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Abstract. In this paper an in depth analysis is undertaken into effective
strategies for integrating the audio-visual modalities for the purposes of
text-dependent speaker recognition. Our work is based around the well
known hidden Markov model (HMM) classifier framework for modelling
speech. A framework is proposed to handle the mismatch between train
and test observation sets, so as to provide effective classifier combination
performance between the acoustic and visual HMM classifiers. From this
framework, it can be shown that strategies for combining independent
classifiers, such as the weighted product or sum rules, naturally emerge
depending on the influence of the mismatch. Based on the assumption
that poor performance in most audio-visual speaker recognition appli-
cations can be attributed to train/test mismatches we propose that the
main impetus of practical audio-visual integration is to dampen the in-
dependent errors, resulting from the mismatch, rather than trying to
model any bimodal speech dependencies. To this end a strategy is recom-
mended, based on theory and empirical evidence, using a hybrid between
the weighted product and weighted sum rules in the presence of varying
acoustic noise. Results are presented on the M2VTS database.
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1 Introduction

Text-dependent applications for the task of speaker recognition typically out
perform their text-independent counter parts due to the simplification of the
recognition task. In a text-dependent application, the recognition system has
prior knowledge of the text to be spoken and it is expected that the user will
cooperatively speak this text. In this paper the usefulness of the visual speech
modality, particularly the mouth, is investigated for the task of isolated word,
text dependent, speaker recognition paying special attention to strategies for
effectively integrating the acoustic and visual modalities.

Throughout this paper the term train/test mismatch will be used extensively.
The difference between the train and test sets is referred to as a train/test
mismatch. The measure of train/test mismatch is not the physical difference
between the train and test observation sets but a measure of how generalised
the knowledge (i.e. ability to make a correct decision) of the classifier gained
from the train set is, with reference to the unknown test set. When a mismatch
occurs in the testing set that differs from what has been seen in the training
set this uncertainty should be represented in the confidence score, otherwise a
confidence error will occur [1]. These confidence errors should not be confused
with Bayesian error [2], which is inherent to the classification task. It has been
well documented by Kittler [1] that when combining independent classifiers,
where such confidence errors are not present, the product rule is optimal, under
the assumption of conditional independence. However, when confidence errors
are present the compounding effect of these errors, when classifiers are combined,
must be taken into account as the blind application of the product rule may result
in catastrophic fusion [3].

Based on the assumption that poor performance in most audio-visual speech
processing (AVSP) applications can be attributed to train/test mismatches we
propose that the main impetus of such integration is to dampen these indepen-
dent errors rather than trying to model any bimodal speech dependencies. In
this paper we assume, when train/test mismatches do occur in each modality,
it is better to integrate the audio-visual modalities at the decision level. Two
different combination functions for decision level combination are investigated,
namely the weighted product and sum rules. A hybrid approach between the
weighted product and sum rules is shown to give robust results in identification
when being tested across a number of broad acoustic noise conditions.

2 Speaker recognition

Speaker recognition encompasses two tasks, namely identification and verifica-
tion. Speaker identification is the task of selecting the most likely speaker ωi∗

from a group of N known speakers for an observation utterance O such that,

i∗ = arg
N

max
i=1

ζ(ωi|O) (1)
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where ζ(ωi|O) is the confidence score describing how likely the utterance O be-
longs to speaker ωi. Speaker identification performance is normally evaluated in
terms of identification rate, the ratio of correct classifications over total classifi-
cations, in a given test set.

The speaker verification task is the binary process of accepting or rejecting
the identity claim made by a subject under test. The verification process can be
expressed simply as the decision rule,

ζ(ωclaim|O)
reject

≶

accept

Th (2)

where ζ(ωclaim|O) is the confidence score describing how likely utterance O

belongs to the claimant speaker ωclaim. A threshold Th needs to be found so as
to make the decision. Speaker verification performance is evaluated in terms of
two types of error being false rejection (FR) error, where a true client speaker
is rejected against their own claim, and false acceptance (FA) errors, where
an impostor is accepted as the falsely claimed speaker. The FA and FR errors
increase or decrease in contrast to each other based on the decision threshold Th

set within the system. A simple measure for overall performance of a verification
system is found by determining the equal error rate (EER) for the system. This
is the operating point where the FA and FR error rates are equal.

3 Audio-visual database and feature extraction

The M2VTS database [4] was used for experiments in this paper. Out of the
possible 37 subjects in the database the subject ‘pm’ was excluded from testing,
due to his beard which was thought to unfairly skew the verification results.
This was due to the bearded subject never getting incorrectly identified in the
visual modality, as his appearance was completely different from the other 36
subjects. This database has been used in previous multimodal speaker recog-
nition experiments [5]. The database used for our experiments consisted of, 36
subjects (male and female) speaking four repetitions (shots) of ten French digits
from zero to nine. The database was separated into train and test sets, for audio-
visual classifier training and testing. Shots one to three were used for training
with shot four being used for testing. A subject’s mouth was tracked through a
video sequence by first segmenting the face from its background using chromatic
segmentation. Through a multi-scale search the eyes are then detected, to gain
a measure of face scale. Finally the mouth is detected and tracked throughout
the visual sequence. The tracked mouth coordinates are then smoothed using a
median filter to remove any spurious detection results. Across the entire M2VTS
database, the mouth was tracked accurately to within a couple of pixels of its
true position. The algorithm used to detect the eyes and mouth was based on an
unsupervised intra-class clustering approach using discriminant analysis. More
details on our facial feature detection/tracking approach can be found in [6].
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The mouth ROI chosen for tracking was based on the subject’s eye separation
distance deye, with a (3deye)× (4deye) box centered at the mouth center. Visual
features were extracted by first obtaining the first 50 principal components of the
mouth ROI images from the training set of all speakers, in the train set, using
principal component analysis (PCA) [2]. Linear discriminant analysis (LDA) [2]
was then employed to further reduce the dimensionality of the visual feature
set down to the 10 most linear discriminating components (using all 36 speaker
classes in the train set). Delta coefficients were included for the visual features
thus expanding the final visual feature vector to 20 dimensions. For the acoustic
features we used mel-frequency cepstral coefficients (MFCC) with mean cepstral
subtraction and delta coefficients to create a 26 dimensional feature vector [7].

4 Hidden Markov Model Training

All HMMs were trained using the Baum Welch algorithm via the HTK [7] pack-
age. Two models were acquired for each digit: the speaker dependent model p(O|λi),
and the background model p(O|λbck). The latter, which is common to all sub-
jects, captures the variability of the uttered sound. Due to the relatively small
size of the M2VTS database and the requirement for separate speaker dependent
digit HMMs all speaker dependent HMM digit models were trained by initialis-
ing training with the previously found speaker independent or background digit
model. This approach prevented variances in each model becoming too small
and allows each model to converge to sensible values for the task of speaker
recognition.

For the acoustic and visual modalities, an utterance was modelled using
a 3 state, left to right, HMM with 3 mixtures per state and diagonal covariance
matrices. The likelihood scores p(O|λi) from each HMM λi were used to gain
the a posteriori probability estimates, assuming equal priors, using Bayes rule,

P̂ r(ωi|O) =
p(O|λi)

∑N
n=1 p(O|λi)

(3)

Shots 1-3 of the M2VTS database were used for training the HMMs with shot 4
being used for testing.

5 Integration Strategies

5.1 Weighted product rule

Excellent results in AVSP have been received through integrating the confidence
scores received from the acoustic and visual classifiers via the weighted product
rule. The weighted product rule can be expressed as,

ζ(ωi|O
{av})× = P̂ r(ωi|O

{a})α × P̂ r(ωi|O
{v})(1−α) (4)

where P̂ r(ωi|O
{m}) is the a posteriori estimate of utterance O{m} coming from

subject class ωi for modality {m = a or v}. It must be emphasised that ζ(ωi|o) is
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a confidence score (not necessarily between zero and one), not a probability, but
is equivalent to the audio-visual a posteriori probability estimate P̂ r(ωi|O

{av})
in terms of the class decision boundaries it realises.

Bayesian theory dictates [1] that the weighted product rule should be op-
timal, given conditional independence between modalities, when α = 0.5 (i.e.
normal product rule); if one is combining error free a posteriori class probabili-
ties. In practice however, one can rarely use the normal product rule due to the
differing decision boundaries realised from the mismatch between train and test
utterances. This mismatch results in a confidence error,

P̂ r(ωi|O
{m}) = Pr(ωi|O

{m}) + εi(O
{m}) (5)

When combining a posteriori probability estimates from both modalities the
compounding effect of these confidence errors must be taken into account when
selecting a suitable combination strategy. In some circumstances the magni-
tude of this confidence error can be diminished for certain types of mismatches
through the use of an exponential weighting as found in Equation 4, where there
is an approximate isotropic shrinking between the train and test set distribu-
tions. The exponential weighting has no effect on the order of scores in each
modality individually. However, through the judicious choice of an appropri-
ate exponential weighting in the application of weighted product rule, improved
combined performance can be witnessed.

This type of “shrinking” has been shown to occur in acoustic cepstral features
in the presence of additive noise [8]. Dupont and Luettin [9] were able to estab-
lish an empirical relationship between the exponential weighting and additive
acoustic noise, although the effectiveness of the weighting does decrease in large
amounts of acoustic noise. When addressing the isotropic shrinking of distribu-
tions the exponential weighting in the weighted product rule can be thought of
as acting in an adapting capacity; such that it tries to remove the confidence
error from the distribution shrinkage completely. It must be mentioned that the
exponential weighting in the weighted product rule does also aid, to some de-
gree, with other types of mismatch, other than isotropic shrinkage, that may be
present (such as in the visual modality). In this capacity the exponential weight-
ing tries to transform, rather than remove, the confidence errors into Bayesian
error. Although, the ability of the weighting to act in this alternate dampen-
ing capacity is quite limited. A more thorough discussion of this topic can be
found in [10] with respect to AVSP. For the weighted product rule an α = 0.9
was found, through an exhaustive search, to perform best in clean to medium
acoustic conditions (i.e. 40db - 20db).

5.2 Sum rule

The product rule, although optimal in the theoretical case, is effectively a se-
vere rule when confidence errors are present, as a single classifier can inhibit a
particular class by outputting a probability that is close to zero. The weighted
product rule can alleviate the influence of these errors to some degree but must
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have quantitative knowledge of the train/test mismatch in both modalities. The
effect of this mismatch can sometimes be lessened, with respect to the product
rule, through the use of an exponential weighting. However, this weighting can
only address certain types of mismatches (i.e. isotropic shrinking) and requires
intimate knowledge on the degree of mismatch (e.g. signal to noise ratio (SNR)).
If this knowledge is not known or mistaken the incorrect selection of a weighting
can have dire consequences on recognition performance.

Alternatively, the sum rule in Equation 6 is a benevolent combination rule,
as errors in one classifier have a smaller effect on the final result. The sum rule
makes the assumption that the error free a posteriori class probabilities for each
modality do not deviate greatly from the priors [1].

ζ(ωi|O
{av})+ = 0.5P̂ r(ωi|O

{a}) + 0.5P̂ r(ωi|O
{v}) (6)

Note a 0.5 scaling factor was placed out the front of the a posteriori proba-
bility estimates of both modalities in Equation 6. This was done to try and
scale the resultant confidence scores in ζ(ωi|O

{av})+ to be in the same range
as ζ(ωi|O

{av})×, which is of particular importance with respect to verification
using the hybrid rule outlined in the next section.

5.3 A hybrid between product and sum rules for robust recognition

Kittler [1] hypothesised that a non-linear combination rule may in fact give su-
perior performance over those previously mentioned. In our experimental work,
we have devised a hybrid combination scheme using both the weighted sum
and weighted product rules based on a theoretical, empirical and heuristic un-
derstanding of where they work effectively. The hybrid combination scheme is
defined as,

ζ(ωi|O
{av})×/+ =

{

ζ(ωi|O
{av})×, σζ{a} < θ

ζ(ωi|O
{av})+, σζ{a} ≥ θ

(7)

The scheme uses the standard deviation σζ{a} of the vector ζ{a} of N normalised
acoustic log likelihoods to dictate when the weighted sum or weighted product
rule should be used, where

ζ{a} = {log p(O{a}|λ1)−log p(O{a}|λbck), . . . , log p(O{a}|λN )−log p(O{a}|λbck)}
(8)

The decision rule is based purely on the normalised acoustic log likelihoods
as our experiments were concerned with additive acoustic noise. Dispersion
measures of log likelihoods from an acoustic classifier have been shown em-
pirically [11] to be a reasonable indicator of acoustic noise, but start failing in
high levels of noise. As shown in Equation 8 the normalisation of the log likeli-
hoods is performed by subtracting the background model scores for a particular
digit from the speaker dependent models for that digit. This was done so that a
common reliable threshold θ could be found for all digits.
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The threshold θ used in Equation 7 was determined empirically to optimise
performance across all acoustic noise levels, and in this scenario was chosen to
be θ = 12. The technique was devised under the assumption that better results
would be achieved with the weighted sum rule when there is minimal variation in
scores (high acoustic noise), while the more severe but optimal weighted product
rule would be used where there is large variation (low acoustic noise).

5.4 Results and discussion

The results in Figure 1 show that our proposed hybrid technique is of some bene-
fit across all tested configurable acoustic noise conditions. However, Figure 2 for
the verification task depicts that the hybrid approach is similar, if not slightly
worse, with the weighted sum rule performing best across most tested config-
urable acoustic noise conditions. This disparity in performance can be partly
attributed to the switch that occurs between the weighted product and sum
rules in the hybrid approach making the calculation of a satisfactory general
threshold θ difficult; although the scaling of the sum rule tries to address this
difference. However, the difference in performance between our proposed tech-
nique and the weighted sum rule is negligible. For all cases, in high noise the
verification performance in terms of EER is very poor in comparison to the vi-
sual only classifier. The obvious benefit of our hybrid approach is its ability to be
tunable, in terms of the threshold θ, to the conditions it is to be used under. For
instance, in the results presented in Figures 1 and 2 a threshold θ was chosen to
ensure that identification results and verification results were above the catas-
trophic fusion boundary in clean conditions while receiving reasonable results
in higher noise environments. The tunable characteristic is of considerable use
if one knows the what upper and lower performance limits one wants in their
audio-visual recognition system.
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Fig. 1. Identification rates over various additive acoustic noise conditions.
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Fig. 2. Equal error rates (EER) over various additive acoustic noise conditions.
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