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Abstract

A framework is presented for refining GPS location and
estimate the camera orientation using a single urban build-
ing image, a 2D city map with building outlines, given a
noisy GPS location. We propose to use tilt-invariant vertical
building corner edges extracted from the building image.
A location-orientation hypothesis, which we call an LOH,
is a proposed map location from which an image of build-
ing corners would occur at the observed positions of corner
edges in the photo. The noisy GPS location is refined and
orientation is estimated using the computed LOHs. Exper-
iments show the framework improves GPS accuracy signif-
icantly, generally produces reliable orientation estimation,
and is computationally efficient.

1. Introduction

Urban localization and navigation have become an im-
portant application for many mobile phones. To accomplish
that, many smartphones have an embedded GPS (Global
Positioning System) receiver. However, there are several
deficiencies with this localization approach. First, GPS is
prone to inaccuracy in several situations, including the ur-
ban canyons between buildings in cities. The outdoor accu-
racy of mobile phone GPS is only 12.5 meters [17]. Sec-
ondly, GPS does not indicate the direction that the user is
facing, even if perfect localization was achieved.

We address these two problems of GPS by an image-
based localization approach. In our approach, we first ask
the user to take an image of any nearby building. Then we
localize the camera position and solve for the camera orien-
tation, with the layout and structure of buildings from a sim-
ple 2D plan view city map. 2D maps are widely available in
many cities, generally well maintained and updated, and in-
corporate sufficient building structural information for our
task. In summary, the goal of our work is to refine the po-
sition of a cameras GPS location and estimate the camera
pose, based on detecting vertical corner edges from a sin-
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Figure 1: (a) The input building image. (b) Identified ver-
tical corner edges of the building. (c) The 2D region map
with building outlines and the noisy GPS location. (d) The
calibrated location and estimated camera orientation.

gle cuboid building image and matching these to a 2D city
map with building outlines. Our method does not require
the overhead of computing or storing appearance descrip-
tors on buildings or image patches. Instead, we find edges
in the image that are likely to exhibit themselves as build-
ing corners on a 2D map with building outlines. Figure 1
illustrates the inputs and outputs of our system.

We conduct experiments on 263 street images collected
from 11 unique locations. The results show that our frame-
work is able to accurately perform the task and improve
GPS accuracy significantly, suggesting potential applica-
tions for mobile localization for tourists. We also test our
framework on a dataset of images of apartment buildings.

The contributions of this paper are:

1. A framework for refining GPS location and
finding camera orientation with a 2D map and a
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Figure 2: An overview of our framework.

single image.

2. The Tilt-Invariant Corner Edge Position (TI-
CEP) feature that is extracted from building im-
ages and is useful in computing high accuracy lo-
cations.

3. A method for finding Location Orientation Hy-
potheses (LOHs) that represent possible solutions
for camera location and orientation by finding ge-
ometric correspondences between corners on the
2D map and extracted TICEP features. From
these LOHs, one is selected based on proximity
to the initial GPS estimate as the final result.

2. Related work

Location-related research has long been an important
topic in the computer vision community, perhaps begin-
ning with a challenge to the vision community in 2005
[14]. Hays et al. [9] describes estimating GPS locations
from images, using nearest neighbour matching of low- and
mid- level appearance features to a large geo-tagged image
database. In contrast, our work addresses refining the geo-
position of an image that has an initial GPS estimate.

Another approach is based on the structure-from-motion
(SfM) framework, for instance the method Li et al. pro-
posed in [10]. Although their method shows significant ac-
curacy, it requires a huge amount of images and computa-
tional resources, essentially requiring that the recognition
database be stored in the cloud. Further, there exist dif-
ficulties in keeping the reconstructed model up-to-date. In
contrast, our approach does not require a database of feature

appearances. In a way, our approach can be seen as an ex-
tremely simplified variant of SfM, where we put more value
on efficiency because the method is seeded with a GPS po-
sitional estimate.

In Babound et al. [2], camera pose estimation is per-
formed by finding matches between mountain outlines and a
terrain map. In the work of Schindler et al. [13], image lines
are used as a geometric feature to construct building mod-
els. The success of these methods suggest the effectiveness
of interpreting the environment in view of simple structural
lines, which inspires us to use vertical corner edges to rep-
resent building structures in images.

Park et al. [11] proposed a method of estimating location
and orientation of camera by matching the ground view im-
age with a satellite image. Their work can be seen as an
intermediate between feature-based matching and symbolic
map matching. The work of Ramalingam et al. [12] can be
also categorized similarly as in their framework an omni-
skyline image is used in an analogous way as the satellite
image of [11].

Other relevant work include the work of Chen et al. [5]
and Baatz et al. [1]. Though their works are quite different
from ours as they mainly considered image features, they
show the effectiveness of using vanishing points and recti-
fication for location recognition in urban area.

The most relevant work is reported in [4] by Cham et al.,
where vertical and horizontal building edges are extracted
from an omnidirectional image comprised of four direc-
tional images. From these edges, structural fragments de-
scribing a piecewise linear contour of the building are pro-
duced and used for searching in a region of 2D map. This
inspires us to take a further step: refine the GPS position by
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discovering structures from a single image and referring to
a map. The framework in [4] cannot solve the GPS refine-
ment problem well. First, in [4] the camera tilt (elevation)
is not estimated and considered in the localization process.
This is fine with large scale block searching and rough local-
ization tasks as shown in [4], but it is problematic to achieve
a precision higher than GPS. Second, four directional im-
ages are required in their method, which causes more user
operation. In our method, we solve the tilt problem by using
the TICEP feature, and we need only one image.

3. Approach
Our algorithm takes a single building image, a 2D city

map with building contours, and a noisy GPS reading as
inputs. For the building image, we extract Tilt-Invariant
Corner Edge Position (TICEP) features by sequentially ap-
plying vanish point estimation, corner edge identification,
and tilt angle normalization. Next, we retrieve the nearby
region map of the GPS reading from the whole city map
database. Using the nearby region map and computed TI-
CEP features, we determine multiple Location Orientation
Hypotheses (LOHs) in the nearby region. Essentially, an
LOH is a geographic position and orientation from which a
camera could capture a nearby building that will have cor-
ners aligning with the observed edges in the image. Finally,
the GPS location is refined using the LOHs, and the orienta-
tion of the camera is estimated. Figure 2 shows an overview.

3.1. Computing TICEP features

The procedure of computing TICEP features can be di-
vided into three stages: estimating vanishing points, iden-
tifying vertical building corner edges, and normalizing the
tilt angle.

We first introduce several notations that will be used. For
vanishing points (vp), we denote the vertical vp and the ith

horizontal vp by vv and vi. As we are particularly inter-
ested in a single Manhattan building, we expect two hori-
zontal vanishing points [6]. We use lv and li to denote line
segments labeled to vv and vi. Iij is defined to be the set of
all intersection points of the extensions of any pair of lines
taken from two different horizontal vp-labeled line segment
sets li and lj , i ̸= j. Si denotes one image segment.

3.1.1 Estimating vanishing points

Vanishing points are used for detecting the corner lines, and
for estimating the camera focal length. To detect vanishing
points of the input image, we perform the following pro-
cessing steps.

Image segmentation: As in our intended application,
we ask the user to take an image of any nearby building, it
is reasonable to assume that the building is generally cen-
tered within the frame of the image. To reduce the occur-
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Figure 3: (a) An example of selected central segments. (b)
An example of detected line segments. (c) An example of
vp detection and vp-labeled line segments, different colors
indicate different labels.

rence of false vanishing point detections, we first perform a
segmentation with the intent of removing non-building seg-
ments from the image periphery. To do this, we perform
a standard marker controlled watershed segmentation and
select segments near the image center, Figure 3a shows an
example.

Line segment detection (LSD): We use the algorithm
introduced by Gioi et al. [16] to detect line segments, de-
noted by l. Nl denotes total number of line segments. Fig-
ure 3b shows an example of LSD.

Vanishing point estimation: We adopt the method in
[15] and [18], which are based on the J-Linkage model. Ex-
periments show that this method is highly efficient and ac-
curate for man-made environments [15], which are exactly
the properties we want for our algorithm. Figure 3c shows
an example of estimated vanishing points for an image.

3.1.2 Identifying vertical building corner edges

We seek lines in the image that correspond to building cor-
ners that will correspond to corners on the building footprint
of the 2D map, rather than merely co-planar vertical lines of
two facades of the same building.

The identification of building boundary corner edges is
now described. We expect that boundary corner edges typi-
cally exhibit a large gradient in the horizontal direction, and
have different colors (building color and background color)
on either side of the boundary. To find these boundary cor-
ner edges, we first rectify the input image vertically using
the estimated vps, and then we detect image columns that
are likely to align with boundary corner edges using a score
computed as
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Figure 4: An example of identified vertical corner edges,
blue indicated boundary corner edges, red indicates an in-
tersecting corner edge, and green stands for the horizon.

ScrBCE(j) = Scrc(j) + Scrp(j) + Scrl(j) (1)

where j is the column coordinate in the vertically recti-
fied trimmed image, Scrc, Scrp, and Scrl are respectively
scores of the horizontal pixel color gradient, the number of
pixels that change segment label horizontally, and an indica-
tion of whether the column contains no horizontal lines and
a neighboring column does contain at least one horizontal
line. For computing Scrl, the set of horizontal lines is se-
lected from all horizontal vp-labeled line sets that exceed
100 pixels in length. After boundary corner edges are iden-
tified, we classify them into left boundary corner edges and
right boundary corner edges from the consistency of color,
column pixel total number, and coverage of long horizontal
lines.

Intersecting corner edges are identified after boundary
corner edges. Inspired by [4], we define intersecting cor-
ner edges as a vertical vp-labeled line segment that inter-
sects with horizontal line segments belonging to 2 different
vps. In addition, we require that only one intersecting cor-
ner edge exists between a left boundary corner edge and a
right boundary corner edge. The longest line is selected if
more than one candidate is found. Figure 4 shows an ex-
ample of identified vertical corner edges. We then compute
the corner positions as the intersections of identified corner
edge and the horizon (purple circles in Figure 4). Denote
the ith corner edge and corner edge position as ei and pi,
we have pi = ei × (v1 × v2), i = 1, , Np.

It should be noticed that as real world images are more
complex than ideal examples, sometimes our algorithm fails
to identify all the corner edges correctly. However, with the
vanishing points that can be estimated by our algorithm ac-
curately, the user can manually correct an identification re-
sult by a single tap. We also show in Section 4 that our algo-
rithm is able to identify corner edges with 85.73% accuracy,
which means that our algorithm can generally give satisfac-
tory identification results automatically and large amount of
user effort can be saved.

Figure 5: Diagram of computing camera tilt angle (with ro-
tation angle rectified).

Figure 6: Diagram of normalizing the tilt angle. This is
Figure 5 looking from top to bottom.

3.1.3 Normalizing the tilt angle

The computed corner edge positions of a image are variant
to the camera tilt angle. We now describe the normalization
of tilt angle. The first step is to estimate several camera
parameters: rotation angle θR, focal length f , and tilt angle
θT .

We first compute the rotation angle using a procedure
similar to the method in [8]. Then we rectify the coordinates
of all vps and intersecting points according to the computed
rotation angle, so that the vertical vp vv now lies on the
images y-axis, and the two horizontal vps v1 and v2 lie on
a line parallel to the x-axis. Also all the intersecting points
now have the same y-coordinate.

After we neutralize the camera rotation, the focal length
can be easily obtained as [3]

f =
√
−vvyv1y (2)

It should be noted that when image has no tilt we have
vvy = −∞, the focal length cannot be computed and must
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be obtained from the image format file. As shown in Figure
5, the tilt angle of the camera can be computed as

tan(θT ) =


h−

√
h2−4f2

2f when |vvy| > |v1y|
h+

√
h2−4f2

2f when |vvy| ≤ |v1y|
0 when vvy = −∞

(3)

where

h = |vvy|+ |v1y| (4)

As shown in Figure 5, the edge positions pi are affected
by the tilt angle, thus we normalize the tilt angle and com-
pute the TICEP as

TICEPi = pix cos(θT ) (5)

Figure 6 shows a diagram for the tilt angle normaliza-
tion. We only care about the horizontal coordinates of the
intersecting points as they are sufficient to demonstrate the
distribution of corner edges.

Now that we have finished all procedures related to the
building image, and an image is represented as the focal
length and TICEPs, i.e., Image = {f,TICEP }.

Except for the orientation angle θO, all the parameters of
camera pose have been estimated. θO will be estimated in
Section 3.2 together with the location.

3.2. Refining GPS by LOH

For the entire city map, we first extract the region map as
the 200m-by-200m square region centered at the noisy GPS
location. The range of the region map is generally far larger
than the noise of GPS so that the correct location is included
in the region map with high confidence.

We now describe the computing of an LOH. Assume
we know the correspondence of the computed TICEP =
{TICEPi} to the corners in the map. The locations of the
corresponding map corners are ch = {chi}. An LOH is de-
fined as the particular location and orientation in the map,
from where the corners in ch can be seen in the way that
TICEP are distributed. To describe an LOH, its loca-
tion and orientation are needed: LOH = (xLOH ,nLOH),
where xLOH is the position on the map, and nLOH is a
normalized orientation vector.

To compute the parameters of an LOH associated with
corners of a building footprint, we minimize the total de-
viation between the positions where corners would be seen
in the image plane from the view of a potential LOH and
TICEPs, i.e., the summation of distances between the inter-
section of LOH-corner line and image plane and location of
the corresponding corner edges on the image plane:

(xLOH ,nLOH) = argmin
(x,n)

∑
1≤i≤Np

||qi − interi||2 (6)

where

interi = (x× chi)× (q1 × q2) (7)
qi = x+ fn+ TICEPin⊥ (8)

The minimization problem is not linear. As one LOH
has three degree of freedom, when Np = 3 a precise multi-
nomial approximation can be found for the two coordinates
and one orientation angle by taking a Taylor expansion and
solving closed-form equations. When Np > 3, as we al-
ready have an efficient solution for three corners, RANSAC
[7] could be applied to solve the problem, although this will
be implemented in the future. At present, all possible sets
of three adjacent corners from each building outline are se-
lected to solve for a candidate LOH. We find, in general,
the strategy of using 3 corners is reliable, and results are
given in Section 4. Figure 7a shows an example of the set
of candidate LOHs that our algorithm finds.

From Figure 7a, it can be seen that not all LOHs are
reasonable: some LOHs are indoor, some LOHs have their
visibility blocked by another building so they are not able
to have visual of the corners they are matching with. To
eliminate those bad LOHs, we perform a visibility check.
We exam the visibility of a LOH by checking if its sightlines
to the matched corners intersect with any building walls,
and, if so, that LOH is eliminated.

As the last step, we take the visible LOH that is nearest
to the noisy GPS location. In practice we find the correctly
corresponded LOH is often selected when the noise of GPS
is not too large. A major cause of deviation from the cor-
rectly corresponded LOH to the correct location is the accu-
racy of vertical corner edge positions in the building image,
and that accuracy can be achieved with fairly small error.
Thus our algorithm is able to produce results where the cor-
rectly corresponded LOH deviates from the correct location
by only a few meters. Figure 7b shows visible LOHs and
the red color indicates the area that if the noisy GPS falls
within it, the correctly corresponded LOH will be selected.

4. Experiments
To evaluate our framework, we first collect 390 images

using Google Street View from 11 unique locations in New
York City to simulate user input images. We apply our
TICEP feature extraction procedure on each image. We
define a successful detection as all detection results devi-
ate less than 20 pixels from the ground truth. Our algo-
rithm identifies 1003 corner edges successfully out of all
1170 corner edges (85.73%), also in 263 images (67.44%)
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(a) (b)

Figure 7: (a) An example of solved LOHs (blue), correct lo-
cation and orientation (red). (b) Example of visible LOHs,
and area when GPS falls in the correctly corresponded LOH
can be found.

all the edges are correctly identified. It should be noted
that we detect three corner edges in each image, in prac-
tical applications the detection can be improved signifi-
cantly with very little user aid. To measure the perfor-
mance of GPS refinement and orientation estimation using
TICEP+LOH, we use the 263 images with successful de-
tection for the next experiment. The 2D region maps with
building outlines are collected from here.com. We imple-
ment the framework using a mixture of c and Matlab, all
the experiments are tested on an Intel Core i5 2.40GHz PC.
The average run time of our whole framework is 1.7 sec-
onds per image. Finally the dataset and code are available
at chuhang.github.io/vision.html.

For each image and its corresponding region map, we
first test the location and orientation error of the correctly
corresponded LOH (i.e., the LOH computed with correct
correspondence between building map corners and detected
TICEPs) to the ground truth location and orientation pro-
vided by Google Street View. We compare our method with
the method using the VCLH feature in [4] (corner edge po-
sitions without considering the influence of tilt angle) in-
stead of our proposed TICEP feature. We compute the Root
Mean Square Error (RMSE) of all 263 images, as listed in
Table 1. Our method outperforms the compared method in
both location and orientation. The RMSE of location of the
correct LOH in our method is significantly smaller than the
accuracy of a common mobile phone GPS in outdoor urban
area (12.5 meters according to [17]). That explains why our
method is able to improve the accuracy of GPS. In the first
and second row of Figure 9, we show some examples of this
experiment.

We have shown why our method is able to refine GPS,
we now conduct the main experiment where we solve all
LOHs among the map and combine our method with simu-
lated noisy GPS to find the final refined location and ori-
entation. To simulate the noise of GPS, we use a gaus-

(a) (b)

(c)

Figure 8: Localization and orientation estimation results of
different methods. (a) shows location error. (b) shows ori-
entation error. (c) shows the ratio of samples where the cor-
rectly corresponded LOH is selected. σ measures the noise
of GPS.

Table 1: RMSE of location and orientation of the correctly
corresponded LOH of different methods.

Proposed Method Using VCLH in [4]
Location 2.48m 18.68m

Orientation 1.6◦ 5.9◦

sian distributed noise with different standard deviations as
suggested in [17]. We also compare our method with the
method using VCLH feature in [4]. We experiment with
different GPS noise standard deviation σ and 2000 noisy
GPS locations are simulated for each image, so for each
value σ we have 263 × 2000 test samples. Figure 8 shows
the results.

Figure 8a show that when GPS has low noise, doing
nothing (i.e., using the GPS estimate) produces the most ac-
curate estimate. When the noise of GPS becomes larger, our
method begins to outperform pure GPS by refining the noisy
GPS to the correctly corresponding LOH. The average er-
ror of our method also increases as GPS noise increases,
because as GPS uncertainty increases, it is more likely that
the wrong LOH is closest to the GPS estimate (see the third
row of Figure 9). This is also described in Figure 8c. When
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Figure 9: Top row: example building images with identified vertical corner edges. Middle row: 2D map with correctly
corresponded LOH of images from same location (blue), ground truth location (red). Different images from the same location
vary in ground truth orientation. Bottom row: The yellow dot shows the ground truth location. The red pixels show the
locations to which the nearest LOH is the correctly corresponded LOH, so when noisy GPS falls in the red area the correctly
corresponded LOH is selected (which we term as refinable area). These maps are averaged across all images of the same
location.

Figure 10: Heat maps of RMSE for every possible location on the map, sampled every 5 meters. We consider only outdoor
locations. Pure blue means this location is either an indoor location or a location without any building (in any direction) that
has at least three visible corners. When the user is at the blue area our method does not work, when the user is at the red area
our method works well and produces small RMSE for location. The heat maps correspond to the maps in Figure 9.

using the VCLH feature in [4] where the influence of tilt an-
gle is omitted, performance degrades and an accuracy that
is higher than pure GPS cannot be achieved (as shown in
Figure 8a). According to [17], the general RMSE of mobile
phone GPS is 12.5 meters. Under such a noisy condition,
our method is able to reduce the RMSE to 6.89 meters and
the orientation estimate has average error 17.96◦.

Figure 8b also indicates a drawback of both methods.
When GPS is accurate, the correctly corresponded LOH
is selected so the orientation estimation is fairly accurate.
However, in cases such as the first and third column of Fig-
ure 9, due to the layout of buildings, the correct location can
be near to the border of the refinable area. That means there
exists an incorrectly corresponded LOH near the correct lo-
cation. This does not bring too much trouble to location
refinement because that incorrectly corresponded LOH is
not far from the correct location, but the estimated orienta-
tion can be affected significantly because incorrect corner
matches are used. It should be noted that this problem is
unavoidable unless increase the number of corner edges that
are considered or use other features.

To further measure the generality of our framework, we
conduct another experiment that estimates an upper bound

on the performance of our method. For every outdoor loca-
tion in the region map, we assume we have a pseudo image
taken at that location of the nearest building with at least
3 visible corner edges, and measure the location RMSE of
our refined result using 2000 simulated noisy GPS readings
from a 12.5m gaussian noise distribution. In Figure 10 we
show heat maps of RMSE. Figure 12 shows the distribution
of RMSE errors for location estimation. For all outdoor lo-
cations of all our collected region maps, the percentage of
area with at least one building with three visible corners is
80.6%, and the mean RMSE for all qualified locations is
6.70 meters. This indicates that for a large portion of ur-
ban environment, our method can be applied to refine noisy
GPS location.

As the last experiment and a full demonstration of our in-
tended application, we take building images in an apartment
area using a mobile phone. Then we apply our framework
with user aid in correcting mistakes in the corner edge iden-
tification step. We simulate 2000 noisy GPS locations for
each image using a gaussian distribution with the standard
12.5 meter RMSE. Figure 11 shows the results and Table 2
lists statistics.
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Figure 11: Left: Building images and their correctly corresponded LOHs in the 2D map, numbers show the RMSE of location
and orientation. Right: Images, refinable areas (red), 38%, 68%, 95% of noisy GPS samples (concentric circles).

Figure 12: Histogram of RMSE of all outdoor locations.

Table 2: Statistics for the last experiment.

% of selecting
correctly Location RMSE Orientation RMSE

corresponded LOH
71.52% 6.55m 12.7◦

5. Conclusion

We have presented a framework for refining a noisy
GPS location and estimating the camera orientation using
a building image, and a 2D map. We extract Tilt-Invariant
Corner Edge Position features from the image, and identify
plausible camera locations and orientations on the map that
would result in images having lines at the observed posi-
tions. A set of Location-Orientation Hypotheses are pro-
posed to describe the interaction between extracted features
and the map effectively. Experiments show that our frame-
work is able to improve accuracy of GPS, and determine the
cameras orientation on the map. This framework could be
useful for tourist navigation in an urban environment.
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