rank order correlation coefficient
(ROCC), and outlier ratio (OC) to measure the prediction
accuracy, monotonicity, and consistency of the learned model,

respectively, according to the VQEG recommendations [16].
Since there is no reference image in our study, we use mean
opinion score (MOS) instead of difference mean opinion score
(DMOS). Although the learned model rates the stereo image
quality of a given image without access to the reference
image, the measured prediction accuracy, monotonicity, and
consistency are satisfactory. The measured accuracy by CC,
monotonicity by ROCC, and consistency by OC are 0.59, 0.54,
and 0.12, respectively.

Figure 5 presents sample ratings by the regression model
(we round the regression response to produce levels). The first,
second, third, and fourth rows show stereo images with levels
3, 2, 1, and 0, respectively. The value of the y axis C is the
rounded value of the regression model output and the value of
the x axis varies from C−2δ to C+2δ where δ is the standard
deviation of the regression response at that level. The bottom
left image has the lowest quality rating by the model and the
top right image has the highest quality measure. Such ratings
are generally consistent with the collective human ratings.
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TABLE I
TOP IMAGE SHOWS (RED) IMAGE REGIONS Ci WHERE 0 ≤ i ≤ 7 USED BY
THE FEATURES AND (YELLOW) EIPOLAR LINES (C7 IS NOT SHOWN HERE).

BOTTOM TABLE SHOWS SYMBOLS USED IN THE TABLE II.

Symbol Description
v
(all)
x All of the horizontal optical flows
v
(all)
y All of the vertical optical flows
v
(in)
x Horizontal optical flow of Epipolar inliers
v
(in)
y Vertical optical flow of Epipolar inliers

v
(out)
x Horizontal optical flow of Epipolar outliers
v
(out)
y Vertical optical flow of Epipolar outliers
Ci Center region of image
Si Surround region of Ci

I(h, s, v) Image in HSV color space
L(X) Logical operator if X==true then L(X)=1

if X==false then L(X)=0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

19 Human Accuracy
Average Human Accuracy
The regreesion Model Accuracy

Human Accuracy vs The Regression Model Accuracy

Judges sorted by Accuracy
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GT0 
GT1 
GT2 
GT3 

TP rate FP rate 
GT0 61.90% 1.74% 
GT1 78.79% 24.43% 
GT2 67.19% 20.00% 
GT3 44.44% 3.20% 

               Confusion Matrix                   True and False Positive Rate 

13 3 5 0 
1 104 22 5 
4 34 86 4 
0 6 9 12 

Fig. 4. Performance comparison of the trained regression model with the
above and below average human performance. The red horizontal line and
the blue line in the graph are the average accuracy of the trained regression
model and the average accuracy of the human, respectively. Table shows the
confusion matrix for the regression model using 10-fold cross validation and
true positive and false negative rate. In the confusion matrix, entry at row
GTx and col Ry indicates number of instances where the ground truth level
x is classified as level y. The regression response is rounded to compute the
confusion matrix.

D. Feature Importance

Moreover, we analyze the feature importance learned by
the regression model. Figure 6 shows a sorted list of features
with respect to their importance weights. Analysis of the top
10 important features shows that the regression model follows
intuitively the theory governing a stereo vision system. Most

TABLE II
A COMPLETE SET OF 81 FEATURES AND THEIR DESCRIPTIONS.

PLEASE REFER TO THE SYMBOL DEFINITION IN TABLE I.

Index Feature Description

1 avg( 6 E) Average angle of Epipolar lines

2 var( 6 E) Variance of angle of Epipolar lines

3 6 c1e1 Angle of line between
centers of image and Epipoles.

4 avg(v
(in)
x ) Average of v

(in)
x

5 avg(v
(in)
y ) Average of v

(in)
y

6 avg(v
(out)
x ) Average v

(out)
x

7 avg(v
(out)
y ) Average v

(out)
y

8 λ
(in)
max Eigen values of 2D scatter matrix

9 λ
(in)
min of v

(in)
x and v

(in)
y

10 ε
(in)
max Eigen values of 2D scatter matrix

11 ε
(in)
min of x(in) and y(in)

12,13 u
(in)
max Eigenvectors of 2D scatter matrix

14,15 u
(in)
min of x(in), y(in)

16,17 v
(in)
max Eigenvectors of 2D scatter matrix

18,19 v
(in)
min of x(in) and y(in)

20 ∼ 23 e1, e2 Locations of Epiplole 1 and 2

24,25 avg(v
(out)
x ), avg(v

(out)
y ) Average v

(out)
x , Average v

(out)
y

26,27 var(v
(in)
x ), var(v

(in)
y ) Variance of v

(in)
x , Variance of v

(in)
y

28,29 var(v
(out)
x ), var(v

(out)
y ) Variance v

(out)
x , Variance v

(out)
y

30 R1 avg(v
(in)
x )/avg(v

(in)
y )

31 R2 λ
(in)
max/λ

(in)
min

32 R3 var(v
(in)
x )/var(v

(in)
y )

33 R4 avg(v
(all)
x )/avg(v

(all)
y )

34 #in/#all
the number of v(in)

the number of v(all)

35 #RC/#pixels

∑
−20<h<20,s≥0.5,v≥0.5

L(I(h,s,v)>0)

width×height

36 #N3D The number of reconstructed 3D points

37 bE Is Epipole inside image?

38 var(v3Dx ) Variance of x,y, and z

39 var(v
(3D)
y ) components in 3D points

40 var(v
(3D)
z )

41 Tx x, y, and z components
42 Ty of second camera location
43 Tz

44 Cr Max ratio of image compression
45 Cg for RGB channels [36]
46 Cb

47 C′r Variational max ratio of
48 C′g image compression for
49 C′b RGB channels [36]

avg(v
(in)
x ∈ Ci) Average of v

(in)
x , v

(in)
y inside Ci

50 ∼ avg(v
(in)
y ∈ Ci) where 0 ≤ i ≤ 7

∼81 avg(v
(in)
y ∈ Si) Average of v

(in)
x , v

(in)
y inside Si

avg(v
(in)
y ∈ Si) where 0 ≤ i ≤ 7

1

local maxima of the unsorted features are related to features
that were computed from horizontal optical flows or epipolar
geometry. In addition, the 6th feature shows that the epipolar
inliers’ flow in region C4 is important. This suggests that the
explicit use of salient region detection might be an important
feature that we can use in the future. Also, the 5th important
feature #RC/#pixels initially does not appear to be related
to the camera geometry but it makes sense that the small
disparity in a stereo image would not produce much redness
and cyanness unless the 2D scene itself is dominated by those
colors. We can compute this feature for other 3D devices as
well without loss of generality since other 3D devices have
access to a pair of images; we can generate anaglyphs from
image pairs.
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1 2 3 4 5
#N3D λmax

#in/#all var(v
(in)
x ) #RC/#pixels
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avg(vc4x ) x of e2 x of e1 avg(v

(in)
x ) avg(v

(all)
x )

Fig. 6. Feature importance learned by the regression model: (Top) Feature
importance for all 81 feature dimensions. Each dimension corresponds to
the index in Table II. (Middle) All 81 feature dimensions sorted by their
importance. (Bottom) Top 10 important features are shown along with their
descriptions. Analysis of the top 10 important features shows that the
regression model follows intuitively the theory governing a stereo vision
system. Please refer to Table II for meaning of the symbols.

V. APPLICATIONS OF THE QUALITY MODEL

In this section, we apply the learned quality model to two
applications. First, we use the model to improve stereo images
by modifying the geometric characteristics of a given stereo
image. As a first attempt, instead of applying full projective
transform on the extracted optical flow, we apply simple 2D
translation to the extracted optical flow and check if the
recomputed features X̃ can cause a better-quality rating by the
model. We then re-align the second view using the found 2D
translation. In addition, to show the versatility of the quality
model, we also use it to select quality stereo key frames in a
2D video.

A. Stereo Improvement

The goal here is to improve stereo images initially in levels
1 and 2 by modifying optical flow vx and vy . As indicated
by the feature importance in Figure 6, this is a reasonable

approach for those stereo images rated as a level 1 due
to poor alignment of the stereo pairs. For this purpose, we
formulate stereo improvement as finding a global maximum
of the trained regression model Qlearned (Section IV-B) for
a given random variable space X(t) where t = 0 initially.
The feature X(t) is modified by adding 2D offset of optical
flow δv

(t)
x and δv

(t)
y where they are 0 when t = 0. Then

new feature X̃(t) is computed from X(t) using δṽ(t)x and δṽ(t)y
independently sampled from normal distributions with means
of δv(t)x and δv

(t)
y and variances of σx = 20 and σy = 2,

respectively. The new feature X̃(t) is computed by adding the
sampled δṽ(t)x and δṽ(t)y to the original optical flow correspon-
dences. Then the X̃(t) is evaluated by the regression model
Q̃learned = Rforest(X̃

(t)). If Rforest(X̃(t)) > Rforest(X
(t))

we accept X̃(t) and set X(t+1) = X̃(t); if not, we propose a
new sample using the same normal distributions. Pseudo code
for this improvement procedure is given in Figure 7.

Enhancement Algorithm

1 Start with initial values of δv(t)x = 0, δv
(t)
y = 0,

σx = 20, σy = 2. Set t = 0, it = 0
2 while it < maxit(= 1000)

3 Draw 2D sample δṽ(t)x , δṽ
(t)
y

from N (x; δv
(t)
x , 20),N (x; δv

(t)
y , 2)

4 Modify feature X(t) w.r.t δṽ(t)x , δṽ
(t)
y

5 Compute a response from Rforest(X̃
(t))

6 if Rforest(X̃
(t)) > Rforest(X

(t))

Set: δv(t+1)
x = δṽ

(t)
x , δv

(t+1)
y = δṽ

(t)
y

7 end
8 t← t+ 1, it← it+ 1
9 end

10 Image warp using δv(t)x , δṽ
(t)
y and generate anaglyph.

Fig. 7. Stereo enhancement algorithm using our learned quality model
Qlearned.

In Figure 8, we use two problematic anaglyph images
from [26] to demonstrate the effectiveness of our stereo
enhancement algorithm. The top image contains a scene with a
large depth and a mismatch between the distance at which our
eyes are focused (accommodated) and the distance at which
they are fixated (converged). With the improvement by the
automatic algorithm, the foreground meadow is moved closer
(and in front of the display plane) while the background is
also brought closer to (while still behind) the display plane,
leading to a stereo image that is less straining for our eyes. The
bottom image is an example of the window violation problem,
which cannot occur with real windows and real-world physical
objects. It is a result of the conflict between our ocular focus
system and the binocular vergence system (convergence and
divergence to fuse objects at various distances) such that an
object that appears in front of the display plane by stereo cues
is cropped by the image or display border so it also must be
interpreted as being on the display concurrently. In this case,
our algorithm properly moved the foreground objects (rocks)
behind the display plane, thus alleviating the problem. We
are greatly encouraged by our automated results that achieved
the effect similar to that of the presumably manual operations
shown in [26]. More results can be seen in Figure 9.
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Fig. 8. Sample results of stereo enhancement using our algorithm and our learned quality model. Note that the enhanced image may be cropped slightly.
Left column: original anaglyphs, Right column: improved anaglyphs.

Fig. 9. More sample results of stereo enhancement. Note that the enhanced
image may be cropped slightly. Left column: original anaglyphs, Right
column: improved anaglyphs.

User Study: In the psychovisual study, a subject was
presented with two different stereo versions of the same
content, one from our proposed method and the other from the
original anaglyph, in succession on screen (we choose not to
display both stereo images side by side to eliminate inference;
the subject can toggle back and forth between the two stereo

versions labeled “A” and “B”). All images were presented in a
blind random order such that the subject cannot discern which
version is produced by which method. The subject is asked to
select the one that has higher stereo quality, or indicate that
the both images have the same quality. Then they are required
to indicate the quality difference for the preferred image on
a scale of 1 to 3 with 1 being slight, 2 being moderate, and
3 being large difference, respectively. The sample display for
the choices can be seen in Figure 10.

Fig. 10. A sample display for the study questions and choices.

A total of 13 judges who have experience in judging 2D
and 3D image quality (a subset of the 19 judges) including
imaging scientists rated five pairs of images in this study.

In analyzing the judges’ responses, the ratings were coded
such that preferences in favor of our proposed method were
given positive scores (Slight: +1, Medium: +2, Large: +3)
while ratings favoring the original anaglyph images were given
negative scores (Slight: -1, Medium: -2, Large: -3) and ratings
with the same qualities were given zero score. Histogram
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of the quality difference can be seen in Figure 11. This
corresponds to 7-scale adjective categorical judgment methods
in ITU-R BT.500 [15]. The 95% confidence interval for a
quality difference and a sample mean of the quality difference
were [0.39, 1.18] and 0.78, respectively. Therefore, we can
conclude that the judges preferred the improvement of the
proposed algorithm.

−3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

14

Original                                                        Improved

Sc
or

e

Preference for the original image vs the improved version

Improved
Neutral
Original

Fig. 11. Histogram of the user study where each of 13 experts is asked
to express his or her preference and quality difference for five stereo image
pairs. The 95% confidence interval for a quality difference and a sample mean
of the quality difference were [0.39, 1.18] and 0.78, respectively. Overall, the
judges preferred the improvement of the proposed algorithm.

(a) Qlearned=2.6 (b) Qlearned=2.5

(c) Qlearned=1.7 (d) Qlearned=1.5

Fig. 12. Sample selected stereo key frames (Qlearned ≥ 1.5, level ≥ 2)
from a home video. Note that the perceived 3D impression of the extracted
stereo key frames increases with the computed quality value.

B. Stereo Keyframes from Video

To further demonstrate the usefulness of the proposed stereo
quality metric, we apply it to a given 2D video where we
sweep through entire time line t and compute the quality rating
for frames pairs It and It+t̂ where t̂ = 1 ∼ 4 as it is proposed
by Park et al. [28] where they proposed 42 geometric features
to detect a stereo image pair from a captured 2D video. They
train a classifier to determine good stereo frames in a captured
2D video. For detected stereo pairs, they evaluate the quality
of stereo frames and select the best pairs over time t where
the best pair is computed by:

(a) Qlearned=2.6 (b) Qlearned=2.4

(c) Qlearned=1.8 (d) Qlearned=1.7

Fig. 13. Sample selected stereo key frames (Qlearned ≥ 1.5, level ≥ 2)
from a home video. Note that the perceived 3D impression of the extracted
stereo key frames increases with the computed quality value.

Q = var(v(in)x ). (4)

We follow the same procedure proposed in [28] except
that we use the proposed learned quality metric Qlearned to
determine concurrently both good stereo pairs and qualities
based on the proposed 81 features. We select the best pairs
over time t to produce stereo images from captured 2D video
frames. Empirically, we found it adequate to search within
the neighborhood of four consecutive frames since large inter-
frame movement will cause large appearance variations of
both rigid and non-rigid objects. The sample stereo key frames
extracted from a 2D video are shown in Figures 12 and 13.
Both provide good 3D perception.

VI. CONCLUSIONS

In this paper we present our efforts to assess and improve
the quality of stereo images. We first describe our efforts to
gather human rating input on the perceived quality of anaglyph
stereo images. Although we made some of the nonstandard
choices, our human ratings are statistically significant (p-value
less than 10−6) and have fair agreement by Fleiss’ Kappa
measure [9]. Next, we introduce a set of geometric features
computable from a stereo image or anaglyph image based on
feature point correspondence across the stereo pair or color
channels. We then build a regression model that captures
the relationship between these stereo features and the human
consensus rated quality of anaglyph images. The performance
of the regression model performs comparably to an average
human judge. Finally, we present two proposed applications
where the regression model is used to first notably improve
the quality of captured stereo images, and second, effectively
retrieve stereo key frames from a captured 2D video.
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