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Abstract. In this paper an evaluation of visual speech features is per-
formed specifically for the tasks of speech and speaker recognition. Unlike
acoustic speech processing, we demonstrate that the features employed
for effective speech and speaker recognition are quite different to one an-
other in the visual modality. Area based features (i.e. raw pixels) rather
than contour features (i.e. an atomized parametric representation of the
mouth, e.g. outer and inner labial contour, tongue, teeth, etc.) are in-
vestigated due to their robustness and stability. For the task of speech
reading we demonstrate empirically that a large proportion of word unit
class distinction stems from the temporal rather than static nature of the
visual speech signal. Conversely, for the task of speaker recognition static
representations suffice for effective performance although modelling the
temporal nature of the signal does improve performance. Additionally,
we hypothesize that traditional hidden Markov model (HMM) classi-
fiers may, due to their assumption of intra-state observation indepen-
dence and stationarity, not be the best paradigm to use for modelling
visual speech for the purposes of speech recognition. Results and discus-
sion are presented on the M2VTS database for the tasks of isolated digit,
speech and text-dependent speaker recognition.



2

1 Introduction

It is largely agreed upon that the majority of visual speech information stems
from a subject’s mouth [1]. The field of audio-visual speech processing (AVSP)
is still in a state of relative infancy, during the period of its short existence a
majority of the work performed has been towards the goal of finding the best
mouth representation for the tasks of audio-visual speech and speaker recogni-
tion. Usually, these representations are based on the techniques used to initially
locate and track the mouth, due to their ability to parametrically describe the
mouth in a compact enough form for use in statistical classification.

This paper concentrates on the evaluation of area features as opposed to
contour features, due to their robustness and stability. Area based representa-
tions are concerned with transforming the whole input region of interest (ROI)
mouth intensity image into a meaningful feature vector. Contour based repre-
sentations are concerned with parametrically atomizing the mouth, based on a
priori knowledge of the components of the mouth (i.e. outer and inner labial
contour, tongue, teeth, etc.). In a recent paper by Potamianos et al. [2] a review
was conducted between area and contour features for the tasks of speechreading
on a large audio visual database. In this paper it was shown that area represen-
tations obtained superior performance. Area based representations of the mouth
were shown to be robust to noise and compression artifacts and are the mouth
representation of choice in current AVSP work.

It is widely accepted that for acoustic speech and speaker recognition ap-
plications cepstral [3] features work well in both applications respectively. Like
many aspects of acoustic speech processing, this rationale has been applied to
visual speech processing applications with minimal analysis and evaluation of
the validity of such an assumption in the visual modality. In this paper we
explore a number of visual speech representations for the tasks of speech and
speaker recognition and demonstrate that the modelling of visual speech for the
tasks of speech and speaker recognition are different in terms of the features and
classifiers used.

2 A brief review of area based representations

The most common technique used to gain a holistic compact representation of a
mouth is through the use of principal component analysis (PCA) [4], which at-
tempts to find a subspace the main linear modes of variation, on the mouth ROI
intensity image. Linear discriminant analysis (LDA) [5] generates a subspace
based on a measure of class discrimination. LDA representations have become
extremely useful in AV speech [6, 5] and speaker recognition applications. PCA
and LDA are referred to as data driven, as they both require training observa-
tions of mouth ROI images to create their compact representation of the mouth.
Other data-driven transforms have been employed on the mouth region, such as
maximum likelihood linear transform (MLLT) [6] and independent component
analysis (ICA) [7], albeit with minimal improvement to traditional PCA and
LDA techniques.
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Non-data driven transforms have been previously used such as the discrete
wavelet transform (DWT) [2], discrete cosine transform (DCT) [6] or multiscale
spatial analysis (MSA) [8] directly or as pre-processing stage for visual feature
extraction. These non-data driven approaches have the benefit of not being de-
pendent on a training ensemble, but bring minimal a priori knowledge about the
mouth to the problem of visual speech and speaker recognition.

3 Evaluation of Speech Features

The actual evaluation of visual speech features is not an easy task as an inherent
problem with extracting speech features is in getting an accurate measure of how
well a given speech feature works when compared against another. Generally an
accurate measure of the quality of visual features is indicative of how well it
performs in the task it is being used for, which in this case is visual speech
and text dependent speaker recognition. As previously mentioned, only area
features shall be investigated in this paper due to their robustness and ability
to holistically represent the mouth. Data-driven feature extraction approaches
were investigated solely in this evaluation due to their natural ability to bring
a priori knowledge of the mouth to the representation. For purposes of notation
the mouth image matrix I(x, y) is expressed as the vectorized column vector y =
vec(I). The tasks of speech and speaker recognition were tested with the following
visual features,

PCA: in which PCA was used to create a twenty dimensional subspace ΦPCA

preserving the 20 highest linear modes of mouth variation. This feature ex-
traction approach was employed for both speech and speaker recognition.

SLDA: in which LDA was used to create a twenty dimensional subspace ΦSLDA

for the speaker recognition task using a priori knowledge of the subject
classes to generate the 20 most discriminant basis vectors.

MRPCA: in which the mean removed mouth sub-image y∗ is calculated from
a given temporal mouth sub-image sequence Y = {y1, . . . ,yT } such that,

y∗

t = yt − y, where y =
1

T

T∑

t=1

yt (1)

This approach is very similar to cepstral mean substraction [3] used on acous-
tic cepstral features to improve recognition performance by providing some
invariance to unwanted variations. In the visual scenario this unwanted varia-
tion usually stems from subject appearance. Mean-removal PCA (MRPCA)
uses these newly adjusted y∗ mouth sub-images to create a new twenty
dimensional subspace ΦMRPCA preserving the 20 highest modes of mean
removed mouth variation. This approach was first proposed by Potamianos
et al. [2] for improved visual speech recognition performance.

WLDA: in which LDA was used to create a nine dimensional subspace ΦWLDA

for the speech recognition task using a priori knowledge of the word classes
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to generate the 9 most discriminant basis vectors. Mean removal, similar
to the approach used for MRPCA, was first employed to remove unwanted
subject variances from the WLDA feature extraction process.

A compact representation of the mouth sub-image y can be obtained by the
linear transform,

o = Φ
′y (2)

such that o is the compactly represented visual speech observation fea-
ture vector. Illumination invariance was obtained by normalising the vectorised
mouth intensity sub-image y to a zero-mean unit-norm vector. For the gener-
ation of the LDA subspaces, PCA was first employed to preserve the first 50
linear modes of variation, in order to remove any low energy noise that may
corrupt classification performance. For all subspaces, shots one to three of the
M2VTS [9] database were used as training mouth observations, with shot four
being used for testing in the speech and speaker recognition tasks. In all cases
delta (i.e. first order derivative) features were appended to static features.

3.1 Training of hidden Markov models

Hidden Markov models (HMMs) were used to model the video utterances using
HTK ver 2.2. [3]. The first three shots of the M2VTS database were used to train
the visual HMMs with shot four being used for testing. The database consisted
of 36 subjects (male and female) speaking four repetitions (shots) of ten French
digits from zero to nine. In the task of speech recognition the word error rate
(WER) was used as a measure of performance for the ten digits being recognized
in the M2VTS database.

Speaker recognition encapsulates two tasks, namely speaker identification
and verification. Speaker error rate (SER) was used to gauge the effectiveness
of visual features for speaker identification. The SER metric was deemed useful
enough for gauging the effectiveness of visual features in speaker recognition as
good performance in the speaker identification task generally translates well for
the verification task. Due to the relatively small size of the M2VTS database and
the requirement for separate speaker dependent digit HMMs, all speaker depen-
dent HMM digit models were trained by initializing training with the previously
found speaker independent or background digit model. This approach prevented
variances in each model becoming too small and allows each model to converge
to sensible values for the task of text dependent speaker recognition.

3.2 Speech recognition performance

Table 1 shows the WER for the task of digit recognition on the M2VTS database.
Raw PCA features have the worse WER performance out of all the visual fea-
tures evaluated. There is little difference between the MRPCA and WLDA area
representation of the mouth in terms of WER at the normal video sample rate
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of 40ms, with WLDA visual features performing slightly better. Acoustic MFCC
features were also evaluated in Table 1 for comparison with its visual counter-
parts. The train and test sets of each feature type were evaluated in terms of
WER. The difference between train and test WERs is very important as this
gives an indication of how undertrained a specific speech recognition classifier is
using a certain type of feature [10]. The train WER is also very important as it
gives a rough estimate of the lower Bayes error for that feature representation,
with the test WER giving an estimate of the upper Bayes error. Both train and
test errors are essential to properly evaluate a feature set.

There are very large differences between train and test WERs for all visual
feature sets in comparison to the differences seen in the acoustic MFCC feature
set. Additionally, the test WERs for all visual features are quite large, which is in
stark contrast to the acoustic MFCCs which received negligible error. This may
indicate the inherent variability of the chosen visual features is higher than those
found in conventional acoustic features, or that the visual features do not pro-
vide enough distinction between word classes using a standard HMM classifier.
Similar results were received by Cox et al. [10] pertaining to the undertrained
nature of standard HMM based visual speech recognition classifiers.

Initially, one may assume the undertrained nature of the visual HMM classi-
fiers may be attributed to the acoustic modality having four times as many train-
ing observations as the visual modality. This is due to the acoustic speech signal
being sampled at a 10m intervals, with the visual speech signal being sampled
at a coarser 40ms interval. To partially remedy this situation, the visual features
were up-sampled1 to 10ms intervals using simple linear interpolation. Inspecting
Table 1 one can see that the WER increases when testing is performed on the
interpolated visual features using the same topology (i.e. number of states and
mixtures) HMM classifier for all visual feature types. However, when the num-
ber of HMM states is increased the WER performance of all interpolated visual
features improves. For PCA and MRPCA representations the WER actually
surpasses those seen at normal sample rates. The interpolated MRPCA based
HMM classifier with extra states receives an WER that marginally surpasses
that for the normally sampled WLDA classifier. Additionally, the train WER
for the interpolated MRPCA classifier, with extra states, is half of that for the
normally sampled WLDA classifier, indicating that the increase in classifier com-
plexity may provide additional word class distinction. The interpolated WLDA
features, using an increased number of states, still receives a poorer WER than
realised with the originally sampled WLDA features with less states. The lack
of performance improvement in the WLDA representations, using interpolation
with an increased number of states, indicates that some vital discriminative in-
formation pertaining to the temporal nature of the utterance is being thrown
away in comparison to the PCA and MRPCA representations. This could be

1 Interpolation of visual features occurred prior to the calculation of delta features,
which were used in all experiments. It must be noted that when interpolation was
employed on static and previously calculated delta visual features minimal change
in WER was experienced.
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Features (Dim) Sampling     HMM Topology         WER(% )
Mixtures States Train set Test set

PCA 40 40ms 3 3 14.19 31.43
PCA 40 10ms 3 3 21.43 39.71
PCA 40 10ms 3 9 8.07 28.57

MRPCA 40 40ms 3 3 9.71 25.71
MRPCA 40 10ms 3 3 13.52 30.57
MRPCA 40 10ms 3 9 5.33 23.14
WLDA 18 40ms 3 3 10.38 23.43
WLDA 18 10ms 3 3 17.11 33.43
WLDA 18 10ms 3 8 12.76 28.57
MFCC 26 10ms 3 3 1.44 1.62

Table 1. WER rates for train and test sets on the M2VTS database (note best per-
forming visual features have been highlighted).

attributed to the majority of discriminatory information between words being
contained in the temporal nature of the pronunciation not the static appearance.
A major drawback in WLDA feature extraction seems to stem from its inability
to form a discriminative subspace based on the dynamic, not just static, nature
of the signal. Potamianos et al. [5] devised an approach to circumvent this lim-
itation by incorporating contextual information about adjacent frames into the
construction of a discriminative subspace. Although showing some improvement,
this approach fails to address some of the fundamental problems associated with
using a standard HMM classifier for speech reading.

The performance improvement from the interpolation of PCA and MRPCA
features along with the increase in HMM states for their respective HMM classi-
fiers can be considered to be counter intuitive, as no extra information is being
added to the interpolated visual features apart from the delta features which are
dependent on the sample rate of the signal. The benefit of interpolating visual
features can be understood from work done by Deng [11] concerning standard
HMM based speech recognition. Deng has argued that the use of many states
in a standard HMM can approximate continuously varying, non-stationary, pat-
terns in a piecewise constant fashion. Further, it was found in previous acoustic
speech recognition work [11], that as many as ten states are needed to model
strongly dynamic speech segments in order to achieve a reasonable recognition
performance. Similar results were found by Matthews et al. [8] for visual speech
recognition where as many as nine states were required, after visual feature in-
terpolation, to achieve reasonable WERs.

It has been postulated by Deng [11] that employing extra states in a stan-
dard HMM to better model the non-stationary dynamic nature of a signal in
a piece-wise manner has obvious shortcomings. This is due to the many free
and largely independent parameters needing to be found by the addition of ex-
tra states which requires a large amount of training observations for reliable
classification. The problems concerning the lack of training observations can be
partially combated through the interpolation. Such trends can however, be much
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more effectively and accurately described by simple deterministic functions of
time which require a very small number of parameters, as opposed to using many
HMM states to approximate them piecewise constantly. This indicates that, un-
like the acoustic modality, the use of a standard HMM may be suboptimal for the
purposes of modelling the non-stationary nature of the visual speech modality
effectively for speech recognition.

3.3 Speaker recognition performance

Table 2 shows the SER for the task of text dependent speaker identification.
The use of SLDA in this instance is of considerable benefit over the traditional
PCA representation of the mouth. Intuitively, this makes considerable sense as a
person’s identity can be largely represented by the static representation of that
person’s mouth. This result differs to those found in visual speech recognition,
which found the discriminant nature of WLDA to be of limited use due to the
majority of the class distinction between words existing in the temporal cor-
relations in an utterance rather than the static appearance of the mouth. The

Features (Dim) Sampling             SER(% )
Mixtures States Train set Test set

PCA 40 40ms 2 2 0.38 28.00
PCA 40 10ms 2 2 0.67 28.29

SLDA 40 10ms 2 2 0.19 19.71
SLDA 40 40ms 2 2 0.19 19.71
MFCC 26 10ms 3 2 0.00 9.72

  HMM Topology

Table 2. SER for train and test sets on the M2VTS database (note best performing
visual features have been highlighted).

up-sampling of visual features was also investigated, but from an exhaustive
search through HMM topologies, there was no improvement in SER from the
optimal topologies used at the normally sampled rates. This result can be at-
tributed to two things. Firstly, there is an inherent lack of training observations
for generating a subject dependent digit HMM, making the generation of suit-
ably complex HMMs difficult. Secondly, the piece-wise temporal approximation
made by a standard HMM suffices for the task of visual speaker recognition due
to its natural ability to discriminate based on static features, as indicated by the
superior performance of SLDA over PCA features. Interestingly, the performance
of the acoustic and visual classifiers are relatively close, with both classifiers be-
ing marginally undertrained. This result was to be expected due to the lack of
training data associated with each subject and digit.
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4 Discussion

In this paper feature extraction techniques for the visual speech modalities,
pertaining to the tasks of speech and speaker recognition, were evaluated. For
speechreading it was shown that MRPCA mouth features, at an interpolated
sample rate, gave superior WERs over all those evaluated. Although, WLDA
features, based on a static discriminant space, perform almost as well and do not
require interpolation and have a much smaller dimensionality. For both feature
sets the benefit of mean subtraction was shown, with the improved performance
being linked to unwanted subject variabilities being removed. An interesting
point was also raised about the validity of using a standard HMM for speech
recognition in the visual modality, as the quasi stationary assumption made for
the acoustic modality does not seem to hold as well in the visual modality. Visual
speaker recognition achieved excellent results using the SLDA mouth feature.
This can be attributed to the more static nature of the speaker recognition task,
which is easily accommodated by the LDA feature extraction procedure and
standard HMM topology.
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