
A Learning Based Framework for Depth Ordering

Zhaoyin Jia1, Andrew Gallagher2, Yao-Jen Chang3, Tsuhan Chen1

1School of Electrical and Computer Engineering, Cornell University
2Eastman Kodak Company, 3Siemens Corporate Research

zj32@cornell.edu, andrew.c.gallagher@gmail.com, yao-jen.chang@siemens.com, tsuhan@ece.cornell.edu

Abstract
Depth ordering is instrumental for understanding the 3D

geometry of an image. We as humans are surprisingly good
at depth ordering even with abstract 2D line drawings. In
this paper we propose a learning based framework for dis-
crete depth ordering inference.

Boundary and junction characteristics are important
clues for this task, and we have developed new features
based on these attributes. Although each feature individ-
ually can produce reasonable depth ordering results, they
still have limitations, and we can achieve better perfor-
mance by combining them. In practice, local depth order-
ing inferences can be contradictory. Therefore, we propose
a Markov Random Field model with terms that are more
global than previous work, and use graph optimization to
encourage a globally consistent ordering. In addition, to
produce better object segmentation for the task of depth or-
dering, we propose to explicitly enforce closed loops and
long edges for the occlusion boundary detection.

We collect a new depth-order dataset for this problem,
including more than a thousand human-labeled images with
different daily objects in various configurations. The pro-
posed algorithm gives promising performance over conven-
tional methods on both synthetic and real scenes.

1. Introduction

Depth estimation can be instrumental to a variety of vi-
sion tasks, such as segmentation [1] [12], object recognition
[6] [9], and scene understanding [5] [10] [16]. For some
purposes, instead of estimating the exact depth value, it may
suffice to derive the relative depth ordering of the objects
in an image. Humans are adept at this task: in Fig. 1 (a),
we may not exactly know how far these objects are, but we
can understand the depth ordering of the objects: the mouse
is on the top, and then comes the book, and the laptop is
deeper in the pile supported by the table. The depth or-
dering not only gives us a coarse interpretation of the 3D
geometry of the objects, but also enables us to interact fur-
ther with the scene, e.g. we need to remove the mouse and

(a) (b)

(c)
Figure 1. (a) Given one image, humans can infer the depth ordering
of each object, and even with (b) very abstract line-drawing seg-
ments. Motivated by how humans reason about the depth ordering
from junctions and boundaries, we develop an algorithm to do that.
Our algorithm produces the depth ordering that represented in the
form of a graph as in (c), where each node corresponds to one
segment, and the directed edge means one segment is in front of
another. The depth is colored in a way that the closer an object is,
the darker it appears.

the stapler in order to manipulate the book.
Humans have no trouble inferring the depth order even

when the image is extremely abstract with only line draw-
ings [3], such as Fig. 1 (b). We still understand that segment
B is in front of segment A and C, segment D is in front of
segment C, C is in front of F and so on. If we use “→” to
indicate the “in front of” relation, then we have D → C;
B → C → F → A → E. Early works from Barrow et
al. [2] and Waltz et al. [18] present rule-based algorithms
to understand 3D geometry in abstract images.

These examples inspire us to investigate the features that
determine how we perceive the image depth ordering. Line
drawings take out all the color, texture, and semantic high-
level interpretation of the image. Clearly in this situation,
only two types of information are available, i.e., boundaries
and junctions, such as e1, e2, j1, j2 in Fig. 1 (b). However,
depth ordering based on this information is not easily cap-
tured by hand-crafted rules, particularly in complex scenar-

1



(a) (b) (c)
Figure 2. (a) The Escher Waterfall shows that local reasoning can-
not ensure the global consistency. (b) The same is true for depth
ordering: although we can determine the pairwise relation between
any two segments, it is difficult to decide the global depth order,
and the corresponding depth order graph (c) forms a loop.

ios. Therefore we adopt a data-driven approach to handle
its complexity. We design new features on boundaries and
junctions, and use them as the basis to learn depth ordering.

Inferring the depth order from junction or boundary in-
dividually has some natural flaws, however. For example
in Fig. 1 (b), junction j1 and j2 have the same T-shape, but
imply inverse depth orders. Boundary e2 is a straight line
and provide little information by itself. Therefore we must
combine these different features to form a better feature set.

Furthermore, having inferred local depth orders from the
combined feature sets, we need to ensure the global con-
sistency across the segments. Simply aggregating the local
decisions can lead to an invalid understanding of the scene,
and the famous Escher Waterfall in Fig. 2 (a) gives a vivid
illustration for height perception. This point carries over to
depth ordering, and Fig. 2 (b) gives one similar example:
locally, we can easily determine the relative depth order be-
tween any two segments, such as D → C, C → B, B → A
and A → D. However, when aggregated, it is not a valid
depth ordering, i.e. it forms a depth order graph with a loop,
as shown in Fig. 2 (c). Therefore, to ensure global consis-
tency in the depth ordering, we propose a Markov Random
Field based algorithm to infer the most likely depth order-
ing and penalize the invalid order of segments. With this
algorithm, global consistency is encouraged through mes-
sage passing, which in turn enables better performance.

In addition, a reliable segmentation is an essential prepa-
ration for depth ordering. For natural images, we follow
[7] to detect occlusion boundaries and generate object seg-
ments. We discover that, in many scenarios, the occlusion
boundaries are not only locally continuous, but also form
a closed loop to enclose the object. At the same time, the
edges connected to and inside of this loop are less likely to
be actual occlusion boundaries. We enforce this constraint,
which is a more global enforcement than local continuity
and leads to better object segmentation for depth ordering.

We collected a new depth order dataset with over a thou-
sand images displaying different arrangements of various
objects. Each image is manually segmented and includes

depth information from Kinect. We tested different algo-
rithms on this and two other datasets: one synthetic dataset
and one with natural images [7]. Experiments proved the
effectiveness of our proposed new features, and show that
our proposed algorithm reliably outperforms the baselines.

To summarize, our major contributions are:
1. New features (on junctions and boundaries) and a

learning based framework for the depth ordering task.
2. A novel approach to globally encourage the depth or-

der consistency through a graphical model.
3. A new depth ordering dataset including more than

1000 images with human segmentation and depth in-
formation.

4. A new approach that favors closed loops for occlusion
boundary detection.

2. Related work
Our work assumes that the scene is composed of objects

in distinct depth order, and is closely related to the works
from Dimiccoli et al. [4] and Palou et al. [13], which in-
fer the depth ordering from an elaborate set of rules on T-
junctions. Our work differs and improves upon previous
works in the following aspects: a) in these works, the rules
of inferences are designed without any learning process.
They work in certain settings, but may not adapt to new
environments. On the contrary, our approach is a learning-
based framework and data-driven. b) Their algorithms focus
only on the angles in T-junctions, while we show that com-
bining boundary features with junctions is necessary and
achieves better results. c) When aggregating local decisions
to produce a global ordering, these works handle contradic-
tions by dropping orders with the lowest predicted beliefs.
We formulate this task as a graph inference problem, which
achieves global consistency more accurately with the help
of graphical model optimization.

Depth ordering is related to the boundary ownership or
the figure and ground assignment problem [7] [14] [15]
[17]. However we consider that they are non-trivially differ-
ent tasks and produce different results. Figure and ground
assignment is usually based on each edge as presented by
Ren et al. [15], while depth ordering is based on segments.
As a result, their work places more focus on features from
edges, while we use a complementary feature set of junc-
tions and boundaries. Depth ordering also introduces new
problems, such as global consistency in depth, that may not
exist for the figure/ground assignment problem.

Another approach is to infer depth based on high-level
understanding of the scene, as in Hoiem et al. [7] and Liu
et al. [10]. They parse an image into different semantic la-
bels, such as “ground”, “sky”, etc, upon which they infer
the depth mainly based on the connecting edge between the
object and the ground plane. In their works, usually there
is no need for encouraging the global consistency. The se-



mantic labels can largely solve this problem, like “ground”
always supports “vertical surfaces”, and they are placed be-
fore “sky”. However, these geometric contexts may not al-
ways be applicable, such as shown in Fig. 1. In particu-
lar, these algorithms excel in natural scenes but fall short
with micro objects or plan views, or may have difficulty
in estimating the depth when “ground” falls outside of the
image. Our algorithm complements this shortage well and
aims to achieve reliable depth ordering from low level fea-
tures without specific context.

Saxena et al. [16] propose to learn a regression for depth
based on super-pixel features, and produce a continuous
depth estimation. In contrast, our problem is based on oc-
cluded segments. The tasks and the approaches are signif-
icantly different. We believe we are able to achieve more
meaningful depth relation between objects from reasoning
the occlusions.

3. Local depth ordering

We first detect the occlusion boundaries in one image,
and based on them we transform this image into segments.
Then we compute features for depth ordering, build the
depth order graph and assign a discrete depth value to
each segment. We mainly rely on two sets of features for
depth ordering: features on the T-junction (pJF) and on the
boundary (pBF).

3.1. Junction feature

A T-junctions is where three boundaries and three seg-
ments meet, illustrated in Fig. 3 (a), and we aim to identify
which segment is in front of the other two. Note that clas-
sifying which segment is in front is identical to classifying
which one out of the three boundaries is behind, because
the segments that are attached to this ‘behind boundary’ are
also behind (see Fig. 3 (a)). In the following we will first
classify this behind boundary, and then convert the result to
the segment depth ordering.
Angle: A perfect T-junction will include one 180◦ angle
between two boundaries, indicating the segment within is
in front, and two 90◦ angles, indicating the segments are
behind. We include these angles as our features. First, for
each boundary e inside a junction, we fit a boundary vector
~v(e) to calculate its direction, shown in Fig. 3 (b), and calcu-
late the angles from ~v(e) to the other two boundary vectors:
θ1, θ2 ∈ [0, π]. We record them as a two-dimension feature
fa(e) for boundary e within in this junction.
Texture: Junctions have different appearance in natural im-
ages, and thus using angles alone can be unreliable, so we
also capture the texture information of a junction using an
oriented SIFT descriptor [11]. SIFT descriptors can record
the edge distributions within a junction, while tolerating
some appearance variation by using histogram. The SIFT

(a) (b)
Figure 3. (a) One T-junction includes three segments (A,B,C)
and three boundaries (e1, e2, e3, in dash blue line). One segment
is in front of the other two (A is in front of B and C), and one
edge is behind the other two correspondingly (e2 is behind e1 and
e3). (b) A vector ~v(e3) pointing outwards is fit to the boundary e3.
Then an oriented-SIFT descriptor is computed in align with ~v(e3).

descriptor is centered at the junction, and aligned with ev-
ery boundary vector ~v(e) pointing outwards, as shown in
Fig. 3 (b). The size of the descriptor is determined with
respect to the boundary length and limited to 40 pixels.

In order to learn the intrinsic appearance of a junction,
we use two types of images for this feature: the original
image fo(e) and the binary edge image fb(e). The binary
edge image is a blank image with only the occlusion bound-
aries labeled in white. While fo(e) can capture a junction’s
appearance in the natural image, fb(e) excludes all the lu-
minance and texture information from the environment, fo-
cusing on the boundary distribution within a junction.

We concatenate the above three sets of features as the
final junction feature set: fj(e) = [fa(e), fo(e), fb(e)].
Within one junction, the boundaries in front are labeled as
y = 1 and the boundary behind is labeled as y = −1. Then
a SVM classifier hj is trained. During testing, as there is
one and only one behind boundary in a valid junction, we
enforce this constraint by choosing the behind boundary as
the one with the minimum prediction value.

3.2. Boundary feature

In addition to junctions, boundaries are also important
for depth ordering. Hoiem et al. [7] proposes local features
fd(e) to encode many edge attributes, and we include them
as a subset of our boundary features 1.

Additionally, we consider the boundary convexity an in-
formative clue. Take Fig. 4 (a) as one example, the convex-
ity of boundary e implies that segment A occludes segment
B, and thus determines the depth ordering.

Therefore we design features to explicitly capture the
boundary convexity. First, we connect the starting point
ps and the ending point pe of a boundary, and form the
base vector lb. Then the distribution of each point pi on the
boundary with respect to lb provides the convexity informa-
tion. Thus we connect every point pi along the boundary to
ps, and form a new vector li. We record the angle between li
and lb: θi = arccos(li · lbase) ∈ [−π, π], as shown in Fig. 4

1To follow the convention in this paper, we exclude the high-level geo-
metric context features, which are not applicable for the settings.



(a) (b)
Figure 4. The boundary convexity feature: (a) one occlusion
boundary (e.g., e) lies in between two segments (e.g., A,B).
Boundary e bends towards segment B, indicating that more likely
A is in front of B. (b) A base vector lb can be set by connecting
the two ends ps and pe. For each point pi on the boundary, we link
ps and pi to create a new vector li, and record the angle between
lb and li. We histogram these angles as new features for e.

(b). After getting {θi} for all {pi}, we quantize [−π, π] into
36 bins and histogram {θi}, and append this histogram as
the new feature fc(e) in addition to fd(e): fb = [fd, fc].
Since now the boundary is directed from ps to pe, for train-
ing we label the boundary y = 1 if its left segment is in front
of its right segment, and y = −1 otherwise. Following the
same rule, we retrieve the depth ordering of segments dur-
ing testing.

3.3. Combined features

Junction and boundary features alone have their own
strength and weakness, and we combine them together to
complement with each other. Since the features in each
junction fj(e) are already computed on the basis of the
boundary within it, we can append fb(e) to fj(e) to form
the combined feature fc(e) = [fj(e), fb(e)].

Accordingly, the learning process on the junction
now becomes a ranking problem on the three bound-
aries/segments. We use a structured SVM [8] hc(fc(e)) to
solve it. For example, in Fig. 3, we can first associate each
boundary to the segment on its left. Suppose the ground
truth depth order is A → C → B. Then for boundaries it
is e3 → e2 → e1. During training, the constrains become
hc(A) > hc(C) and hc(C) > hc(B), i.e. hc(e3) > hc(e2)
and hc(e2) > hc(e1). (We omit fc for brevity, and in the
following we use segment instead of boundary to indicate
the depth order, since they are identical.) During testing,
let xi = {fc(A), fc(B), fc(C)} be the combined feature on
junction i , and yABCi be the segment order A → B → C,
then we define the likelihood li of assigning the depth order
yABCi from the SVM margin:

li(yABCi |xi) =
∑

(M,N)

hc(fc(M))− hc(fc(N)), (1)

where (M,N) ∈ {(A,B), (B,C), (A,C)}.

4. Towards global depth reasoning

D-order graph: After the local inference for depth order-
ing, a depth order graph is built (d-order graph), shown in
Fig. 5 (b), and we assign the depth order for each segment
according to this graph. One node in the d-order graph rep-
resents one segment in the image. The directed edge indi-
cates one segment is in front of another. With the combined
feature fc, each junction will order its three segments in
depth. For example, junction α in Fig. 5 (a) may infer the
depth ordering A → B → D, and produce three directed
edges in the d-order graph: A→ B, A→ D and B → D.

However, relying on local decision can lead to invalid
configuration of d-order graph. Take Fig. 5 (a) as one
example: if junction γ incorrectly predicts the order as
D → B → C, while the others have the correct classifica-
tion, it will introduce a contradiction. This results in a loop
of nodes B,C,D in the depth order graph, and makes us
impossible to determine the depth order. To solve this prob-
lem, we propose a new approach based on Markov Random
Field to encourage a more global consistency.
Global: We treat each junction in the image as one node in
our MRF graph, shown in Fig. 5 (c). The label space for
each node yi is the possible order permutation of the seg-
ments, e.g. for junction α, its yα will have 6 possible labels
of the segment orders: ABD,ADB,...,DBA. The node po-
tential φ(yi|xi) is calculated by taking the negative of Eq.1.
The edge in our MRF is defined by the boundary. We link
two junctions if they are connected by a boundary in the
image. Also if two junctions are connected by a boundary,
they must share at least two segments that this boundary
separates. Therefore the edge potential ψ(yi, yj) is defined
as the consistency between the segments’ orders.

For instance, in Fig. 5 (a), junction α and β are linked
by boundary e1 (in light blue), and thus α and β share seg-
ment B and D that e1 separates. Accordingly, the segment
order on both junctions must be consistent, e.g. the order
A → B → D on junction α is consistent with the order
B → C → D on junction β, but the same order for α is
inconsistent with the order C → D → B on β, because the
relative orders of B and D contradict. We build the edge
potential ψ(yi, yj) following this intuition: we assign zero
penalties for the consistent orders, and high penalties for the
inconsistent ones. Fig. 5 (d) gives an example of the poten-
tial matrix on the edge between node α and β in the MRF,
with solid squares representing high penalties.

We use Tree Reweighted Decomposition (TRW) to
minimize the total energy function E =

∑
i

φ(yi|xi) +∑
i,j

ψ(yi, yj) for this MRF. Because of the penalties for the

inconsistent orders, this optimization process encourages
the consistent orders in a more globally optimized manner.
Beliefs from other segments are passed through messages to



(a) (b) (c) (d) (e)
Figure 5. (a) Global depth reasoning example. (b) Each junction produces three directed edges in the depth order graph, e.g. junction α
produces the directed edges A → B,B → D, and A → D. (c) We use MRF to encourage the global consistency. Each node corresponds
to one junction, and is connected with its neighbors. (d) The edge potential in our MRF gives high penalties (solid) if the segments’ orders
contradict between two nodes. (e) The depth ordering is assigned by the longest path in the final depth order graph (shown in solid arrow),
from which we retrieve the depth ordering, such as A→ B → C → D.

help local decisions. In practice the inference process usu-
ally produces a consistent depth ordering, which enables us
to trim the loop in the depth order graph more safely. After
that, we find the longest path in the depth order graph (now
it is acyclic), and use this path as the skeleton for depth or-
dering, as shown in Fig. 5 (e). All the other nodes that are
not in this skeleton path are assigned with depth values ac-
cording to this path.

5. Occlusion boundary with closed loops

Segmentation is a necessary preparation for the depth or-
dering task, and we rely on the occlusion boundary detec-
tion to generate it: firstly a dense segmentation using wa-
tershed is performed to extract all the possible edges. Then
each edge is classified as an occlusion boundary or not. Af-
ter that the object segmentation is achieved by merging the
regions where a non-occlusion boundary lies in between.
Our detailed approach is presented as follows.
BoW features: In addition to [7], we propose new features
based on bag-of-words [9] for occlusion boundary detec-
tion, for they effectively capture the texture information.
Each edge from the initial segmentation lies in between two
segments. We compute the dense SIFT words within these
segments, and histogram them as the new features. Besides,
the edge appearance itself provides rich information. If the
edge is shaky with noisy curvatures, it is unlikely to be an
occlusion boundary. Therefore we also histogram the dense
SIFT words along each edge. Together they form the new
features for the occlusion boundary detection.
Enforcing the closed loop: Furthermore, occlusion bound-
aries are not independent. They usually enclose one object
and form a closed loop, even when the object is occluded
by others. For example, in Fig. 5 (a) segment C is enclosed
by edge e2 and e3, which together form a closed loop, even
though e2 belongs to segment B. Also the edges inside a
loop are less likely to be actual occlusion boundaries.

We explicitly model this property as follows: first we
classify each edge and get its belief for the occlusion bound-

(a) (b) (c)
Figure 6. (a) The local occlusion boundary detection result (best
view in color). Heat map indicates the beliefs for the occlusion
boundary, and the redder the higher. (b) We gradually examine
the edges with high beliefs and retrieve the loop. (c) We lower the
beliefs of the edges that connected inside to this loop.

ary, shown in Fig. 6 (a). Since each edge connects two junc-
tions at its two ends, we gradually group these junctions to
retrieve the loop: initially, each junction in the image forms
an individual group. Then we sort all the edges by their
predicted beliefs for the occlusion boundary in descending
order. After that, we examine each edge from the top belief
and its two junctions: if they belong to different groups, we
merge them. Otherwise, we find a closed loop with the cur-
rent maximum predicted belief. If the loop has the size L
larger than a minimum requirement Lmin, we set the beliefs
for all the edges l that form the loop as bnew =

∑
l bl/L,

and lower beliefs by T of the edges connected inside to this
loop. The algorithm stops until we examine all the edges
with beliefs larger than Bmin. We also enforce the long
edges in a similar way: we group the neighboring edges if
they share similar directions, and enhance their beliefs for
the occlusion boundary if the group size is large enough.

6. Experiments

We experiment on three different datasets: a synthetic
dataset (syn), the occlusion boundary dataset provided in
[7] (occ), and our depth order dataset (d-order). Quantita-
tively we evaluate the depth ordering results by the ordering
accuracy: for any two neighboring segments in the image,
we examine whether their depth orders are correctly labeled
comparing to the ground truth. We compare our final depth



ordering algorithm (Global) with the following approaches:

BF: uses the boundary features proposed in [7].
JA: We re-implement the algorithm proposed in [13] that

orders the depth mainly by angles within a junction.
pBF: uses the proposed boundary features.
pJF: uses the proposed junction features.

Com: uses the combined the features. The above methods
share the same depth reasoning in [13] that deletes the
loop in the depth order graph by the lowest local pre-
dicted belief.

Global: This is our full algorithm. We use the combined fea-
tures in Com and the proposed MRF graph model to
ensure the global depth consistency.

We color each segment by its depth order in the image
to visually display the results. Segments in front are darker
(more black), and occlude the segments that are brighter
(more white). Note that since we don’t estimate the abso-
lute depth, but the relative depth order, the absolute color
value does not hold a specific meaning. The relative color
between segments is more important. Segments are marked
by a red “x” if incorrectly labeled in the depth ordering2.

Generating the object segments is a key step that pre-
cedes depth ordering. Since we rely on the occlusion
boundary detection to generate the segmentation, we also
quantitatively evaluate the average precision for different
occlusion boundary detection algorithms. We compare our
proposed algorithm loop with the following approaches:

bfeat: uses the low-level boundary features from [7] 3.
pfeat: uses the proposed BoW features in addition to bfeat.

graph: uses pfeat and a graph model (MRF) to enforce the
continuity of occlusion boundaries, similar to [7].

loop: This is our full algorithm that uses pfeat and explicitly
enforces closed-loops and long edges.

Synthetic dataset: We synthetically create a dataset to
evaluate the depth ordering algorithms. For this dataset,
we randomly place 6 to 10 abstract segments in a image,
including rectangles, circles, ellipses etc, with different col-
ors and sizes. Shapes placed later will overlay the previous
ones, and in this way we get the ground truth ordering. Ex-
amples are shown in 7. We generate 2000 synthetic images,
and use half of them for training the depth ordering algo-
rithms, and the other half for testing.

This dataset has perfect segmentation, which enables us
to directly compare the performance of different depth or-
dering algorithms. The depth ordering accuracies are pre-
sented in Table 1. The new features on boundaries (pBF)

2 In some cases, “incorrect depth” is a relative term between two seg-
ments, and we arbitrarily mark one of them.

3To follow the convention in this paper and make a fair comparison, in
this step we do not compare with the result from the high-level geometric
context labels, which are also often inapplicable in the settings.

Figure 7. Examples of our synthetic dataset: color images are on
the left and the ground truth depth orders are on the right, colored
as the front segments are darker.

(a) (b) (c)
Figure 8. (a) Result from Com. Combined features can correctly
label the depth order (darker segments are in front). (b) Results
from pJF. (c) Results from pBF. Segments are marked by x if
incorrectly labeled in the depth ordering.

(a) (b) (c)
Figure 9. Our global reasoning algorithm can provide better depth
ordering especially in complicate scenarios. (a) The ground truth
depth ordering. (b) Result from Com. (c) Result from Global.
Incorrectly labeled segments are marked by x.

and junctions (pJF) improve around 3% in accuracy over
the baseline feature sets (BF and JA), showing the effec-
tiveness of our proposed features. Also combining them
together (Com) achieves better performance over the indi-
vidual feature set (10% over pBF and 4% over pJF). Our
final algorithm (Global) has a clear advantage comparing
to all the baselines. Overall Global achieves around 10%
improvement over the previous works BF and JA.

Fig. 8 illustrates the advantage of the combined features.
With only the junction features, we cannot infer the depth
order between the two rectangles, since their potential junc-
tion that can give the right depth order has been blocked,
and the result is shown in Fig. 8 (b). On the other hand,
using only boundary features makes it impossible to deter-
mine the depth order between the ellipse on the top and
the rectangle below it, since the boundary in between is a
straight line, and the result is shown in Fig. 8 (c). However,
when combining these two features, we can correctly label
the depth ordering of this image, as shown in Fig. 8 (a).

Our proposed Global algorithm outperforms the base-
lines, especially in the complicate cases when a segment
interacts with multiple neighbors. Fig.9 shows one exam-
ple that when Global (shown in (c)) gives in a better depth
ordering than Com (shown in (b)). The incorrectly labeled
segment has four junctions with the segment behind it, and



Figure 11. Example images from our depth order dataset

they may produce inconsistent prediction. However after
using the proposed model to enforce the consistency, we
can produce a corrected depth order graph.
Occ dataset: We also experiment on the occlusion bound-
ary dataset from [7]. This dataset includes 100 outdoor
images with human-labeled segments and their quantized
depth. For these natural images, object segmentation is
the first step before depth ordering. Therefore two types
of experiments are conducted: 1) we order the depth of
manually-labeled ground-truth segments (-gt). 2) We auto-
matically segment the image by using the occlusion bound-
ary detection result, and then perform depth ordering (-
auto)4 5. We use 50 for training the occlusion boundary
classifier and the depth ordering algorithms, and the other
50 for testing.

Table 1 shows the accuracies in depth ordering on occ
dataset, and example results are presented in Fig. 10. Since
the variance in this dataset is large comparing to the limited
number of training samples (only 50), the margins of the
proposed algorithms over the baselines are smaller. How-
ever, still pBF and pJF outperform the baseline features BF
and JA by 1.5% and 3%. Com further improves the result
by 1%, and Global produces the best result.

For generating the segmentation, we show the average
precision of the occlusion boundary detection in Table 2.
The proposed BoW features give a 5% boost in detecting
the occlusion boundary. Enforcing the closed loop (loop)
marginally outperforms the baseline that uses the graph
model (graph) and locally enforces the continuity. We be-
lieve the small increase is because this dataset is quite chal-
lenging. The output occlusion boundary result from the
low-level feature pfeat is not reliable enough, and thus en-
forcing the loop may not be significantly better.
D-order dataset: Furthermore, to evaluate the depth order-
ing algorithms on natural images, we collect a new depth
order (d-order) dataset. Various daily objects are placed to
occlude each other in different configurations and scenarios.
The dataset includes 1087 images. Each object is manually
segmented, and its depth is acquired by using the Kinect
sensor. Exemplar images are shown in Fig. 11.

We also use half of them for training and the other half
for testing, and conduct two experiments: depth ordering
on the ground-truth segmentation (-gt), and automatically

4The ground truth depth of each segment from the auto-segmentation
is achieved by averaging the depth value over all the pixels in the segment.

5for this experiment only, geo-context information provided in [7] is
necessary in order to generate usable segmentation.

(a) (b) (c)

(d) (e) (f)

Figure 12. Occlusion boundary detection result (best view in
color): (a) the ground-truth occlusion boundary. (b) Depth image
from Kinect. (c) Occlusion boundary detection result from bfeat.
Red in color indicates higher beliefs for the occlusion boundary.
(d) to (f) are results from (d) pfeat, (e) graph. and (f) loop.

(a) (b) (c)

(d) (e) (f)
Figure 13. Depth orderings from auto-segmentation. (a) to (f) are
results from (a) BF, (b) JA, (c) pBF, (d) pJF, (e) Com, (f) Global.

generated segmentation from the occlusion boundary detec-
tion (-auto). The ground truth depth order of each segment
(from either human-labeled or auto-generated) is achieved
by averaging the depth values within this segment.

Table 1 shows the depth ordering accuracy. The new fea-
tures improve the performances from 1% to 3% over the
baselines, and the combined features (Com) additionally
boosts at least 4% in accuracy. Global gives the best per-
formances in all the scenarios, achieving 10% improvement
over the previous works in some cases. Fig. 10 and Fig. 13
show the ordering results.

Table 2 presents the average precision of the occlusion
boundary detection, and Fig. 12 shows the example results.
Our proposed new features outperforms the previous work
by 7%, and our final algorithm (loop) produces additional
3% higher average precision comparing to the conventional
graphical model (graph). More importantly, since our al-
gorithm explicitly encourages the loop, it generates more
reliable object segmentation for depth ordering.



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10. Results from occ datasets with ground-truth segmentation (top row), auto-segmentation (middle row), and from our depth order
dataset with ground-truth segmentation (bottom row). (a) Input image. (b) Ground-truth segmentation and depth. (c) to (h) are results
from different methods: (c) BF. (d) JA. (e) pBF. (f) pJF. (g) Com. (h) Global. Incorrectly labeled segments are marked by a red x.

Table 1. Average depth ordering accuracy (in %) of different meth-
ods on synthetic dataset (syn), occ dataset (occ), and our new
depth order dataset (d). “-gt” : depth ordering is performed on
the ground-truth segmentation. “-auto”: the segmentation is auto-
generated by the occlusion boundary detection.

BF JA pBF pJF Com Global
syn 81.0 86.6 83.0 89.9 93.7 95.4

occ-gt 70.9 63.3 72.4 66.9 73.2 73.3
occ-auto 66.4 58.2 69.5 64.5 69.4 71.9

d-gt 82.3 72.5 83.4 75.5 89.2 91.7
d-auto 75.0 62.2 75.3 68.3 79.3 80.3

Table 2. Average precision (in%) for the occlusion boundary de-
tection on occ dataset (occ-ap) and our depth order dataset (d-ap).

bfeat pfeat graph loop
occ-ap 51.7 57.0 58.3 58.6
d-ap 65.5 73.0 75.7 78.3

7. Conclusion

We present a learning based framework for depth order-
ing. We exploit new features on boundaries and junctions,
and integrate them to a better feature set for depth ordering.
Furthermore, we propose a graph-based algorithm to en-
force the global consistency in the depth ordering. We mod-
ify occlusion boundary detection algorithm to favor closed
loops so that it is better suited for the ordering task at hand.
We also collected a new dataset for the depth ordering task.
Experiments in various scenarios show our proposed algo-
rithms achieve better performances than the baselines.

For future work, we can further study how the depth or-
dering helps with segmentation. Besides, we can employ
our algorithm in tasks such as object recognition and scene
understanding.

References
[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. From contours to

regions: An empirical evaluation. In CVPR, 2009. 1
[2] H. G. Barrow and J. M. Tenenbaum. Retrospective on ”interpreting

line drawings as three-dimensional surfaces”. AI, 59, 1993. 1
[3] F. Cole, K. Sanik, D. DeCarlo, A. Finkelstein, T. Funkhouser,

S. Rusinkiewicz, and M. Singh. How well do line drawings depict
shape? ACM Transactions on Graphics, 28(3), Aug. 2009. 1

[4] M. Dimiccoli and P. Salembier. Exploiting T-junctions for depth
segregation in single images. In ICASSP, 2009. 2

[5] D. Hoiem, A. A. Efros, and M. Hebert. Closing the loop in scene
interpretation. In CVPR, 2008. 1

[6] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in perspective.
IJCV, 80(1), 2008. 1

[7] D. Hoiem, A. A. Efros, and M. Hebert. Recovering occlusion bound-
aries from an image. IJCV, 91(3), 2011. 2, 3, 5, 6, 7

[8] T. Joachims. Making large–scale SVM learning practical. In Ad-
vances in Kernel Methods — Support Vector Learning. MIT Press,
1999. 4

[9] F. F. Li and P. Perona. A bayesian hierarchical model for learning
natural scene categories. In CVPR, 2005. 1, 5

[10] B. Liu, S. Gould, and D. Koller. Single image depth estimation from
predicted semantic labels. In CVPR, 2010. 1, 2

[11] D. G. Lowe. Distinctive image features from scale-invariant key-
points. IJCV, 60(2), 2004. 3

[12] B. Packer, S. Gould, and D. Koller. A unified contour-pixel model
for figure-ground segmentation. In ECCV, 2010. 1

[13] G. Palou and P. Salembier. Occlusion-based depth ordering on
monocular images with binary partition tree. In ICASSP, 2011. 2, 6

[14] X. Ren and C. Gu. Figure-ground segmentation improves handled
object recognition in egocentric video. In CVPR, 2010. 2

[15] X. F. Ren, C. C. Fowlkes, and J. Malik. Figure/ground assignment in
natural images. In ECCV, 2006. 2

[16] A. Saxena, M. Sun, and A. Y. Ng. Make3D: Learning 3D scene
structure from a single still image. PAMI, 31(5):824–840, 2009. 1, 3

[17] P. Sundberg, T. Brox, M. Maire, P. Arbelaez, and J. Malik. Occlusion
boundary detection and figure/ground assignment from optical flow.
In CVPR, 2011. 2

[18] D. Waltz. Generating semantic descriptions from drawings of scenes
with shadows. Technical Report AI271, MIT, 1972. 1


