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Abstract ing some structural characteristic of an observation point
For example, if one considered an observation point as a

Motivated by the success of parts based representations irsequence of face images taken over time, so that the obser-
face detection we have attempted to address some of theation point exists in an extremely high dimensional space
problems associated with applying such a philosophy to theone could collapse the time structure to create a distohuti
task of face verification. Hitherto, a major problem withghi  of face images which is independent of time. However, this
approach in face verification is the intrinsic lack of traigj observation point would have to extend over a very long
observations, stemming from individual subjects, in order time sequence, with the sequence containing much varia-
to estimate the required conditional distributions. The es tion, to capture all the facial permutations possible for a
timated distributions have to be generalized enough to en-subject contained in such a high dimensional image. To
compass the differing permutations of a subject’s face yetovercome this problem one could also collapse some spatial
still be able to discriminate between subjects. In our work structure in the image sequence. This would generate more
the well known Gaussian mixture model (GMM) framework observations and reduce the dimensionality further; tesul
is employed to model the conditional density function of ing in a more generalized conditional distribution model.
the parts based representation of the face. We demonstratddowever, the collapse of some of the spatial structure in the
that excellent performance can be obtained from our GMM image sequence may come at the cost of not being able to
based representation through the employment of adapta-discriminate between face images stemming from different
tion theory, specifically relevance adaptation (RA). Our re subjects.
sults are presented for the frontal images of the BANCA

database.
1. Introduction = ib QA
A problem of immense importance across the broad gamut @

(b) ()
of pattern recognition tasks at the moment is the ability

to produce ropu;t and well t.ralned classifiers from SF,)","rseFigure 1: Graphical depiction on the effect of relaxing structural
amounts of training observations. The task of face verifica- ;naracteristics on an observation point. (a) Depicts the notion of a
tion is a prime candidate for the development and analysisopservation point existing in an extremely high dimensional space.
of this generic pattern recognition problem, as the nature (b) Depicts a collapse of “some” structure in the observation point,
of the task demands an ability to generalize for an infinite but still preserving some structure so it exists in a “moderately”
number of intra-class permutations from a finite and typi- sized dimensional space. (c) Depicts a “complete” collapse of
cally small facial image gallery set. A person’s face is typ- structure in the observation point so that the distribution only ex-
ically a varying object, more aptly described by a distribu- ists in a “single’dimension.
tion rather than a static observation point. In this paper we
present an approach that is able to estimate a distribution, ) N
most variations encountered in the probe set for that sybjec ——— — s
. . s . The image sequence in this sense exists in more than a 3D spzade. E
whilst preserving the class distinction between SUbJeCtS' pixel and time stamp represents a dimension so that the erjuesee can
Distributions often occur as the consequence of collaps-be viewed as a single point in a extremely high dimensionalespac




tion point existing in an extremely high dimensional space. distinction between face and non-face regions in an image.
In many classification tasks much of this representation’s The estimation of effective conditional face and non-face
dimensionality may be redundant, detracting from our abil- distributions requires the analysis of tens to hundreds of
ity to match that observation point with similar observatio thousands of images.

points stemming from the same class. The distribution in  Hitherto, a major problem in applying a similar philoso-
Figure 1(c) depicts the other extreme, where “all” strugtur phy to face verification is the typically small gallery set of
in the observation point has been collapsed onto a single diimages available for a subject. The lack of training obser-
mension. The dense nature of the distribution will be more vations drastically effects the ability to estimate coiadial
conducive to generalizing to other observation points from distributions that are generalized to differing permutasi

the same class. Unfortunately, this generality will most of a subject’s face yet still contain enough complexity &®-di
likely come at the cost of discriminating between observa- criminate between subjects. In this paper we present a tech-
tion points stemming from a different class. The situation nique, based on Bayesian learning, that is able to produce
in Figure 1(b) is the conceptual balance we are striving for such distribution models. Employing a Gaussian mixture
in this paper, where sufficient distinction and generalimat  model (GMM) framework to model these distributions an
exists due to the collapse of “some” structure. adaptation technique, which we refer to as relevance adap-

This concept has particular benefit in the task of face tation (RA), is presented that can produce very complex
recognition. Collapsing some spatial structure in an image but precise distributions for a subject from a small sized
allows one to generate dense distribution’s, parametric orgallery set. These distributions provide a drastic improve
nonparametric [1], describing gallery and probe image setsment over techniques that do not employ adaptation. In this
for a particular subject. The notion is especially powerful paper we have restricted our experiments to frontal images.
when the size of both the gallery and probe sets are meagrdresults are presented on the English portion of the BANCA
(i.e. a single image); as one can still compare distribstion database [7].
borrowing on their natural ability to generalize, instedd o
individual points which can vary dramatically.

Previous work by Brunelli et. al [2] and Moghaddam
et. al [3] cited good recognition performance by represent- Model adaptation [8], as the name suggests, implies that
ing the face as a set of salient parts/regions (eg. eyes, noseheir is a pre-existing model whose parametric representa-
mouth). Images in the gallery set were used to create modtion can be adapted from its current representation to de-
ular templates for comparison with salient regions of the scribe a desired class of observations. The adaptation pro-
probe images. Both Brunelli and Moghaddam noted supe-cess is normally performed in such a way that the classi-
rior performance by analyzing the image in a modular man- fication performance realized by the newly adapted model
ner, rather than holistically as long as the salient regionswill be superior to the performance realized by the model
had been localized to a satisfactory accuracy. Ma#[4]  if one was to perform estimation from scratch (i.e. train
demonstrated a technique to model the uncertainty associa model purely from a class-specific training set). Model
ated with the localization of these salient regions durlh@gt  adaptation is typically only of use, over estimation, when
estimation of the modular templates. However, all these one has a limited amount of training observations for the
techniques essentially compare “points” (i.e. the distanc class. In the presence of large amounts of training obser-
from a probe’s eye image to a eye template) not distribu- vations the need for adaptation generally disappears as all
tions. The work in this paper is motivated under the premise information about the model can be learnt from the abun-
that the comparison of distributions have better genexaliz dant class-specific training observations.
tion properties than the comparison of points; providettsui  The pre-existing model, required for adaptation, has usu-
able class distinction is preserved. ally been estimated from a training set, commonly referred

The concept of reducing spatial structure in images, toto as a “development” set, that is several orders of magni-
gain a distribution, to aid in face classification tasks is no tude larger than the actual class-specific training sets Thi
new. Much work has been done in the realm of face detec-development set usually subsumes or is at least representa-
tion [5, 6], where benefit has been cited by viewing a face tive of thetypeof classes (e.g. subject’s faces) trying to be
as being composed of bopartsandshape Thepartsare learnt from the training set, such that one can obtain statis
image patches containing information about the face in atics (i.e. a priori knowledge) about the nature of the class
local region. Theshapecomponent provides information trying to be learnt. The terradaptationis employed in-
describing where these patches are located globally withinstead ofestimationas most of the prior density parameters
the face. By collapsing some of tlehapestructure of a  are derived from parameters of the pre-existing model. In
face, accurate distributions can be estimated that gémeral our work with frontal face verification the development set,
well to most permutations of faces whilst providing enough used to estimate this initial model, stems from a reasonably

2. Model adaptation vs. estimation



large population of subjects. 3.2. Relevance adaptation

. . .- . There are a variety of ways to gain a priori information
3. EStlmatlng the distribution about the distributiory(A). The employment of avorld,

Maximum a posteriori (MAP) estimation, or Bayesian es- or universal background modek it is sometimes referred

timation as it is commonly referred to [1], is a technique ]t(o [10], has been shgwn Zmpiricilly to 9,;96‘“}' improve pi;'
for estimating a distribution by employing a priori knowl- 'ormance in GMM-based speaker verification. A wor

edge of how that model varies. Given that we have a set omedeI,iS simply a single modpl trained from a Igrge numper
training observations;,., i.i.d. from an unknown distribu- of subject faces representative of the population of stibjec

tion f(o), but having an approximately known parametric ff'ices expected du_rlng ver|f|_cat|on, and usually hc_";ls been es-
form A, our task in MAP estimation is to find, timated from a training set independent of the clients to be

adapted. This world model is typically trained using the ML
Arap = argmax f(Sin|A)g(A) (1) criterion (i.e. no informative prior).

Given a world model\,, = {wu,,, ty, » Bw, Forei
and training observations from a single clie® =
[01,...,0g], using the iterative EM-algorithm one can ob-
tain update equations that incorporate the a priori knowl-
edge in the world model, to maximize the parametric rep-
resentation of a GMM. We refer to the adaptation of the
world model\,, to produce a client mode\.. as relevance
adaptation (RA). For RA this results in the following update
equations,

whereg(A) is the prior distribution governing how varies.
Often times in statistics, it is not easy to select an ap-

propriate prior distribution. It is instead convenient t&eu

an improper distribution (non-informative prior) that epr

resented by a nonnegative density function whose integral

over the whole parameter space is infinite. We refer to

this special case of MAP estimation as maximum likelihood

(ML) estimation where all knowledge abotstems from

the observations. ML estimation is how we gain our initial

model to be adapted.

We

m
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3.1. Gaussian mixture models

The parametric form oA will be a Gaussian mixture model SR (0r)on
(GMM). GMMs are employed in our work as they are able B, = (1= ap)py,, + afnm 4)
to provide a piece-wise parametric description of complex

distributions using a number of relatively simple multivar

ate Gaussian distributions. GMMs are additionally attrac-

2 _ o 2 2
tive as they stem from the exponential family of distribu- ~ Zecm = (1—a7) (o3, +1e,)
tions so that their well-known convexity property can be +a’ w —pu? (5
taken advantage of in estimation; a prime example being 3 r=1 Ym(or)
in use with the EM-algorithm [9]. wherey,, (o) is the occupation probability for mixture

A GMM models the probability distribution of 4 di- anda’, is a weight used to tune the relative importance of
mensional statistical variabteas the sum of\/ multivari- the prior and is calculated via a relevance faetoin,

ate Gaussian functions,

R
M > 1 Ym(0r)
_ ) af = L (6)
f(ol)‘) = 221 me(07 ) Em) (2) TP + Zle 7m(0r)
where A (o; p, &) denotes the evaluation of a normal Different relevance factors can be estimated for the

distribution for observatiom with mean vectops and co- ~ Weights, means and variances respectively (pe. €
variance matrix32. The weighting of each mixture com- {w,x,0}). In a similar fashion to work performed by
ponent is denoted bw,, and must sum to unity across Reynolds et. al [10] we have found effective performance
all mixture components. The parameters of the model can be attained by using a single relevance fa¢tor=

A = {wm, 1,,, Zm}M_, can be estimated using the Ex- T = 7# = 77). Empirically we found a relevance factor
pectation Maximization (EM) algorithm [9] based on either Of 7 = 16 received good performance. The scale fagtor,

a MAP or ML criterion. In the ML case, K-means cluster- in Equation 3 is computed to ensure that all the adapted
ing [1] was used to provide initial estimates of these param- Mixture component weights sum to unity. Finally, it must
eters. In our work the covariance matrices\iare assumed  be noted that the adaptation framework presented in this
to_be dlagonal S_UCh that = diqg{a2}, as substantial ben- 2A derivation of Equations 4 and 5 was developed by Gauvain and
efit can be attained by reducing the number of parameters ee [8]. The weight update in Equation 3 was found experinignta
needing to be estimated. perform better than Gauvain and Lee’s original.




paper differs marginally to that presented by Reynolds as Pixel Parts Feature

the updates, performed in Equations 3-5, are done at each Representation Representation Representation
. P P I =quat [EEEEEEE|
iteration of the EM algorithm. This was done as the resul- , )
tant models were found to be more stable and effective than |~ | i ‘;l mm
applying the updates after the iterative process. q, 1 ‘ —— I CLLLILLL]
3.3. Evaluation B I EmEnnEns]
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When evaluating a sequence of observations, from a k 4 - d
claimant, we obtain the average log-likelihood, I || mEIIEEEIII

2D-DCT

R
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Figure 2: Graphical depiction of the parts and feature represen-
tations of a face. Note: even though overlapping blocks are not
depicted in practice the overlapping of blocks leads to greater per-
formance.

Given the average log-likelihood, for the client and
world models, one can then calculate the log-likelihood ra-
tio,

A(O) = L(O|Ac) — L(O[Aw) (8)

Verification is performed by accepting a claimant

when A(O) > Th and rejecting him/her when(O) < First, the overlap reduces the spatial area used to derive on

Th, whereTh is a given threshold. Ver.ifica.tion perfor-  feature vector and adds some redundancy between patches
mance is evaluated using two measures; being false rejecyj ¢ ng single patch contains all the information about-a lo

tion rate (FRR), where a true client is rejected againstthei ., region of the face). Second, as the overlap is increased

own claim, and false acceptance rate (FAR), where an im-j; 56 increases the number of image patches (i.e. observa-
postor is accepted as the falsely claimed client. The FARtions) exponentially.

anhd FF;R mdeasurﬁs |r;]cree;;e1£r d;cr(_aas? n contrastfto each Once the image patches are acquired they then have an
ot er" asef on the tfres i - A simpie r_nefasu:;aboa 2D-DCT applied to compact th&s x 16 = 256 element
overall performance of a verification system is found by de- patch into a feature vectaer of suitable dimensionality to

termiging the equal error rate (EER) for the system, where o) 4 generalized but distinct distribution of that satse
FAR =FRR. face. The firstt4 energy preserving 2D-DCT coefficients

. are extracted, according to a zig-zag pattern [11], with the
4. Partsand feature representatlons first coefficient being dropped as it is represents the mean

An initial investigation into what features are most effec- ©f the patch. We found empirically that the removal of the

tive for the parts representation of frontal face image was first cpefficient improved vgrification performance. Thi.s re

conducted by Sanderson et. al [11] for the task of face ver-SUltS in ad = 63 observation feature vectar for used in

ification. Sanderson’s work is pertinent to our work as it adaptation.

was one of the first investigations fpartsbased face ver-

ification using GMMs; albeit using a ML criterion. Inthis 5. BANCA database

work a modified form of the 2D discrete cosine transform

(2D-DCT) was recommended, in comparison to other repre- The English portion of the BANCA database was employed

sentations like 2D-Gabor features, as an ideal way to gain afor these experiments containiri@ subjects; evenly di-

compacipartsrepresentation that provided good distinction vided into two setgg1, 2] of 26 as per the BANCA proto-

between the faces of subjects and fast feature computationcol [7]. Inside those sets there are an equal number of sexes

A depiction of the feature extraction process can be seen in(i.e. males3, female3). The gl andg2 sets are used

Figure 2. for the development and evaluation sets in our experiments.
The experiments conducted in this paper were performedThe development set is used to obtain any data-dependent

on cropped faces geometrically normalized for rotation and aspects of the verification system (e.g. world model etc.).

scale so as to form a4 x 91 array of pixels. Theseimages The evaluation set is where the performance rates for the

were also statistically normalized to have a unit variance verification system are obtained.

and zero mean. The face images were then decomposed Ifthe g1 setis used as the development set thery et

into 16 x 16 pixel image patches with an overlap between is used for the evaluation set; and vice versa. This is done to

horizontal and vertical adjacent patchesi6%. The over- avoid any methodological flaw, as it is essential that the de-

lap between patches aids verification from two perspectives velopment set is composed of a distinct subject population



as the one of the evaluation set. We will report results i thi 4 VR TS 40

paper using both thel and g2 sets so as to gain a gauge s Q oy 3

for the statistical significance of our results. Severat@ro % T=0-W ol 4

cols [7] have been devised for the BANCA database. Forthe | O
experiments in this correspondence we have employed the< O‘o g Toa
13 T+ ” H M % e @ 20 A
matched conditions” (MC) protocol where images in the & i

gallery and probe sets stem from the same camera under th ° o
10

same conditions. There are a totalodessions used in the o 1

protocol with the first session being used as the gallery with  ° s

the remaining} session being uged for the prob_e. Eachses- S5 G e 0% = "
sion consisted of a sequenceioimages per subject, taken # of miture companerts (M) # of mixture components (M)

as the subject is speaking. In the BANCA database each @ ®)

subject has his/her session recorded withient accessit-

terance and @mposter attackutterance. The client access Figure 3: Comparison of various adaptation schemes across the
utterance sessiors3 and4 were used only for client ver- (&) g1 and (b)g2 BANCA evaluation sets.

ification with the imposter attack utterance sessions being

taken from all sessions.

performance benefit was attained by setting > 2048.
6. Full shape coIIapse A clear benefit in performance was witnessed for the two
strategies employing non-zero valuesof that is using

A question now presents itself on how much structure a MAP rather than ML criterion for estimation. For both
should we collapse in a face image? Given that we havethegl andg2 BANCA sets slightly better performance was
apartsandshaperepresentation of the face, we can choose achieved using & = 16 — (w, p, 3)} for M = 2048.
to collapse all the shape structure in the representation;
which we shall refer to as full shape collapse (FSC). In 7. Partial shape collapse
our work we investigated the performance of a FSC-GMM
based face verification scheme employing RA on all of the An obvious question stemming from the previous section
parametergw, p, ) of each mixture component (i.e. ap- is whether there is any benefit in keeping “some” shape
plying Equations 3-5). We also investigated applying the structure in the face representation? Even though we can
RA scheme on the mearig) only of each mixture com-  see that good performance can be attained by collapsing
ponent (i.e. applying Equation 4). This was motivated by the shape structure completely in a face, “some” form of
the benefit seen in previous GMM based work [10] of re- simplified shape structure may be beneficial to verification
ducing the number of parameters needing to be estimatedperformance. For example, there may be benefit in enforc-
Both these schemes were evaluated using 0 (i.e. ML ing that fiducial regions of face images be compared against
estimation) and- = 16 (i.e. MAP estimation) for theyl each other (e.g. eye region against eye region, mouth region
andg2 BANCA evaluation sets. In Figure 3 verification re- against mouth region, etc.). Motivated by this concept we
sults are presented as a function of the number of mixturehave attempted to place some labels on regions of the face.
components (M). We refer to this label based representation as partial shape

A log-scale was employed in Figure 3 to evaluate veri- collapse (PSA). Figure 4 contains some examples of how
fication performance from a simple (e4). to a very com-  faces were labelled.
plex (e.g. 2048) value of M. It is obvious for the{r = These labels specifically refer to the facial objects {
0 — (w,p, X)} strategy that there is a drastic deteriora- brow, left eye, right eye, bridge of nose, nose, left cheek,
tion in performance from increasing the complexity of the right cheek, mouth. A region was defined for each la-
GMMs. The poor performance for high valuesidfcan be bel using a single Gaussian distribution. The mean of the
attributed to the problem we stated at the beginning of this Gaussian, based on hand-labelled coordinates, was cgntere
paper concerning the estimation of generalized but discrim within the labelled object. The covariance matrices of each

inative distributions from a small sized gallery set. Gaussian were heuristically chosen to encompass the ap-

Good performance was attained for the= 0 — (u)} proximate area of the labelled object. Patches were marked
strategy for low values of\/ < 512. Superior perfor- as belonging to an object label if the patch was located
mance was achieved for tHeg = 16 — (p)} and {r = within the 90% ellipsoid boundary of the Gaussian.

16 — (w, p, X2) } strategies employing increasingly complex Using these labels we then attempted to estimate sepa-
GMMs. A monotonic improvement in performance was rate conditional distribution models. , based on the iden-
seen as a function aof/ for the two strategies. Minimal tity ¢ and shapelabel ¢ of the parts During verifica-



For simplicity, in our experiments, we séi/, to be
the same across all the facial regions. Future work may
find benefit in applying differing values fav/, to each re-
gion. Like the previous section we performed a log-scale
exhaustive search on what valuesdj, perform best for
PSC-GMMs using a relevance factor = 16. The re-
sults of this search can be seen in Figure 6 relative to the
FSC-GMM technique. The valu&l used in Figure 6, for
the PSC-GMM technique, is the total number of mixtures
used (i.e. M = 8 x M,). In our initial experiments,
acrossgl andg?2 sets, we found no real benefit in evaluat-
ing M, > 512. Similar results were received to those seen
with FSC-GMMs with marginally better performance being
_Figure 4: E_xample§ of_ how frontal faces were labelled us- rgcejved for{T = 16— (w, u, X)} over the{r = 16— (u)}
ing 8 xGaussian distributions. strategy. For an undetermined reason the margin of per-
formance improvement for the PSC-GMM over the FSC-
GMM was greater for sejl thang2.

tion this results in a conditional log-likelihood ratig, (O)

for each label on the face. In our work, after the es- * e %0
timation/adaptation of\.,, a log-likelihood ratio for a » bec— (nuz) "
claimant’s entire face is calculated as, o HEEs b
20 © 20
A(O) = ZAq(O) 9) f;ils gls
q u ) u
10 k
“‘?b 10
e
5 5

10 10° 10* 10” 10° 10
# of mixture components (M) # of mixture components (M)

(a) (b)

Figure 6: Comparison of verification performance for FSC-GMM
and PSC-GMM techniques for the (@) and (b)g2 BANCA eval-
uation sets.
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i ©©® 8. Baseline comparison

Figure 5: DET curve depicting the distinction between different Although the explicit purpose of this paper is to elucidate,
labels on the face, using tha set, usingl = 256 mixture com-  through adaptation theory, upon a different perspective to
ponents for each facial region GMM. face verification, it is also important to provide a baseline
comparison to the work we have presented. We conducted
an experiment to compare our FSC and PSC-GMM algo-
In Figure 5 we see the detection error tradeoff (DET) rithms with two others. In particular we compared our al-
curve of the distinction provided by each label for our best gorithm with Eigenfaces [12] and Fisherfaces [13]. Eigen-
performing scheme usind/, = 256 mixture components  faces and Fisherfaces are the defacto baseline standard by
for each facial region’s GMM. Interestingly one can see rel- which face recognition algorithms are typically compared.
atively homogeneous regions like the cheeks, bridge and One can see both the FSC and PSC-GMM algorithms,
brow providing better verification performance than inho- across both thel andg2 BANCA sets, provide, by a large
mogeneous regions like the mouth and to a lesser extent thenargin, superior performance to the baseline Eigenface and
eyes. One can also see the clear benefit in combining theFisherface algorithms. As expected the PSC-GMM algo-
scores with verification performance outperforming all the rithm outperforms the FSC-GMM algorithm, but only by a
regions individually. marginal amount. This very interesting result indicates th
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