
A GMM Parts Based Face Representation for Improved Verification through
Relevance Adaptation

Simon Lucey Tsuhan Chen

Advanced Multimedia Processing Laboratory, Department of Electricaland Computer Engineering

Carnegie Mellon University, Pittsburgh PA 15213, USA

slucey@ieee.org, tsuhan@cmu.edu

Abstract

Motivated by the success of parts based representations in
face detection we have attempted to address some of the
problems associated with applying such a philosophy to the
task of face verification. Hitherto, a major problem with this
approach in face verification is the intrinsic lack of training
observations, stemming from individual subjects, in order
to estimate the required conditional distributions. The es-
timated distributions have to be generalized enough to en-
compass the differing permutations of a subject’s face yet
still be able to discriminate between subjects. In our work
the well known Gaussian mixture model (GMM) framework
is employed to model the conditional density function of
the parts based representation of the face. We demonstrate
that excellent performance can be obtained from our GMM
based representation through the employment of adapta-
tion theory, specifically relevance adaptation (RA). Our re-
sults are presented for the frontal images of the BANCA
database.

1. Introduction

A problem of immense importance across the broad gamut
of pattern recognition tasks at the moment is the ability
to produce robust and well trained classifiers from sparse
amounts of training observations. The task of face verifica-
tion is a prime candidate for the development and analysis
of this generic pattern recognition problem, as the nature
of the task demands an ability to generalize for an infinite
number of intra-class permutations from a finite and typi-
cally small facial image gallery set. A person’s face is typ-
ically a varying object, more aptly described by a distribu-
tion rather than a static observation point. In this paper we
present an approach that is able to estimate a distribution,
from the subject’s gallery image set, that is representative of
most variations encountered in the probe set for that subject;
whilst preserving the class distinction between subjects.

Distributions often occur as the consequence of collaps-

ing some structural characteristic of an observation point.
For example, if one considered an observation point as a
sequence of face images taken over time, so that the obser-
vation point exists in an extremely high dimensional space1,
one could collapse the time structure to create a distribution
of face images which is independent of time. However, this
observation point would have to extend over a very long
time sequence, with the sequence containing much varia-
tion, to capture all the facial permutations possible for a
subject contained in such a high dimensional image. To
overcome this problem one could also collapse some spatial
structure in the image sequence. This would generate more
observations and reduce the dimensionality further; result-
ing in a more generalized conditional distribution model.
However, the collapse of some of the spatial structure in the
image sequence may come at the cost of not being able to
discriminate between face images stemming from different
subjects.

( a ) ( b ) ( c )
Figure 1: Graphical depiction on the effect of relaxing structural
characteristics on an observation point. (a) Depicts the notion of a
observation point existing in an extremely high dimensional space.
(b) Depicts a collapse of “some” structure in the observation point,
but still preserving some structure so it exists in a “moderately”
sized dimensional space. (c) Depicts a “complete” collapse of
structure in the observation point so that the distribution only ex-
ists in a “single”dimension.

Figure 1(a) depicts the extreme position of an observa-

1The image sequence in this sense exists in more than a 3D space. Each
pixel and time stamp represents a dimension so that the entire sequence can
be viewed as a single point in a extremely high dimensional space.
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tion point existing in an extremely high dimensional space.
In many classification tasks much of this representation’s
dimensionality may be redundant, detracting from our abil-
ity to match that observation point with similar observation
points stemming from the same class. The distribution in
Figure 1(c) depicts the other extreme, where “all” structure
in the observation point has been collapsed onto a single di-
mension. The dense nature of the distribution will be more
conducive to generalizing to other observation points from
the same class. Unfortunately, this generality will most
likely come at the cost of discriminating between observa-
tion points stemming from a different class. The situation
in Figure 1(b) is the conceptual balance we are striving for
in this paper, where sufficient distinction and generalization
exists due to the collapse of “some” structure.

This concept has particular benefit in the task of face
recognition. Collapsing some spatial structure in an image
allows one to generate dense distribution’s, parametric or
nonparametric [1], describing gallery and probe image sets
for a particular subject. The notion is especially powerful
when the size of both the gallery and probe sets are meagre
(i.e. a single image); as one can still compare distributions,
borrowing on their natural ability to generalize, instead of
individual points which can vary dramatically.

Previous work by Brunelli et. al [2] and Moghaddam
et. al [3] cited good recognition performance by represent-
ing the face as a set of salient parts/regions (eg. eyes, nose,
mouth). Images in the gallery set were used to create mod-
ular templates for comparison with salient regions of the
probe images. Both Brunelli and Moghaddam noted supe-
rior performance by analyzing the image in a modular man-
ner, rather than holistically as long as the salient regions
had been localized to a satisfactory accuracy. Martı́nez [4]
demonstrated a technique to model the uncertainty associ-
ated with the localization of these salient regions during the
estimation of the modular templates. However, all these
techniques essentially compare “points” (i.e. the distance
from a probe’s eye image to a eye template) not distribu-
tions. The work in this paper is motivated under the premise
that the comparison of distributions have better generaliza-
tion properties than the comparison of points; provided suit-
able class distinction is preserved.

The concept of reducing spatial structure in images, to
gain a distribution, to aid in face classification tasks is not
new. Much work has been done in the realm of face detec-
tion [5, 6], where benefit has been cited by viewing a face
as being composed of bothpartsandshape. Thepartsare
image patches containing information about the face in a
local region. Theshapecomponent provides information
describing where these patches are located globally within
the face. By collapsing some of theshapestructure of a
face, accurate distributions can be estimated that generalize
well to most permutations of faces whilst providing enough

distinction between face and non-face regions in an image.
The estimation of effective conditional face and non-face
distributions requires the analysis of tens to hundreds of
thousands of images.

Hitherto, a major problem in applying a similar philoso-
phy to face verification is the typically small gallery set of
images available for a subject. The lack of training obser-
vations drastically effects the ability to estimate conditional
distributions that are generalized to differing permutations
of a subject’s face yet still contain enough complexity to dis-
criminate between subjects. In this paper we present a tech-
nique, based on Bayesian learning, that is able to produce
such distribution models. Employing a Gaussian mixture
model (GMM) framework to model these distributions an
adaptation technique, which we refer to as relevance adap-
tation (RA), is presented that can produce very complex
but precise distributions for a subject from a small sized
gallery set. These distributions provide a drastic improve-
ment over techniques that do not employ adaptation. In this
paper we have restricted our experiments to frontal images.
Results are presented on the English portion of the BANCA
database [7].

2. Model adaptation vs. estimation

Model adaptation [8], as the name suggests, implies that
their is a pre-existing model whose parametric representa-
tion can be adapted from its current representation to de-
scribe a desired class of observations. The adaptation pro-
cess is normally performed in such a way that the classi-
fication performance realized by the newly adapted model
will be superior to the performance realized by the model
if one was to perform estimation from scratch (i.e. train
a model purely from a class-specific training set). Model
adaptation is typically only of use, over estimation, when
one has a limited amount of training observations for the
class. In the presence of large amounts of training obser-
vations the need for adaptation generally disappears as all
information about the model can be learnt from the abun-
dant class-specific training observations.

The pre-existing model, required for adaptation, has usu-
ally been estimated from a training set, commonly referred
to as a “development” set, that is several orders of magni-
tude larger than the actual class-specific training set. This
development set usually subsumes or is at least representa-
tive of thetypeof classes (e.g. subject’s faces) trying to be
learnt from the training set, such that one can obtain statis-
tics (i.e. a priori knowledge) about the nature of the class
trying to be learnt. The termadaptationis employed in-
stead ofestimationas most of the prior density parameters
are derived from parameters of the pre-existing model. In
our work with frontal face verification the development set,
used to estimate this initial model, stems from a reasonably
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large population of subjects.

3. Estimating the distribution
Maximum a posteriori (MAP) estimation, or Bayesian es-
timation as it is commonly referred to [1], is a technique
for estimating a distribution by employing a priori knowl-
edge of how that model varies. Given that we have a set of
training observationsStrn i.i.d. from an unknown distribu-
tion f(o), but having an approximately known parametric
form λ, our task in MAP estimation is to find,

λMAP = arg max
λ

f(Strn|λ)g(λ) (1)

whereg(λ) is the prior distribution governing howλ varies.
Often times in statistics, it is not easy to select an ap-

propriate prior distribution. It is instead convenient to use
an improper distribution (non-informative prior) that is rep-
resented by a nonnegative density function whose integral
over the whole parameter space is infinite. We refer to
this special case of MAP estimation as maximum likelihood
(ML) estimation where all knowledge aboutλ stems from
the observations. ML estimation is how we gain our initial
model to be adapted.

3.1. Gaussian mixture models
The parametric form ofλ will be a Gaussian mixture model
(GMM). GMMs are employed in our work as they are able
to provide a piece-wise parametric description of complex
distributions using a number of relatively simple multivari-
ate Gaussian distributions. GMMs are additionally attrac-
tive as they stem from the exponential family of distribu-
tions so that their well-known convexity property can be
taken advantage of in estimation; a prime example being
in use with the EM-algorithm [9].

A GMM models the probability distribution of ad di-
mensional statistical variableo as the sum ofM multivari-
ate Gaussian functions,

f(o|λ) =
M
∑

m=1

wmN (o;µm,Σm) (2)

whereN (o;µ,Σ) denotes the evaluation of a normal
distribution for observationo with mean vectorµ and co-
variance matrixΣ. The weighting of each mixture com-
ponent is denoted bywm and must sum to unity across
all mixture components. The parameters of the model
λ = {wm,µm,Σm}M

m=1 can be estimated using the Ex-
pectation Maximization (EM) algorithm [9] based on either
a MAP or ML criterion. In the ML case, K-means cluster-
ing [1] was used to provide initial estimates of these param-
eters. In our work the covariance matrices inλ are assumed
to be diagonal such thatΣ = diag{σ2}, as substantial ben-
efit can be attained by reducing the number of parameters
needing to be estimated.

3.2. Relevance adaptation
There are a variety of ways to gain a priori information
about the distributiong(λ). The employment of aworld,
or universal background modelas it is sometimes referred
to [10], has been shown empirically to greatly improve per-
formance in GMM-based speaker verification. A world
model is simply a single model trained from a large number
of subject faces representative of the population of subject
faces expected during verification, and usually has been es-
timated from a training set independent of the clients to be
adapted. This world model is typically trained using the ML
criterion (i.e. no informative prior).

Given a world modelλw = {wwm
,µwm

,Σwm
}M

m=1

and training observations from a single client,O =
[o1, . . . ,oR], using the iterative EM-algorithm one can ob-
tain update equations that incorporate the a priori knowl-
edge in the world model, to maximize the parametric rep-
resentation of a GMM. We refer to the adaptation of the
world modelλw to produce a client modelλc as relevance
adaptation (RA). For RA this results in the following update
equations2,

wcm
=

[

(1 − αw
m)wwm

+ αw
m

∑

R

r=1
γm(or)

∑

M

m=1

∑

R

r=1
γm(or)

]

β (3)

µcm
= (1 − αµ

m)µwm
+ αµ

m

∑

R

r=1
γm(or)or

∑

R

r=1
γm(or)

(4)

σ2
cm

= (1 − ασ
m)

(

σ2
wm

+ µ2
wm

)

+ ασ
m

∑

R

r=1
γm(or)or

∑

R

r=1
γm(or)

− µ2
cm

(5)

whereγm(o) is the occupation probability for mixturem
andαρ

m is a weight used to tune the relative importance of
the prior and is calculated via a relevance factorτρ in,

αρ
m =

∑R
r=1 γm(or)

τρ +
∑R

r=1 γm(or)
(6)

Different relevance factors can be estimated for the
weights, means and variances respectively (i.e.ρ ∈
{w, µ, σ}). In a similar fashion to work performed by
Reynolds et. al [10] we have found effective performance
can be attained by using a single relevance factor(τ =
τw = τµ = τσ). Empirically we found a relevance factor
of τ = 16 received good performance. The scale factor,β,
in Equation 3 is computed to ensure that all the adapted
mixture component weights sum to unity. Finally, it must
be noted that the adaptation framework presented in this

2A derivation of Equations 4 and 5 was developed by Gauvain and
Lee [8]. The weight update in Equation 3 was found experimentally to
perform better than Gauvain and Lee’s original.
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paper differs marginally to that presented by Reynolds as
the updates, performed in Equations 3-5, are done at each
iteration of the EM algorithm. This was done as the resul-
tant models were found to be more stable and effective than
applying the updates after the iterative process.

3.3. Evaluation
When evaluating a sequence of observations, from a
claimant, we obtain the average log-likelihood,

L(O|λc) =
1

R

R
∑

r=1

log f(or|λc) (7)

Given the average log-likelihood, for the client and
world models, one can then calculate the log-likelihood ra-
tio,

Λ(O) = L(O|λc) − L(O|λw) (8)

Verification is performed by accepting a claimant
when Λ(O) ≥ Th and rejecting him/her whenΛ(O) <

Th, whereTh is a given threshold. Verification perfor-
mance is evaluated using two measures; being false rejec-
tion rate (FRR), where a true client is rejected against their
own claim, and false acceptance rate (FAR), where an im-
postor is accepted as the falsely claimed client. The FAR
and FRR measures increase or decrease in contrast to each
other based on the thresholdTh. A simple measure for
overall performance of a verification system is found by de-
termining the equal error rate (EER) for the system, where
FAR = FRR.

4. Parts and feature representations
An initial investigation into what features are most effec-
tive for theparts representation of frontal face image was
conducted by Sanderson et. al [11] for the task of face ver-
ification. Sanderson’s work is pertinent to our work as it
was one of the first investigations forpartsbased face ver-
ification using GMMs; albeit using a ML criterion. In this
work a modified form of the 2D discrete cosine transform
(2D-DCT) was recommended, in comparison to other repre-
sentations like 2D-Gabor features, as an ideal way to gain a
compactpartsrepresentation that provided good distinction
between the faces of subjects and fast feature computation.
A depiction of the feature extraction process can be seen in
Figure 2.

The experiments conducted in this paper were performed
on cropped faces geometrically normalized for rotation and
scale so as to form an114×91 array of pixels. These images
were also statistically normalized to have a unit variance
and zero mean. The face images were then decomposed
into 16 × 16 pixel image patches with an overlap between
horizontal and vertical adjacent patches of75%. The over-
lap between patches aids verification from two perspectives.

2 D � D C T2 D � D C T2 D � D C T
P i x e lR e p r e s e n t a t i o n P a r t sR e p r e s e n t a t i o n F e a t u r eR e p r e s e n t a t i o n

Figure 2: Graphical depiction of the parts and feature represen-
tations of a face. Note: even though overlapping blocks are not
depicted in practice the overlapping of blocks leads to greater per-
formance.

First, the overlap reduces the spatial area used to derive one
feature vector and adds some redundancy between patches
(i.e. no single patch contains all the information about a lo-
cal region of the face). Second, as the overlap is increased
it also increases the number of image patches (i.e. observa-
tions) exponentially.

Once the image patches are acquired they then have an
2D-DCT applied to compact the16 × 16 = 256 element
patch into a feature vectoro of suitable dimensionality to
model a generalized but distinct distribution of that subject’s
face. The first64 energy preserving 2D-DCT coefficients
are extracted, according to a zig-zag pattern [11], with the
first coefficient being dropped as it is represents the mean
of the patch. We found empirically that the removal of the
first coefficient improved verification performance. This re-
sults in ad = 63 observation feature vectoro for used in
adaptation.

5. BANCA database

The English portion of the BANCA database was employed
for these experiments containing52 subjects; evenly di-
vided into two sets[g1, g2] of 26 as per the BANCA proto-
col [7]. Inside those sets there are an equal number of sexes
(i.e. male=13, female=13). The g1 and g2 sets are used
for the development and evaluation sets in our experiments.
The development set is used to obtain any data-dependent
aspects of the verification system (e.g. world model etc.).
The evaluation set is where the performance rates for the
verification system are obtained.

If the g1 set is used as the development set then theg2 set
is used for the evaluation set; and vice versa. This is done to
avoid any methodological flaw, as it is essential that the de-
velopment set is composed of a distinct subject population
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as the one of the evaluation set. We will report results in this
paper using both theg1 andg2 sets so as to gain a gauge
for the statistical significance of our results. Several proto-
cols [7] have been devised for the BANCA database. For the
experiments in this correspondence we have employed the
“matched conditions” (MC) protocol where images in the
gallery and probe sets stem from the same camera under the
same conditions. There are a total of4 sessions used in the
protocol with the first session being used as the gallery with
the remaining3 session being used for the probe. Each ses-
sion consisted of a sequence of5 images per subject, taken
as the subject is speaking. In the BANCA database each
subject has his/her session recorded with aclient accessut-
terance and aimposter attackutterance. The client access
utterance sessions2,3 and4 were used only for client ver-
ification with the imposter attack utterance sessions being
taken from all4 sessions.

6. Full shape collapse

A question now presents itself on how much structure
should we collapse in a face image? Given that we have
apartsandshaperepresentation of the face, we can choose
to collapse all the shape structure in the representation;
which we shall refer to as full shape collapse (FSC). In
our work we investigated the performance of a FSC-GMM
based face verification scheme employing RA on all of the
parameters(w,µ,Σ) of each mixture component (i.e. ap-
plying Equations 3-5). We also investigated applying the
RA scheme on the means(µ) only of each mixture com-
ponent (i.e. applying Equation 4). This was motivated by
the benefit seen in previous GMM based work [10] of re-
ducing the number of parameters needing to be estimated.
Both these schemes were evaluated usingτ = 0 (i.e. ML
estimation) andτ = 16 (i.e. MAP estimation) for theg1
andg2 BANCA evaluation sets. In Figure 3 verification re-
sults are presented as a function of the number of mixture
components (M).

A log-scale was employed in Figure 3 to evaluate veri-
fication performance from a simple (e.g.4) to a very com-
plex (e.g. 2048) value ofM . It is obvious for the{τ =
0 − (w,µ,Σ)} strategy that there is a drastic deteriora-
tion in performance from increasing the complexity of the
GMMs. The poor performance for high values ofM can be
attributed to the problem we stated at the beginning of this
paper concerning the estimation of generalized but discrim-
inative distributions from a small sized gallery set.

Good performance was attained for the{τ = 0 − (µ)}
strategy for low values ofM < 512. Superior perfor-
mance was achieved for the{τ = 16 − (µ)} and {τ =
16− (w,µ,Σ)} strategies employing increasingly complex
GMMs. A monotonic improvement in performance was
seen as a function ofM for the two strategies. Minimal
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Figure 3: Comparison of various adaptation schemes across the
(a)g1 and (b)g2 BANCA evaluation sets.

performance benefit was attained by settingM > 2048.
A clear benefit in performance was witnessed for the two
strategies employing non-zero values ofτ ; that is using
a MAP rather than ML criterion for estimation. For both
theg1 andg2 BANCA sets slightly better performance was
achieved using a{τ = 16 − (w,µ,Σ)} for M = 2048.

7. Partial shape collapse
An obvious question stemming from the previous section
is whether there is any benefit in keeping “some” shape
structure in the face representation? Even though we can
see that good performance can be attained by collapsing
the shape structure completely in a face, “some” form of
simplified shape structure may be beneficial to verification
performance. For example, there may be benefit in enforc-
ing that fiducial regions of face images be compared against
each other (e.g. eye region against eye region, mouth region
against mouth region, etc.). Motivated by this concept we
have attempted to place some labels on regions of the face.
We refer to this label based representation as partial shape
collapse (PSA). Figure 4 contains some examples of how
faces were labelled.

These labels specifically refer to the facial objectsq ∈ {
brow, left eye, right eye, bridge of nose, nose, left cheek,
right cheek, mouth}. A region was defined for each la-
bel using a single Gaussian distribution. The mean of the
Gaussian, based on hand-labelled coordinates, was centered
within the labelled object. The covariance matrices of each
Gaussian were heuristically chosen to encompass the ap-
proximate area of the labelled object. Patches were marked
as belonging to an object label if the patch was located
within the90% ellipsoid boundary of the Gaussian.

Using these labels we then attempted to estimate sepa-
rate conditional distribution modelsλc,q based on the iden-
tity c and shape label q of the parts. During verifica-
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Figure 4: Examples of how frontal faces were labelled us-
ing 8×Gaussian distributions.

tion this results in a conditional log-likelihood ratioΛq(O)
for each label on the face. In our work, after the es-
timation/adaptation ofλc,q, a log-likelihood ratio for a
claimant’s entire face is calculated as,

Λ(O) =
∑

q

Λq(O) (9)
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Figure 5: DET curve depicting the distinction between different
labels on the face, using theg1 set, usingM = 256 mixture com-
ponents for each facial region GMM.

In Figure 5 we see the detection error tradeoff (DET)
curve of the distinction provided by each label for our best
performing scheme usingMq = 256 mixture components
for each facial region’s GMM. Interestingly one can see rel-
atively homogeneous regions like the cheeks, bridge and
brow providing better verification performance than inho-
mogeneous regions like the mouth and to a lesser extent the
eyes. One can also see the clear benefit in combining the
scores with verification performance outperforming all the
regions individually.

For simplicity, in our experiments, we setMq to be
the same across all the facial regions. Future work may
find benefit in applying differing values forMq to each re-
gion. Like the previous section we performed a log-scale
exhaustive search on what values ofMq perform best for
PSC-GMMs using a relevance factorτ = 16. The re-
sults of this search can be seen in Figure 6 relative to the
FSC-GMM technique. The valueM used in Figure 6, for
the PSC-GMM technique, is the total number of mixtures
used (i.e. M = 8 × Mq). In our initial experiments,
acrossg1 andg2 sets, we found no real benefit in evaluat-
ing Mq > 512. Similar results were received to those seen
with FSC-GMMs with marginally better performance being
received for{τ = 16−(w,µ,Σ)} over the{τ = 16−(µ)}
strategy. For an undetermined reason the margin of per-
formance improvement for the PSC-GMM over the FSC-
GMM was greater for setg1 thang2.

10
0

10
2

10
4

0

5

10

15

20

25

30

E
E

R
 (

%
)

# of mixture components (M)

FSC − (w µ Σ)
FSC − (µ)
PSC − (w µ Σ)
PSC − (µ)

10
0

10
2

10
4

0

5

10

15

20

25

30

E
E

R
 (

%
)

# of mixture components (M)

(a) (b) 

Figure 6: Comparison of verification performance for FSC-GMM
and PSC-GMM techniques for the (a)g1 and (b)g2 BANCA eval-
uation sets.

8. Baseline comparison

Although the explicit purpose of this paper is to elucidate,
through adaptation theory, upon a different perspective to
face verification, it is also important to provide a baseline
comparison to the work we have presented. We conducted
an experiment to compare our FSC and PSC-GMM algo-
rithms with two others. In particular we compared our al-
gorithm with Eigenfaces [12] and Fisherfaces [13]. Eigen-
faces and Fisherfaces are the defacto baseline standard by
which face recognition algorithms are typically compared.

One can see both the FSC and PSC-GMM algorithms,
across both theg1 andg2 BANCA sets, provide, by a large
margin, superior performance to the baseline Eigenface and
Fisherface algorithms. As expected the PSC-GMM algo-
rithm outperforms the FSC-GMM algorithm, but only by a
marginal amount. This very interesting result indicates that
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Figure 7: Comparison of FSC and PSC-GMM algorithms, us-
ing M mixture components, against baseline Eigenface and Fish-
erface algorithms, usingK eigenvectors.

one may in some instances be able to obtain good verifica-
tion performance without having to accurately locate local
facial features (e.g. eyes, mouth, etc.).

9. Summary and Conclusions

In this paper we have presented a new perspective on
the task of face verification that demonstrates good per-
formance through the collapse of structure via aparts
andshaperepresentation of a face image. RA, through a
MAP criterion, has shown to be of benefit in estimating
complex GMMs for use in face verification, circumvent-
ing many of the problems associated with using a ML cri-
terion. One of the major contributions of our work is to
demonstrate how RA can be employed to train very com-
plex (e.g. M=2048) GMMs for use in verification. Ad-
ditionally, results indicate that simplifications to what pa-
rameters are adapted for client GMMs (i.e. adapting the
means only) has minimal effect on verification performance
for both FSC and PSC-GMMs. These simplifications may
aid in the formulation of future adaptation work that tries
to take advantage of any dependencies that exist between
mixture components.

The ability to estimate complex distributions, through
RA, has allowed us to explore a face verification paradigm
using apartsphilosophy for representing the face. The re-
sults received for the FSC-GMM algorithm are particularly
encouraging as they indicate that one may not need to lo-
cate local facial features to receive good verification perfor-
mance when performing verification byparts.
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