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Abstract—Due to the advances in display technologies and
commercial success of 3D motion pictures in recent years, there
is renewed interest in enabling consumers to create 3D content.
While new 3D content can be created using more advanced
capture devices (i.e, stereo cameras), most people still own 2D
capture devices. Further, enormously large collections of captured
media exist only in 2D. We present a system for producing
stereo images from captured 2D videos. Our system employs
a two-phase procedure where the first phase detects “good”
stereo frames from a 2D video, which was captured a priori
without any constraints on camera motion or content. We use
a trained classifier to detect pairs of video frames that are
suitable for constructing stereo images. In particular, for a
given frame It at time t, we determine if t̂ exists such that
It+t̂ and It can form an acceptable stereo image. Moreover,
even if t̂ is determined, generating a good stereo image from
2D captured video frames can be nontrivial since in many
videos, professional or amateur, both foreground and background
objects may undergo complex motion. Independent foreground
motions from different scene objects define different epipolar
geometries that cause the conventional method of generating
stereo images to fail. To address this problem, the second phase
of the proposed system further recomposes the frame pairs to
ensure consistent 3D perception for objects for such cases. In
this phase, final left and right stereo images are created by
recompositing different regions of the initial frame pairs to ensure
a consistent camera geometry. We verify the performance of our
method for producing stereo media from captured 2D videos in a
psychovisual evaluation using both professional movie clips and
amateur home videos.

Index Terms—3D, Stereo, Learning, Composition

I. INTRODUCTION

SHortly after the dawn of photography (from roughly the
1850s), stereoscopes and anaglyph images were invented

to convey a scene with depth and realism to the viewer [5].
The fundamental insight was that by presenting each eye of a
human viewer with its own image of the scene from a unique
viewpoint, the human viewer will experience depth perception.
Imaging systems have incorporated innumerable technolog-
ical innovations in the last century and a half, and now,
such innovations as 3D television (requiring 3D glasses or
glasses-free) and handheld devices are available to consumers.
However, despite these achievements, the vast majority of
captured images and video are monocular. Although a few
stereo cameras exist, they have yet to gain widespread market
penetration. It is possible to use multiple captures from a
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monocular camera to capture stereo views of a scene, but
special care must be taken to ensure that both the position of
the camera for image captures is similar to the arrangement
of eyes on the human face, and that the objects in the scene
remain static. However, this hinders the freedom of image and
video capture. More importantly, there is a huge volume of
monocular video and stereo that has already been captured,
and can be leveraged to produce new 3D media.

Fig. 1: Upper red box: the proposed method finds good
stereo pairs from a captured 2D video. Lower blue box:
stereo matching algorithms and structure from motion (SFM)
algorithms aim to recover a 3D depth map and 3D points
of cloud, respectively, from a good stereo pair or sequence
of good images suitable for SFM. Our goal is to identify
or produce from a 2D video the content that would present
appreciable 3D effect to a human observer as opposed to
recovering 3D depth.

In this work, we present a method for producing stereo
media from monocular videos. Our algorithm takes a video
(or a time sequence of image frames such as photos shot in
a burst) and produces from the video a small set of stereo
images of high stereo quality. Note that the produced stereo
images can induce an impression of 3D but it may or may
not have true-to-life 3D depth. Our goal is to identify from
a 2D video the content that would present an appreciable 3D
effect to a human observer as opposed to recovering 3D depth
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(a) Conventional Method (b) Our proposed method when motions are simple

(c) Our proposed method without further processing for complex motions (d) Our proposed method with further processing for complex motions

Fig. 2: (a) A stereo anaglyph from video by a conventional method by selecting two time offset (t̂ = 1 frame) images as the
left and right images for an anaglyph. (b) A stereo anaglyph by our method when there is a single dominant motion in the
scene. (c) A stereo anaglyph by our proposed method without further processing when there are multiple conflicting motions
in the scene. Without further processing, 3D depth perception is only produced for either the background or one of many
independent moving foreground objects (each of which defines a different epipolar geometry). In other words, some objects
(e.g., the lady on the left of the scene and the child on the right of the scene) do not exhibit horizontal motion consistent with
the other objects, and consequently appear at an improper depth in the anaglyph (the lady on the left and the child on the right
should be closer to the camera than the other lady in the center). (d) A stereo anaglyph by our proposed method with further
processing when motions are complex. 3D perception is now produced successfully for different objects moving in different
directions. The results can be inspected using a pair of standard Red-Cyan 3D glasses. The first row is from our home video
data set and the second row is from “HOLLYWOOD 2 Human Actions and Scenes Dataset” [14].

as illustrated in Figure 1. Our proposed method is a two-
phase method to produce a set of good-quality stereo images
from any input video. In the first phase, our method relies
on a classifier that determines whether a proposed stereo pair
meets geometric constraints to ensure that a human viewer
will have a pleasant 3D viewing experience. The classifier uses
features related to keypoint matching across the two images
in the proposed pair, and considers both epipolar geometric
and global motion descriptions. For each frame in a video,
we find potential stereo matches. The classifier is used for
two purposes, which are two of the main contributions of this
paper:

• find, for each frame of the video, another frame to serve
as its stereo match

• find, across all frames of the video, frame pairs with a
stereo match that leads to very good stereo quality

Furthermore in the second phase, once a frame and a potential
stereo matching frame have been determined, we examine
the pair of frames for motion consistency. If the motions are

consistent (or simple), we determine a left and right view
and produce a stereo image. If the motions are not consistent
(or complex), a stereo image is created by further processing
where recomposition of the frames is performed to enhance
geometric consistency. The necessity of our recomposition
algorithm is illustrated in Figure 2(c). To the best of our
knowledge, neither of the first- nor second- phase problems
have been adequately addressed in the literature.

This work is justified by the renewed and growing interest
in 3D media. Clearly, 3D content is in critical need. While
new 3D content can be created using more advanced capture
devices such as stereo cameras (e.g, Fuji Real3D), most people
still own 2D capture devices and also possess enormous
amounts of legacy content in 2D forms. The methods that we
present in this paper are useful for allowing people to produce
and see 3D media that is originated from any video captured
in 2D.

The remainder of this paper is organized as follows. In
Section II, we introduce related work, in Section III-A our
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“Phase I” learning-based stereo pair detection algorithm is
introduced, in Section III-B our “Phase II” stereo image
recomposition is introduced, in Section IV results of user study
on the proposed method along with qualitative examples are
presented, and in Section V we conclude our paper.

II. RELATED WORK

There is a great deal of research devoted to the analysis
of stereo (or multi-view) captures of a scene through stereo
matching or structure-from-motion algorithms. We refer the
reader to [19] for a description of algorithms in this area. In
general, this line of work is devoted to processing multiple
images of a scene to compute either dense or sparse depth.
However, recovering accurate and dense 3D range information
has yet to be realized for pairs of images captured from a
similar vantage point. On the contrary, our proposed work
aims to detect a good stereo image pair, or to produce a good
stereo image pair rather than to reconstruct a dense 3D map
of the scene. Namely, the proposed work aims to mine good
stereo image pairs from a 2D video. We also point out that
structure from motion and stereo matching both assume that
an input pair of images is captured with no nonrigid motion
in the scene, and problems arise when this is not the case.
Our algorithm explicitly seeks out objects that move in a
non-consistent manner with respect to the background, and
performs recomposition to produce a perceptually consistent
stereo image pair.

Our work is related to several other areas. First, we produce
a set of “key frames” from a video in common with key frame
extraction methods such as [27]. However, our key frames are
actually stereo images. Further, we consider the quality and
geometric consistency of the stereo pair, which has not been
previously addressed.

Second, our work is related to approaches that aim to
convert 2D media to 3D [2], [6], [8], [22], [23], [25], [26].
Guttmann et al. [6] present a semi-automatic method to convert
a 2D video to stereoscopic video pairs. The system requires
user-scribbles to identify relative depths of background and
foreground objects and a depth map is generated by these
scribbles and propagated over several frames. If there are many
objects that are at different depths, this method requires more
complex user scribbles. Ward et al. [25] combine temporally
coherent segmentation, structure from motion (SFM), and user
input to convert existing 2D captured videos to 3D videos.
These methods [2], [6], [8], [22], [23], [25], [26] all require
user input. In contrast, we seek to find and produce only high-
quality stereo images instead of converting every frame of a
video from 2D to 3D by employing user interactions.

Third, the work by Saxena et al. [16], [17] and the work by
Hoiem et al. [10] are somewhat related in that they consider
the problem of estimating 3D scene structure from a single
still image of an unconstrained environment.

Finally, the approach in [11] aims to compose stereo pairs
using MPEG motion estimation that can be obtained in the
decoding stage of a video. They treat the magnitude of optical
flow found in MPEG motion estimation as a proposed depth
map as if it were acquired by a stereo camera. Next, they

resample a second view of a stereo pair by using only a current
frame and the proposed depth map - the pixel values of a next
frame are not used to generate the second view.

Our main contributions are the following:
1. We introduce an extensive set of features and a classifier

for estimating the quality of a putative stereo pair candidate
from an unconstrained captured 2D video. We select good
stereo pairs containing component images captured with a
geometry compatible with human eye arrangement for stereo
perception.

2. We propose a method for producing stereo pairs from
a sequence of images, even when no single pair of original
images would make a good stereo image by themselves. By
recomposing parts from the pair of images, we can construct
a putative stereo pair with good stereo quality even when
multiple objects move in different directions.

III. METHOD

In Phase I as described in Section III-A, we train a classifier
to estimate the quality of a proposed stereo pair. For given
frames pairs It and It+t̂ where t̂ = 1 ∼ 4, we evaluate
the quality of stereo frames and select the best pairs over
time t. Empirically, we found it adequate to search within
the neighborhood of four consecutive frames since large inter-
frame movement will cause large appearance variations of both
rigid and nonrigid objects. In Phase II as described in Section
III-B, we first examine whether It and It+t̂ are appropriate for
use in the left and right view of the stereo image, respectively,
or the right and left view of the stereo image, respectively. If
they are appropriate, then it is a matter of selecting which
is the left view and which is the right view. Otherwise, we
recompose the stereo images for the detected pairs through
further processing to produce a stereo image with geometric
consistency.

Fig. 3: Green: flow of the estimated epipolar inliers. White:
flow of the estimated epipolar outliers. Other features are
further computed using these inliers and outliers.

A. Phase I: Learning-based Stereo Pair Detection

We collect positive stereo pair samples and negative sam-
ples. Positive samples are: 1) stereo image pairs from Middle-
bury stereo websites [19] [18], 2) stereo image pairs captured
by a Fuji Real3D stereo camera1 product, 3) image pairs from
a single-lens video camera where there are mostly translational

1http://www.fujifilm.com/products/3d/camera/finepix real3dw1/
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Symbol Description
v
(all)
x All of horizontal optical flows
v
(all)
y All of vertical optical flows
v
(in)
x Horizontal optical flow of epipolar inliers
v
(in)
y Vertical optical flow of epipolar inliers

v
(out)
x Horizontal optical flow of epipolar outliers
v
(out)
y Vertical optical flow of epipolar outliers

Feature Description
avg(v

(in)
x ) Average of v(in)

x

avg(v
(in)
y ) Average of v(in)

y

var(v
(in)
x ) Variance of v(in)

x

var(v
(in)
y ) Variance of v(in)

y

avg(v
(out)
x ) Average v(out)x

avg(v
(out)
y ) Average v(out)y

var(v
(out)
x ) Variance v(out)x

var(v
(out)
y ) Variance v(out)y

avg(v
(all)
x ) Average of v(all)x

avg(v
(all)
y ) Average of v(all)y

λ
(in)
max, λ

(in)
min Eigen values of 2D scatter matrix

of v(in)
x and v(in)

y

u
(in)
max,u

(in)
min Eigenvectors of 2D scatter matrix

respect to epiploar inliers’ flows.
λ
′(in)
max , λ

′(in)
min Eigen values of 2D scatter matrix

of epipolar inliers.
u′(in)

max,u
′(in)
min Eigenvectors of 2D scatter matrix

of epipolar inliers.
avg(∠E) Average angle of epipolar lines
var(∠E) Variance of angle of epipolar lines
e1, e2 Locations of epiplole 1 and 2

∠c1e1, ∠c2e2 Angle of line between centers
of image and epipoles.

#N3D The number of reconstructed 3D points
#in/#all Ratio of the number of v(in)

over the number of v(all)

T 3D
x The x, y, and z components
T 3D
y of the relative camera location
T 3D
z in 3D respectively

var(X3D) Variance of x, y, and z
var(Y3D) components in 3D points
var(Z3D) respectively

bE Is epipole inside image?
R1 avg(v

(in)
x )/avg(v

(in)
y )

R2 var(v
(in)
x )/var(v

(in)
y )

R3 avg(v
(all)
x )/avg(v

(all)
y )

R4 λ
(in)
max/λ

(in)
min

TABLE I: A subset of the entire 42 features and their descrip-
tions. Please refer to the supplemental material for a complete
set of the proposed features.

horizontal movements with small rotations but no independent
moving objects, and 4) image pairs from a single-lens video
camera where there are mostly translational horizontal move-
ments and small rotations with independent moving objects.
Negative samples are: 1) image pairs from a single-lens video
camera where the camera only rotates about the camera origin,
and 2) image pairs from a single-lens video camera where
there are only vertical movements. The negative image pair
samples have overlapping image content; however, they do
not contain views of the scene from horizontally translated

viewpoints. The resulting number of positive samples and
negative samples are 332 and 403, respectively.

1) Feature Extraction: We first detect Kanade-Lucas-
Tomasi (KLT) features [20] in It, track KLT features over It+t̂
using the KLT tracking algorithm [13], and extract several
features from the computed optical flows. To extract the
features, we first perform the RANSAC algorithm to compute
epipolar geometry [9], and recover the camera positions using
tracked KLT features and classify each tracked KLT feature
using RANSAC. Inliers are tracked points that are consistent
with the estimated epipolar geometry, and outliers are the
remaining tracked points. Figure 3 shows the optical flow
field found by tracking feature points [13] where green arrows
show epipolar inliers’ flow and the white arrows show epipolar
outliers’ flow.

Next, a suite of features is computed from the tracked points
to characterize the relative camera motion with respect to the
scene. For example, the number of 3D points (#N3D), the
x, y, and z components of the relative camera location in 3D
(T 3D
x , T 3D

y ,T 3D
z ), and variance of x, y, and z components in

3D points (var(X3D), var(Y3D), var(Z3D)) can be computed
using a structure from an epipolar geometry algorithm [9]. The
complete list of all computed features and their descriptions
can be seen in Table I and the computation of other quantities
are straightforward.

To discuss the significance of some of the features, measur-
ing avg(∠E) and var(∠E) in Table I can indicate whether
there is camera rotation only, translation only, or both. The
avg(∠E) and var(∠E) close to 0 means that there exists
only a horizontal translation of camera. However, if the
scene does not contain objects at different depths, it does
not make an interesting stereo frame pair as all objects
appear to be on a single plane. This condition is detected by
std(v

(i)
x ), std(v

(i)
y ), std(v

(o)
x ), and std(v(o)y ), and so on.

2) Training and Testing a Classifier: We found that a
classification using a decision tree-based machine learning
algorithm performs the best among several machine learning
algorithms available in [7]. Therefore, we use random trees
originally introduced by Leo Breiman and Adele Cutler [21]
for our Phase I algorithm. The random trees classifier takes the
input feature vector X, classifies it with each tree yi = Tri(X)
in the forest, and outputs the level label C2 that receives the
majority of votes. For this purpose, we use the OpenCV library
[1]. Formally, the trained prediction function using a random
tree is given as:

Clearned = Rforest(X) (1)

We evaluate the trained prediction model using 10-fold cross
validation and measure the classification accuracy. The overall
accuracy of the trained prediction model is 96.33% and the
detailed performance can be seen in Table II.

3) Quality of the Detection: Once the pairs are identified
by the classifier as positive samples, we evaluate the quality
of the samples by:

Q = var(v(in)x ) (2)

2C=1: positive sample, C=-1: negative sample
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R− R+ Precision Recall
GT− 395 8 98.01 96.70
GT+ 19 313 94.28 95.87

TABLE II: Performance of the trained prediction model. The
GT−, GT+, R−, and R+ correspond to ground truth neg-
ative label, ground truth positive label, the negative response
by the trained prediction model, and the positive response by
the trained prediction model, respectively.

where v
(in)
x is the horizontal flow of epipolar inlier points

(Table I). Although this quality measure is simple, it is
powerful when used on the identified stereo frame pairs. A
higher value indicates more scene objects at different depths,
resulting in a more rich 3D effect. Therefore, we select a
stereo frame pair

(
It, It+t̂

)
with the highest Q from pairs

{
(
It, It+t̂

)
|t̂ = 1 ∼ 4}.

B. Phase II: Stereo Image Recomposition
When the video of a static scene is captured with a camera

that is undergoing horizontal translation, it is relatively easy to
generate the stereo image. Conversely, construction of a stereo
image is also relatively easy when the camera is static and the
scene moves horizontally. Mathematically, these two situations
are identical by describing the camera position relative to the
scene, and both situations describe a single, unique epipolar
geometry. In essence, generating good stereo images is a
matter of selecting proper left and right views in such cases
(unique epipolar geometry). In this case, a composition of a
stereo image is a matter of determining which frame is the
left or the right view.

However, the situation becomes complicated when the mov-
ing object is not rigid or multiple objects move in different
directions, which requires additional adjustment. In that case,
each object defines a different epipolar geometry. When mul-
tiple objects undergo independent motions, each object may
define a conflicting epipolar geometry. In Figure 4i, proper 3D
perception is only observed on the “Multiple View Geometry”
book using Cyan-Red glasses while 3D perception can only be
correctly observed on the other book using Red-Cyan glasses.
The motion of the “Multiple View Geometry” book defines
an epipolar geometry in which It is the right view and It+t̂
is the left view, while the motion of the other book defines
an epipolar geometry in which It is the left view and It+t̂
is the right view. This is a specific problem encountered in
converting a 2D video to 3D when we try to recover depth
from motion.

However, even in this situation, it is sometimes possible
to construct a static scene object across two stereo views,
as we propose in this paper. For example, suppose an object
contains many parts, each of which can move independently
in a horizontal fashion (either to the left or right). Then,
constructing an image of the object from the left viewpoint
is simply a matter of composing, from all of the images, all
of the object parts that have moved to the right. Likewise, an
image from the right viewpoint is constructed by compositing
all of the parts that have moved to the left. This is the insight
that our algorithm exploits.

This observation lead to an interesting problem where we
want to detect image regions that move to the right or left by
robust optical flow estimation. However, the biggest challenge
is that the robust estimation of dense optical flow is still
a largely unsolved problem. This challenge leads us to this
interesting question, “What if we forget about the magnitude
and direction of optical flows and estimate only the horizontal
motion component?”

Fig. 5: Super-pixels and a graph using our modified version
of [4].

1) Triage by Epipolar Geometry: We first determine
whether additional adjustment is required by examining
whether there is only one dominant epipolar geometry. To
examine this, the work by Vidal et al. [24] can be used where
they perform multi-body structure motion and determine the
number of epipolar geometries. However, we notice that the
existence of one major epipolar geometry can be determined
by the features that are already computed (Section III-A).
We measure a ratio of the number of epipolar inliers over
the number of epipolar outliers. If there is only one unique
epipolar geometry in the frames pair, then most of the tracked
points (Section III-A1) should be epipolar inliers. In our
experiment, if the ratio is higher than 10, we determine the
left and the right views by the one of the features T 3D

x that is
already computed. If T 3D

x > 0, then It+k̂ is a right view or
a left view otherwise. In this case, the algorithm described in
the following section is not performed.

2) Recomposing the Left and Right Views: If the additional
adjustment is required, we first choose a frame offset δt that
is closest to t and satisfies Rforest(Xt+δt) > 0 and set
t̂ = δt. This is to minimize inter-frame motion to make
an image composition more plausible. Then, we perform an
image stabilization using similarity transform between It and
It+t̂ to compensate for global camera motion and we formulate
the problem as an optimization problem defined on a graph G
where each node vi represents the super-pixel Si of an image
It, and is a binary variable with label space being “moving
to the left or stationary” (vi = 1) or “moving to the right”
(vi = 0), and edge defined over neighboring super-pixel i and
j.

We first compute a super-pixel segmentation Si of It to
avoid problems on estimating optical flow at motion bound-
aries as well as to increase the efficiency of MRF optimization
by reducing the number of nodes in G. To compute the super-
pixel segmentation efficiently, we modify the graph-based fast
segmentation algorithm in [4] in a way that the segmentation
becomes over-segmented (Figure 5). We add a distance term
between nodes on top of Euclidean RGB differences. This
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(a) It (b) It+t̂ (c) Mb (d) Left View

(e) Right View (f) |It − Left View| (g) |It − Right View| (h) Farnebäck et al. [3]

(i) Conventional method (j) The proposed method

Fig. 4: (a) Input frame at time t. (b) Input frame at time t+ t̂. (c) Blurred map Mb computed by our method. (d) Composited
left view. (e) Composited right view. (f) Absolute difference between It and the left view. (g) Absolute difference between
It and the right view. (h) Using the polynomial expansion method [3] to apply our idea produces many errors due to large
inter-frame motions. (i) Conventional method does not produce the visual impression of 3D on the “Multiple View Geometry”
book due to the opposite foreground motions of the two books. (j) The proposed additional adjustment in Phase II produces
virtually no artifacts while 3D effects are produced successfully for both arms and the books they are holding. These results
can be seen through a pair of standard Red-Cyan glasses.

is important since optical flow estimation on a single, large
segment that actually is composed of two disjoint regions with
opposite flow could be ambiguous.

After we compute the super-pixel segmentation Si of It, we
use the FastPD algorithm [12] to minimize the energy of the
MRF given by Equation (3).

E(vi) =
∑
i

fi(vi) +
∑
ij

fij(vi, vj) (3)

where the unary data term fi(vi) is given as

fi(vi) =


minŷ,x̂≤0

∑
(x,y)∈Si

(It(y,x)−It+t̂(y+ŷ,x+x̂))
2∑

(x,y)∈Si
1 ; vi = 1

minŷ,x̂>0

∑
(x,y)∈Si

(It(y,x)−It+t̂(y+ŷ,x+x̂))
2∑

(x,y)∈Si
1 ; vi = 0

(4)
and binary data term fij(vi, vj) is given as

fij(vi, vj) = α
|vi − vj |

D(W (Si),W (Sj))
(5)

The fi(vi = 1) in Equation (4) is the minimum average of
the squared RGB pixel differences in super-pixel Si when Si is
translated over It+t̂ in negative x direction and the fi(vi = 0)
is the minimum average of squared RGB pixel differences
in super-pixel Si when Si is translated over It+t̂ in positive
x direction. The fij(vi, vj) in Equation (5) penalizes a label

difference between Si and Sj more as Si and Sj become
more similar. We measure the similarity between Si and
Sj by D(W (Si),W (Sj)). Although the D(W (Si),W (Sj))
is a Euclidean RGB mean distance between Si and Sj in
our current implementation, more complicated measurement
such as earth mover’s distance between RGB histograms can
be used. In our experiments, we set α = 10000 and set
−30 ≤ x̂, ŷ ≤ 30 for fi(vi = 1) and fi(vi = 0).

The result of the inference is a map M with “1” indicating
object parts (or super-pixels) moved to the left (or stationary)
and “0” indicating object parts (or super-pixels) moved to the
right. We blur this map M using a Guassian kernel of size 7
by 7 and treat the blurred map Mb as a blending (alpha) map
to reconstruct the left view and right view from It and It+t̂.
The new left view is reconstructed as:

IL(y, x) = It(y, x)Mb(y, x) + It+t̂(y, x) (1−Mb(y, x)) (6)

The new right view is reconstructed as:

IR(y, x) = It(y, x) (1−Mb(y, x))+ It+t̂(y, x)Mb(y, x) (7)

This procedure is illustrated by the example in Figure
4, where the two books are moving in opposite directions
towards the middle. Figure 4c shows the computed map Mb

using the Phase II algorithm and Figure 4d and 4e show the
constructed left and right views using Equations (6) and (7).
As can be seen in Figure 4i, the conventional method fails to
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produce the visual impression of 3D on the “Multiple View
Geometry” book while using one of the state-of-the-art optical
flow estimation algorithms to apply our idea also produces
many artifacts shown in Figure 4h. In contrast, our proposed
additional adjustment in Phase II produces the impression of
depth for both arms and both books successfully, as shown in
Figure 4j.

IV. EXPERIMENT

We compare our proposed system to a fully automatic off-
the-shelf package called MOVAVI Video Converter 3D [15]
and then show the effectiveness of the additional adjustment
in Phase II of our proposed system.

Fig. 6: Upper row: histogram of test 1 where each of 10 judges
is asked to express his or her degree of preference for 34 stereo
images generated by both algorithms. Lower row: histogram
of test 2 where each of 10 judges is asked to express his or
her degree of preference for 17 stereo images generated by
both algorithms.

A. Comparison with MOVAVI

Our test is divided into two tests, where the first test (test
1 for 34 images) is designed to compare the perceived quality
of our system with MOVAVI when the additional adjustment
in Phase II is not required. The second test (test 2 for 17
images) is intended to compare the perceived quality of our
system with MOVAVI when the additional adjustment in Phase
II is required. We randomly select results of both algorithms
applied to 6 different videos including TV shows, movies,
and home videos when the results of both algorithms are
available (our proposed method produces frame pairs only
when it considers there is good enough 3D effect in the frame
pair).

In the psychovisual study, a subject was presented with two
different stereo versions of the same scene from the same
video, one from our proposed method and the other from
MOVAVI, in succession on screen (we choose not to display

both stereo images side by side to eliminate inference; the
subject can toggle back and forth between the two stereo
versions). All images were presented in a blind random order
such that the subject cannot discern which version is produced
by which method. The subject is asked to select the stereo
image that provides better stereo perception. Further, the
subject is required to first make a forced choice and then
indicate the magnitude of preference for the preferred image
on a scale of 0 to 3 defined as follows.

0 no preference
1 slight preference
2 moderate preference
3 large preference

For the purpose of the psychovisual test, stereo quality
was defined as referring to the three-dimensional aspects of
depicted objects in a scene. In particular, the following factors
contribute to the perceived stereo quality: the range of the
depth of a scene, the vividness of the depth of the scene, the
sense of volume in the scene, the sense of distance between
objects and within objects (such as the folds in clothing, facial
features), the consistency in the sense of depth across the
scene, and the ease of perceiving all of the above.

A total of 10 judges participated in the study, including
imaging scientists who have experience in judging 2D or 3D
image quality, as well as typical consumers we recruited.
It is interesting that there is only a slight difference in
the preference and the magnitude of preference between the
technical judges and nontechnical consumers.

In analyzing the judge responses, the ratings were coded
such that preferences in favor of our proposed method were
given positive scores (+1, +2, +3) while ratings favoring
the MOVAVI Video Converter 3D [15] were given negative
scores (-1, -2, -3). As can be seen in Figure 6, there is a
strong preference toward our proposed method, with 413 out
of the total 510 ratings. The 95% confidence intervals for a
preference score are [0.93, 1.23], [0.82, 1.27], and [0.94, 1.19]
for test 1, test 2, and test 1 and 2, respectively. Therefore we
can say that the judges preferred the results of our proposed
methods.

Some of the results used in the user study can be seen
in Figure 7. The top two rows are sample results from
“HOLLYWOOD 2 Human Actions and Scenes Dataset” [14]
and the bottom two rows are sample results from our home
video data set. The first to last rows in Figure 7 show a clear
depth difference between the guards and the crowd, the youth
and the car on the hill, the light post and the house, and the
child in the back and the person in the front, respectively.

B. Effect of Phase II Additional Adjustment

In addition, we show effectiveness of our additional ad-
justment in Phase II. To control other factors that might
contribute to the 3D perception, we use the pair of image
frames determined by our Phase I to generate two types of
stereo image: 1) an angalyph without the additional adjustment
in Phase II even when Phase II determines the pair requires the
additional adjustment, and 2) an anaglyph with the additional
adjustment in Phase II. As can be seen in Figure 8, our
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(a) MOVAVI video converter 3D [15] (b) Our proposed method

Fig. 7: Examples of the stereo image pairs employed in the test 1 user study. Left column shows the results by MOVAVI video
converter 3D [15] for generating anaglyphs. Right column shows the results by our proposed method. The first two rows are
from “HOLLYWOOD 2 Human Actions and Scenes Dataset” [14] and the last two rows are from our home video set. Also
note that how the depth difference among objects in the right column are nicely presented (e.g the guards and the crowd, the
youth and the car on the hill, the light post and the house).

proposed additional adjustment does a good job of presenting
different objects at different depths caused by the independent
motion of each individual object and the translation of the
camera. For example, in the first row in Figure 8, there is
camera motion from right to left and other arbitrary move-
ments in the scene by the heads wearing turbans. Since our
proposed method treats different epipolar geometries caused
by different background and foreground movements properly,
the results are successful at conveying consistent 3D to the
viewer.

C. Discussions

Sometimes the additional adjustment in Phase II produces
artifacts when the inter-frame movement is too large for non-
rigid objects or the boundaries between foreground objects are
merged into larger background regions during the initial super-
pixel segmentation. Therefore, we plan to explore methods for
improving segmentation at boundaries.

In addition, we emphasize that the anaglyph image com-
position procedure described in this paper is not required
to display the produced 3D media content by our proposed
method. Alternatively, the composite left and right views by
our proposed method can be displayed on many other current
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3D devices (e.g, polarized stereo displays or shutter-glasses).
Finally, the speed of our Phase I is real-time, although as

the search range t̂ increases the computation time increases
linearly. The computation time of Phase II is around 6 seconds
per frame, which can be improved for real-time processing.
The unary data term computations takes around 5 seconds
while the inference only takes 10−3 seconds and the segmen-
tation takes less than a second.

V. CONCLUSIONS

In this work, we first introduce a learning-based method
to detect video frames that can make good stereo pairs from
a captured 2D video. Next, we develop an effective way of
producing stereo image pairs to handle challenging situations
when multiple inconsistent foreground and background mo-
tions exist. Experiments using both professional and amateur
videos show that our proposed approach produces superior
stereo images when compared with existing methods. In the
future, we plan to further extend this work to include temporal
information to produce a realistic 3D video from a 2D video.
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(a) Without additional adjustments (b) With additional adjustments

Fig. 8: Effect of Phase II additional adjustment - left column shows the results without the additional adjustment (i.e, only
Phase I) and right column shows the results with the additional adjustment (i.e, Phase I +Phase II) . The image sequences in the
first and the second rows are from “HOLLYWOOD 2 Human Actions Scenes Dataset” [14] and the third row is from our home
video set, respectively. In all cases shown, multiple foreground objects or non-rigid objects exist with different movements but
all are properly handled by our additional adjustment in Phase II.
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