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Abstract

An integral part of any audio-visual speech processing (AVSP) system, is the front-end visual system that
detects facial features (e.g. eyes and mouth) pertinent to the task of visual speech processing. The ability
of this front-end system to not only locate, but give a confidence measure that the facial feature is present
in the image, directly affects the ability of any subsequent post-processing task such as speech or speaker
recognition. With these issues in mind, this paper presents a framework for a facial feature detection system
suitable for use in an AVSP system, but whose basic framework is useful for any application requiring frontal
facial feature detection. A novel approach for facial feature detection is presented based on an appearance
paradigm. This approach, based on intra-class unsupervised clustering and discriminant analysis, displays
improved detection performance over conventional techniques.

Keywords: audio-visual speech processing, facial feature detection, unsupervised clustering, discriminant
analysis.



1 Introduction

The visual speech modality plays an important role in the perception and production of speech. Although
not purely confined to the mouth, it is generally agreed [1] that the large proportion of speech information
conveyed in the visual modality stems from the mouth region of interest (ROI). To this end, it is imperative
that an audio-visual speech processing system be able to accurately detect, track and normalise the mouth
of a subject within a video sequence. This task is referred to as facial feature detection (FFD) [2]. The
goal of FFD is to detect the presence and location of features, such as eyes, nose, nostrils, eyebrow, mouth,
lips, ears, etc., with the assumption that there is only one face in an image. This differs slightly to the
task of facial feature location which assumes the feature is present and only requires its location. Facial
feature tracking is an extension to the task of location in that it incorporates temporal information in a
video sequence to follow the location of a facial feature as time progresses.

The task of FFD, with reference to an AVSP application, can be broken into three parts namely,

1. The initial location of a facial feature search area at the beginning of the video sequence.

2. Initial detection of the eyes at the beginning of the video sequence. Detection is required here to
ensure the scale of the face is known for normalisation of the mouth in the AVSP application.

3. Location and subsequent tracking of the mouth throughout the video sequence.

A depiction of how the FFD system acts as an front-end to an AVSP application can be seen in Figure 1.
This paper is broken down into a number of sections. Firstly, Section 2 discusses the importance of the front-
end FFD system has on the overall performance of an AVSP application. Section 3 discusses the scope of the
FFD problem with reference to AVSP, and how some assumptions can be made to simplify the system (i.e.
lighting, number of people present, scale and rotation of face, etc.). Under these assumptions a technique
for generating a binary face map, to restrict the eye and mouth search space, is explained in Section 5. The
importance of the face map can be seen in Figure 1 as it can drastically reduce the search space in FFD. In
Section 6 an appearance based paradigm for facial feature detection is defined, with our new approach of
detection based on intra-class unsupervised clustering and discriminant analysis being outlined. Detection
results of this approach highlighting the improved performance attained over conventional techniques are
also presented.
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Figure 1: Graphical depiction of overall detection/location/tracking frontend to an AVSP application.



2 Front-end Effect

For biometric processing of the face it is common practice to perform manual labelling of important facial
features (i.e. mouth, eyes, etc.) so as to remove any bias from the front end effect. The front-end effect
can be defined as the dependence any visual biometric classifier’s performance has on having the feature it
is making a decision about, successfully detected. The severe nature of this effect, with reference to final
biometric performance, is best depicted in Figure 2.
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Figure 2: Graphical depiction of the cascading front end effect.

If one assumes an erroneous decision will result when the facial feature being classified is not successfully
detected, one can express the effect mathematically as,

No = Nd X Te (1)

where 74 is the probability that the object has been successfully detected, 7. is the probability that a correct
decision is made given the object has been successfully detected and 7, is the overall probability that the
system will make the correct decision. Inspecting Equation 1 one can see that the performance of the overall
classification process 7, can be severely affected by the performance 7, of the detector.

In ideal circumstances one wants 74 to approach unity, so one can concentrate on improving the performance
of 7., thus improving the overall system performance. A very simple way to ensure 74 approaches unity is
through manual labelling of facial features. Unfortunately, due to the amount of visual data needing to be
dealt with in an AVSP application, manual labelling is not a valid option. The requirement for manually
labelling facial features also brings the purpose of any automatic classification system (i.e. speech or speaker
recognition) into question due to the need for human supervision. With these thoughts in mind, an integral
part of any AVSP application is the ability to make 74 approach unity via an automatic FFD system and
reliably keep it near unity to track that feature through a given video sequence.

3 Restricted Scope for AVSP

As discussed in Section 2 accurate facial feature detection is crucial to any AVSP system as it gives an
upper bound on performance, due to the front-end effect. FFD is a challenging task because of the inherent
variability [2] from,

Pose: the images of a face vary due to the relative camera-face pose, with some facial features such as an
eye or nose becoming partially or wholly occluded.

Presence or absence of structural components: facial features such as beards, mustaches, and glasses
may or may not be present adding a great deal of variability in the appearance of a face.

Facial expression: a subject’s face can vary a great deal due to the subject’s expression (e.g. happy, sad,
disgusted, etc.).

Occlusion: faces may be partially occluded by other objects.



Image orientation: facial features directly vary for different rotations about the camera’s optical axis.

Imaging conditions: when captured, the quality of the image, and facial features which exist within the
image, may vary due to lighting (spectra, source distribution and intensity) and camera characteristics
(sensor response, lenses).

With over 150 reported approaches [2] to the field of face detection, the field is now becoming well established.
Unfortunately, from all this research there is still no one technique that works best in all circumstances.
Fortunately, the scope of the facial feature detection task can be greatly narrowed due to the work in this
paper being primarily geared towards AVSP. For any AVSP application the main visual facial feature of
importance is the mouth. The extracted representation of the mouth does however, require some type of
normalisation for scale and rotation. It has been well documented [3] that the eyes are an ideal measure of
scale and rotation of a face. To this end, FFD for AVSP will be restricted to eye and mouth detection.

To further simplify the FFD problem for AVSP one can make a number of assumptions about the images
being processed,

there is a single subject in each audio-visual sequence,

the subject’s facial profile is limited to frontal, with limited head rotation (i.e. +/ — 10 degrees),

subjects are recorded under reasonable (both intensity and spectral) lighting conditions,

scale of subject remains relatively constant for a given video sequence.

These constraints are thought to be reasonable for most conceivable AVSP applications and are complied
with in the M2VTS database [4] used throughout this paper for experimentation. Under these assumptions
the task of FFD becomes considerably easier. However, even under these less trying conditions the task of
accurate eye and mouth detection and tracking, so as to provide suitable normalisation and visual features
for use in an AVSP application, is extremely challenging.

3.1 Validation

To validate the performance of an FFD system, a measure of relative error [3] is used based on the distances
between the expected and the estimated eye positions. The distance between the eyes (dcy.) has long been
regarded as an accurate measure of scale of a face [3]. Additionally, the detection of the eyes is an indication
that the face search area does indeed contain a frontal face suitable for processing with an AVSP system.
The distances d; and d,., for the left and right eyes respectively, are used to describe the maximum distances
between the true eye centers c;, ¢, € R? and the estimated positions €;, ¢, € R? as depicted in Figure 3.
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Figure 3: Relations between expected eye (¢, ¢,) and mouth (c,,) positions their estimated ones.



These distances are then normalised by dividing them by the distance between the expected eye cen-

ters (deye = ||c1 —¢r||), making the measures independent of the scale of the face in the image and the image
size.
max(dy, d
€eye = d( T) (2)
eye

The metric described in Equation 2 is referred to as the relative eye error ecye. A similar measure is used
to validate the performance of mouth location. A distance d,,, is used to describe the distance between the
true mouth position c,, € R? and the estimated position ¢&,, € R?. This distance is then normalised by the
distance between the expected eye centers, to also make the measure independent of the scale of the face in
the image and the image size:

dm

Emouth = d

(3)

eye

The metric described in Equation 3 is referred to as the relative mouth error emoutn. Based on previous
work by Jesorsky et al. [3] the eyes were deemed to be found if the relative eye error ecye < 0.25. This
bound allows a maximum deviation of half an eye width between the expected and estimated eye positions.
Similarly, the mouth was deemed to be found if the relative mouth error e,,oun < 0.25.

All experiments in this paper were carried out on the audio-visual M2VTS [4] database, which has been
used previously [5, 6] for AVSP work. The database used for our experiments consisted of, 37 subjects (male
and female) speaking four repetitions (shots) of ten French digits from zero to mine. For each speaker the
first three shots in the database, for the frames 1 to 100, had the eyes as well as the outer and inner labial
contours manually fitted at 10 frame intervals, so as to gain the true eye and mouth positions. This resulted
in over 1000 pre-tracked frames with 11 pre-tracked frames per subject per shot. The eye positions (c;, c;.)
were deemed to be at the center of the pupil. The mouth position c,, was deemed to be, the point of
bisection, on the line between the outer left and right mouth corners.

4 Gaussian mixture models

A well known classifier design which allows for modelling complex distributions parametrically are Gaussian
mixture models (GMM) [7]. Parametric classifiers have benefits over other classifiers as they give conditional
density function estimates which can be applied directly to a Bayesian framework.

A GMM models the probability distribution of a statistical variable x as the sum of ) multivariate Gaussian

functions,
Q

p(x) = ZCiN(I‘Li7 %) Ixs (4)
i=1
where N'(p,X)|x denotes a normal distribution with mean vector p, covariance matrix ¥ and ¢ denoting
the mixture weight of class . The parameters of the model A = (¢, ,X) can be estimated using the
Expectation Maximization (EM) algorithm [8]. K-means clustering [9] was used to provide initial estimates
of these parameters.

5 Defining the Face Search Area

The problem of FFD is a difficult problem due to the almost infinite number of manifestations non-facial
feature objects can take on in an input image. The problem of FFD can be greatly simplified if one is able



to define an approximate face search area within the image. By searching within this face search area the
problem of eye and mouth detection can be greatly simplified due to the background being restricted to the
face. This area of research is commonly referred to as face segmentation. Face segmentation can be defined
as the segmenting of face pixels, usually in the form of a binary map, from the remaining background pixels
in the image. Face segmentation approaches are excellent for defining a face search area as they aim to find
structural features of the face that exists even when the pose, scale, position and lighting conditions of the
face vary [2].

To gain this type of invariance most face segmentation techniques use simplistic pixel or localised texture
based schemes to segment face pixels from their background. Techniques using simple grayscale texture
measures have been investigated by researchers. Augusteijn and Skufca [10] were able to gain effective
segmentation results by computing second-order statistical features on 16x16 grayscale sub-images. Using
a neural network they were able to train the classifier using face and non-face textures, with good results
reported. Human skin colour has been used and proven to be one of the most effective pixel representations
for face and skin segmentation [2]. Although different people have different skin colour, several studies have
shown the major difference lies in the intensity not chrominance representation of the pixels [2, 11]. Several
colour spaces have been explored for segmenting skin pixels [2] with most approaches adopting spaces in
which the intensity component can be normalised or removed [11, 12]. Yang and Waibel [11] have achieved
excellent segmentation results using normalised chromatic space [r, g] defined in RGB (red,green,blue) space
as,

R R
r=+78 Y"RrGcTEB (5)
+G+ B R+G+B

It has demonstrated in [11, 12] that once the intensity component of an image has been normalised that
human skin obeys an approximately Gaussian distribution under similar lighting conditions (i.e. intensity
and spectra). Under slightly differing lighting conditions, it has been shown that a generalised chromatic skin
model can be generated using a mixture of Gaussians in an GMM. Fortunately in most AVSP applications it
is possible to gain access to normalised chromatic pixel values from the face and background in training. It is
forseeable that in most practical AVSP systems, that have a stationary background, it would be possible to
calibrate the system to its chromatic background through the construction of a chromatic background model
when no subject’s are present. By constructing an additional background GMM, segmentation performance
can be greatly improved over the typical single hypothesis approach.

The task of pixel based face segmentation using chromatic information can be formulated into the decision
rule,
skin
Ing(Org|Askin) - 1ng(orgp\back) § Th (6)
background

where T'h is the threshold chosen to separate classes, with p(0,4|Askin) and p(0,g|Apack) being used as the
parametric GMM likelihood functions for the skin and background pixel classes in normalised chromatic
space 04 = [r, g]. The pre-labelled M2VTS database was employed to train up GMM models of the skin and
background chromatic pixel values. Using the pre-labelled eye coordinates and the distance between both
eyes (deye), two areas were defined for training. The face area was defined as all pixels within the bounding
box whose left and right sides are 0.5d¢y. to the left of left eye x-coordinate and 0.5d.y. to the right of
the right eye x-coordinate respectively, with the top and bottom sides being 0.5d.,. above the average eye
y-coordinate and 1.5dcye below the average y-coordinate respectively. The background area was defined as
all pixels outside the bounding box whose left and right sides are d.y. to the left of left eye x-coordinate
and deye to the right of the right eye x-coordinate respectively, with the top and bottom sides being dcye
above the average eye y-coordinate and the bottom of the input image respectively. A graphical example
of these two bounding boxes can be seen in Figure 4.

All pre-labelled images from shot 1 of the M2VTS database were used in training p(0,¢|Askin) and p(0rg|Apack)
GMMs. The GMMs were then evaluated on shots 2 and 3 of the M2VTS database achieving excellent seg-
mentation in almost all cases. The skin GMM took on a topology of 8 diagonal mixtures with the background



background

Figure 4: Example of bounding boxes used to gather skin and background training observations .

GMM taken on a topology of 32 diagonal mixtures. The binary maps received after segmentation were then
morphologically cleaned and closed to remove any spurious or noisy pixels. An example of the segmentation
results can be seen in Figures 5(a) and 5(b).

Figure 5: (a) Original example faces taken from M2VTS database. (b) Binary potential maps generated
using chromatic skin and background models.

6 An appearance based paradigm

In facial detection there are a number of paradigms available. Techniques based on pixel or texture based
segmentation, are useful for object location, but do not provide any confidence on whether the object
is there or not; making them less attractive for use in an object detection capacity. Complicated iterative
techniques such as active shape models [13] or active appearance models [14], that jointly model the intensity
image variation and geometric form of the object, do provide such confidence measures but are quite
computationally expensive. Appearance based detection ignores the geometric form of the object completely,
and tries to model all variations in the object in terms of intensity value fluctuations within a region of
interest (window). In AVSP this approach to facial feature detection has an added benefit as recent research
by Potamianos et al. [15] indicates that using simple intensity image based representations of the mouth



as input features perform better in the task of speechreading than geometric or joint representations of the
mouth; indicating similar representations of the mouth may be used for detection and processing.

Appearance based detection schemes work by sliding a 2-D window W (x,y) across an input image, with the
contents of that window being classified as belonging to the object wqs; or background wy.s classes. The
sliding of an ny x ng 2-D window W (z,y) across an Nj x Ny input image I(z,y) can be represented as a con-
catenated matrix of vectors Y = [y1,...,y7]. Where the D = njns dimensional random vector y; contains
the vectorised contents of W (x,y) centered at pixel coordinates (z,y). A depiction of this representation
can be seen in Figure 6.

Figure 6: Demonstration of how contents of window W (x,y) can be represented as vector y;.

In reality the concatenated matrix representation of I(x,y) is highly inefficient in terms of storage and
efficiency of search, with the task of sliding a window across an image being far more effectively done
through 2-D convolution operations or an 2-D FFT [16, 17]. However, the representation shall be used
throughout this paper for explanatory purposes.

The task of appearance based object detection can be understood in a probabilistic framework, as an
approach to characterise an object and its background as a class-conditional likelihood function p(y|wop;)
and p(y|wper ). Unfortunately, a straightforward implementation of Bayesian classification is infeasible due to
the high dimensionality of y and a lack of training images. Additionally, the parametric form of the object
and background classes are generally not well understood. Hence, much of the work in an appearance
based detection concerns empirically validated parametric and non-parametric approximations to p(y|won;)

and p(y|wper) [2]-

6.1 Appearance based detection framework

Any appearance based detection scheme has to address two major problems,

1. Gaining a compact representation of y that maintains class distinction between object and background
sub-images, but is of small enough dimensionality to create a well trained and computationally viable
classifier.

2. Selection of a classifier to realise accurate and generalised decision boundaries between the object and
background classes.

Most appearance based object detection schemes borrow heavily on principal component analysis (PCA) [18],
or some variant, to generate a compact representation of the sub-image y. PCA is an extremely useful
technique for mapping an D dimensional sub-image y into an M dimensional subspace optimally, in terms of
reconstruction error. A fundamental problem with PCA is that it seeks a subspace that best represents a sub-
image in a sum-squared error sense. Unfortunately, in detection the criteria for defining an M dimensional
subspace should be class separation between the object and background classes not reconstruction error.
Techniques such as linear discriminant analysis (LDA) [18] produce a sub-space based on such a criterion
for detection [2, 18, 19, 20]. However, most of these techniques still require PCA to be used initially to



provide a subspace that is free of any low energy noise, that may hinder the performance of techniques like
LDA [20, 21]. For this reason most successful appearance based detection schemes [2, 17] still use PCA or
variant to some extent [22, 23, 24] to represent the sub-image y succinctly.

The choice of what classifier to use in facial feature detection is predominantly problem specific. The use of
discriminant classifiers such as artificial neural networks (ANNs) [2] and support vector machines (SVMs) [2,
25] has become prolific in recent times. ANNs and SVMs are very useful for classification tasks where the
number of classes are static as they try to find the decision boundary directly for distinguishing between
classes. This approach often has superior performance over parametric classifiers, such as Gaussian mixture
models (GMMs), as parametric classifiers form their decision boundaries indirectly from their conditional
class likelihood estimates. However, parametric classifiers, such as GMMSs, lend themselves to more rigorous
mathematical development and allow for the compact representation and classifier problems, associated
with appearance based detection, to be handled within the one framework. In this paper GMMs are used
to gain parametric likelihood functions p(y|Ap;) and p(y|Aser) for facial feature detection experiments.

6.2 Single class detection

PCA, although attractive as a technique for gaining a tractable likelihood estimate of p(y) in a low dimen-
sional space, does suffer from a critical flaw [22]. It does not define a proper probability model in the space
of inputs. This is because the density is not normalised within the principal subspace. For example, if one
was to perform PCA on some observations and then ask how well some new observations fit the model, the
only criterion used is the squared distance of the new data from their projections into the principal subspace.
An observation far away from the training observations but nonetheless near the principal subspace will be
assigned a high ‘pseudo-likelihood’ or low error. For detection purposes this can have dire consequences
if one needs to detect an object using a single hypothesis test [18]. This is a common problem where the
object class is well defined but the background class is not. This scenario can best be expressed as,

Whek
hiy) s Th, Uu(y)=1log[p(y|Xos;)] (7)
Wobj

where [;(y) is a score that discriminates between the object and background class with Th being the
threshold for the decision. In this scenario an object, which is drastically different in the true observation
space, may be considered similar in the principal subspace or, as it will be referred to in this section,
the object space (OS). This problem can be somewhat resolved by developing a likelihood function that
describes both object space and its complementary residual space (RS). Residual space is referred to as
the complementary subspace that is not spanned by the object space. Usually, this subspace cannot be
computed directly, but a simplistic measure of its influence can be computed indirectly in terms of the
reconstruction error realised from mapping y into object space. Residual space representations have proven
exceptionally useful in single hypothesis face detection. The success of residual space representations in a
single hypothesis can be realised in terms of energy. PCA naturally preserves the major modes of variance
for an object in object space. Due to the background class not being defined, any residual variance can be
assumed to stem from non-object variations. Using this logic, objects with low reconstruction errors can be
thought more likely to stem from an object class rather than background class. Initial work by Turk and
Pentland [16], used just the residual space, as opposed to object space representation for face detection, as
it gave superior results.

A number of approaches have been devised to gain a model to incorporate object and residual space rep-
resentations [16, 17, 19, 22, 23, 26] into p(y|\). Moghaddam and Pentland [17], provided a framework for
generating an improved representation of p(y|A). In their work they expressed the likelihood function p(y|A)
in terms of two independent Gaussian densities describing the object and residual spaces respectively.

p(y|AOFFESY) = p(y| AL )p(y ALY (8)



where,
p(y| A1) = NO@rs1y Arsan)lx, x =@y 9)

—
p(y A = N(0((r-ar1x1) 0L myx (v X=8y (10)

such that ® = {(b&f‘il are the eigenvectors spanning the subspace corresponding to the M largest eigen-
values \;, with @ = {¢,}E ,, 41 being the eigenvectors spanning the residual subspace. The evaluation
of Equation 9 is rudimentary as it simply requires a mapping of y into the object subspace ®. However,
the evaluation of Equation 10 is a little more difficult as one usually does not have access to the residual
subspace ® to calculate X. Fortunately, one can take advantage of the complementary nature of object
space and the full observation space such that,

tr(Y'Y) = tr(A) + o?tr(I) (11)

so that,

o (YY) — tr(A)] 12)

R-M
allowing one to rewrite Equation 10 as,
E(y)
exp(— = )
p(y| A = (271.0.2)(1%2_;4)/2’ e(y)=y'y —y'®®'y (13)

where €(y) can be considered as the error in reconstructing y from x. This equivalence is possible due to
the assumption of p(y|)\{RS}) being described by a Gaussian homoscedastic distribution (i.e. covariance
matrix is described by an isotropic covariance oI). This simplistic isotropic representation of residual space
is effective, as the lack of training observations makes any other type of representation error prone. In a
similar fashion to Cootes et al. [27] the ad-hoc estimation of 02 = %)\NH was found to perform best.

Many previous papers [17, 23, 24] have shown that objects with complex variations such as the mouth or
eyes do not obey a unimodal distribution in their principal subspace. To model object space more effectively
a Gaussian mixture model (GMM) conditional class likelihood estimate p(y|A{??) was used to account for
these complex variations. The same ensemble sub-images that were used to create the eigenvectors spanning
object space were used to create the GMM density estimate. An example of this complex clustering can be
seen in Figure 7 where multiple mixtures have been fitted to the object space representation of an ensemble
of mouth sub-images.

Similar approaches have been proposed for introducing this residual in a variety of ways such as factor
analysis (FA) [19], sensible principal component analysis (SPCA) [22] or probabilistic principal component
analysis (PPCA) [23]. For the purposes of comparing different detection metrics, the experimental work pre-
sented in this paper concerning the combining of OS and RS sub-image representations shall be constrained
to the complementary approach used by Moghaddam and Pentland [17].

6.3 Two class detection

As discussed in the previous section the use of residual space, or more specifically reconstruction error, can
be extremely useful when trying to detect an object when the background class is undefined. A superior
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Figure 7: Example of multi-modal clustering of mouth sub-images within principal sub-space.

approach to detection is to have well defined likelihood functions for the object and background classes.
The two class detection approach can be posed as,

Whck
la(y)= s Th, Ia(y) = log[p(y|Xop;)] — log[p(y|Aeer)] (14)

Wobj

A problem presents itself in how to gain observations from the background class to train Ap.;. Fortunately,
for facial feature detection the face area is assumed to be approximately known (i.e. from the skin map),
making the construction of a background model plausible as the type of non-object sub-images is limited
to those on the face and surrounding areas. Estimates of the likelihood functions p(y|Aosp;) and p(y|Apck)
can be calculated using GMMs, but one requires a subspace that can adequately discriminate between the
object and background classes. To approximate the object and background likelihood functions one could
use the original OS representation of y. Using OS for building parametric models one may run the risk
of throwing away vital discriminatory information, as OS was constructed under the criterion of optimally
reconstructing the object not the background. A more sensible approach is to construct a common space
(CS) that adequately reconstructs both object and background sub-images.

A very simple approach is to create a CS using roughly the same number of training sub-images from both
the object and background classes. A problem occurs in this approach as there are far more background sub-
images than object sub-images per training image. To remedy this situation, background sub-images were
selected randomly during training from around the object in question. An example of randomly selected
mouth, mouth background, eye and eye background sub-images can be seen in Figures 8 and 9 respectively.
Note for the eye background sub-images in Figure 9(b) that the scale varies as well. This was done to make
the eye detector robust to a multi-scale search of the image.

As previously mentioned, PCA is suboptimal from a discriminatory standpoint as the criterion for gaining
a subspace is reconstruction error not class separability. LDA can be used to construct a discriminant space
(DS) based on such a criterion. Since there are only two classes (L = 2) being discriminated between (i.e.
object and background) LDA dictates that DS shall have a dimensionality of one, due to the rank being
restricted to L — 1. This approach would work well if both the object and background classes were described
adequately by a single Gaussian, each with the same covariance matrix. In reality, one knows that this
is rarely the case with eye, mouth and background distributions being modelled far more accurately using
multimodal distributions. Using this knowledge, an intra-class clustering approach can be employed to build
a DS by describing both the object and background distributions with several unimodal distributions of
approximately the same covariance.

The technique can be described by defining Y,4; and Yy, as the training sub-images for the object and
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Figure 9: Example of (a) eye sub-images (b) eye background sub-images.

background classes. Principal subspaces ®.p; of size Mg,; and Py of size My are first found using
normal PCA. The object subspace ®,,; and background subspace ®;.;, are found separately to ensure
most discriminative information is preserved while ensuring any low energy noise that may corrupt LDA
in defining a suitable DS is removed. A joint orthonormal base ®,; is then found by combining object
and background subspaces via the Gram-Schmidt process. The final size of ®,; is constrained by M;
and My, and the overlap that exists between object and background principal subspaces. The final size
of the joint space is important, as it needs to be as low as possible for successful intra-class clustering
whilst preserving discriminative information. For experiments conducted in this paper successful results
were attained by setting M,;; and My to 30.

Soft clustering was employed to describe each class with several approximately equal covariance matrices.
K-means clustering [9] was first employed to gain initial estimates of the clusters with the EM algorithm
then refining the estimates. For the experiments conducted in this paper best performance was attained
when, 8 clusters were created from the compactly represented object sub-images Y 5 ®,,+ and 16 clusters

created from the compactly represented background sub-images Y o4;®jn¢. This resulted in a virtual L=24

{DS})

class problem resulting in a 23 (L-1) dimensional DS after LDA. Once DS was found estimates of p(y|A,,;

and p(y|)\§5f}) were calculated normally using an GMM.

6.4 Evaluation of appearance models

In order to have an estimate of detection performance between object and non-object sub-images y the pre-
labelled M2VTS database was employed to evaluate performance for eye and mouth detection. In training
and testing illumination invariance was obtained by normalising the sub-image y to a zero-mean unit-norm
vector [17].

A very useful way to evaluate detection performance of different appearance models is through the use of
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detection error tradeoff (DET) curves [28]. DET curves are used as opposed to traditional receiver operating
characteristic (ROC) due to their superior ability to easily observe performance contrasts. DET curves are
used for the detection task, as they provide a mechanism to analyse the trade off between missed detection
and false alarm errors.

Results are presented here for the following detection metrics,

OS-L1 Object space representation of y for the single hypothesis score {;(y) where p(y\)\({)bojs}) is approx-
imated by an 8 mixture diagonal GMM. OS is an 30 dimensional space.

OS-L2 Object space representation of y for the two class hypothesis score l2(y) where p(y|/\({)b0js}) is an
8 mixture diagonal GMM and p(y|AZECO,€S}) is an 16 mixture diagonal GMM. OS is an 30 dimensional

space.

RS-L1 Residual space representation of y for the single hypothesis score 1 (y) where p(y|)\i£’.5}) is paramet-

rically by single mixture isotropic Gaussian. The OS used to gain the RS metric was an 5 dimensional
space.

OS+RS-L1 Complementary object and residual space representation of y for the single hypothesis score {1 (y)

where p(y|)\ibOjS+RS}) = p(y|/\ibojs})p(y|)\ilis}). The likelihood function p(y\/\ibojs}) is parametrically

described by an 8 mixture diagonal GMM, with p(y|)\igs}) being described by single mixture isotropic
Gaussian. OS is an 5 dimensional space.

{Ccsy
obj

8 mixture diagonal GMM and p(y|)\lggcs}) is an 16 mixture diagonal GMM. CS is an 30 dimensional
space.

CS-L2 Common space representation of y for the two class hypothesis score l5(y) where p(y|A ) is an

DS-L2 Discriminant space representation of y for the two class hypothesis score l2(y) where p(y\)\({)bDjs}) is

an 8 mixture diagonal GMM and p(y|)\§£cs}) is an 16 mixture diagonal GMM. DS is an 23 dimensional
space.

The same GMM topologies were found to be effective for both mouth and eye detection. In all cases,
classifiers were trained using images from shot 1 of the M2VTS database with testing being performed on
shots 2 and 3. To generate DET curves for eye and mouth detection, 30 random background sub-images
were extracted for every object sub-image. In testing this resulted in over 5000 sub-images being used to
generate DET curves, indicating the class separation between object and background classes. As previously
mentioned, the eye background sub-images included those taken from varying scales to gauge performance
in a multi-scale search. Both the left and right eyes were modeled using a single model. Figure 10(a)
and 10(b) contain DET curves for the eye and mouth detection tasks respectively.

Inspecting Figures 10(a) and 10(b) one can see the OS-L1 metric performed worst overall. This can be
attributed to the lack of a well defined background class and the OS representation of sub-image y not
giving sufficient discrimination between object and background sub-images. Performance improvements can
be seen from using the reconstruction error for the RS-L1 metric, with further improvement being seen in the
complementary representation of sub-image y in the OS+RS-L1 metric. Note that a much smaller OS was
used (i.e. M = 5) for the OS+RS-L1 and RS-L1 metrics to ensure the majority of object energy is contained
in OS and the majority of background energy is in RS. It can be seen that all the single hypothesis L1
metrics have poorer performance than any of the L2 metrics, signifying the large performance improvement
gained from defining an object and background likelihood function. There is some benefit in using the
CS-L2 metric over the OS-L2 metric for both eye and mouth detection. The use of the DS-L2 metric gives
the best performance over all metrics in terms of equal error rate.

Figures 10(a) and 10(b) are only empirical measures of separability between the object and background

classes for various detection metrics. The true measure of object detection performance can be found in the
actual act of detecting an object in a given input image. For the task of eye detection each top left half and
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Figure 10: DET curve of different detection metrics for separation of (a) eyes, and (b) mouth between
background sub-images.

top right half of of the skin map is scanned with a rectangular window to determine whether there is a left
and right eye present. A depiction of how the skin map is divided for facial feature detection can be seen
in Figure 11.

Using the location error metric first presented by Jesorsky et. al [3], and elaborated upon in Section 3.1
for eye detection which states that the eyes are deemed to be detected if both the estimated left and right
eye locations were within 0.25dcy. of the true eye positions. To detect the eyes at different scales, the input
image and its skin map was repeatedly subsampled by a factor of 1.1 and scanned for 10 iterations with the
original scale chosen so that the face could take up 55% of the image width. Again tests were carried out
on shots 2 and 3 of the pre-labelled M2VTS database. The eyes were successfully located at a rate of 98.2%
using the DS-L2 metric. A threshold was employed from DET analysis to allow for a false alarm probability
of 1.5%, which in term resulted in only 13 false alarms over the 700 faces tested. The use of this threshold
was very important, as it gave an indication of whether the eyes and subsequently an accurate measure of
scale had been found for locating the mouth.

Given that the scale of the face is known (i.e. distance between the eyes d.,.) the mouth location performance
was tested on shots 2 and 3 of the pre-labelled M2VTS database. The lower half of the skin map is scanned
for the mouth, with a mouth being deemed to be located if the estimated mouth center is within 0.25d.y.
of the true mouth position. The mouth was successfully detected at a rate of 92.3% using the DS-L2
metric. When applied to the task of tracking in a continuous video sequence, this location rate starts
approaching 100% due to the smoothing of the mouth coordinates through time via a median filter.

7 Discussion

Appearance based detection of the eyes and mouth is of real benefit in AVSP applications. The appearance
based paradigm allows for detection, not just location, which is essential for effective AVSP applications. A
number of techniques have been evaluated for the task of appearance based eye and mouth detection. All
techniques differ primarily in their representation of the sub-image y being evaluated and how an appropriate
likelihood score is generated. Techniques based on single class detection (similarity measure based solely on
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Figure 11: Depiction of how skin map is divided to search for facial features.

the object) have been shown to be inferior to those generated from two class detection (similarity measure
based on both the object and background classes). Similarly, the need for gaining a compact representation
of the sub-image y that is discriminatory between the mouth and background is beneficial, as opposed to
approaches that generate a compact representation of the object or both classes based on reconstruction
erTor.

A technique for creating a compact discriminant space has been outlined using knowledge of LDA’s criterion
for class separation. In this approach an intra-class clustering approach is employed to handle the typical
case of when both the object and background class distributions are multimodal. Using this approach
good results, suitable for use in AVSP, were achieved in practice for the tasks of eye detection and mouth
detection.

References

[1] F. Lavagetto, “Converting speech into lip movements: A multimedia telephone for hard hearing people,”
IEEFE Transactions on Rehabilitation Engineering, vol. 3, pp. 90-102, March 1995.

[2] M. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in images: A survey,” IEEE Transacations
on Pattern Analysis and Machine Intelligence, vol. 24, pp. 1-25, January 2002.

[3] O. Jesorsky, K. Kirchberg, and R. Frischholz, “Robust face detection using the hausdorff distance,” in
Third International Conference on Audio and Video based Biometric Person Authentication, (Halm-
stad, Sweden), pp. 90-95, June 2001.

[4] S. Pigeon, “The M2VTS database,” (Laboratoire de Telecommunications et Teledection, Place du
Levant, 2-B-1348 Louvain-La-Neuve, Belgium), 1996.

[5] S. Dupont and J. Luettin, “Audio-visual speech modeling for continuous speech recognition,” IFEE
Transactions on Multimedia, vol. 2, pp. 141-151, September 2000.

[6] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classifiers,” IEEE Transacations on Pattern
Analysis and Machine Intelligence, vol. 20, pp. 226239, March 1998.

15



(7]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[25]

[26]

D. A. Reynolds, “Experimental evaluation of features for robust speaker identification,” IEEFE Trans-
actions on Speech and Audio Processing, vol. 2, pp. 539-643, October 1994.

A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algo-
rithm,” Royal Statistical Society, vol. 39, pp. 1-38, 1977.

A. Gersho and R. Gray, Vector Quantization and Signal Compression. 3300 AH Dordrecht, THE
NETHERLANDS: Kluwer Academic Publishers, 1992.

M. F. Augusteijn and T. L. Skujca, “Identification of human faces through texture-based feature
recognition and neural network technology,” in IEEE Conference on Neural Networks, pp. 392-398,
1993.

J. Yang and A. Waibel, “A real-time face tracker,” in Third IEEFE on Applications of Computer Vision,
(Sarasota, Florida, USA), pp. 142-147, 1996.

M. H. Yang and N. Ahuja, “Detecting human faces in color images,” in International Conference on
Image Processing, vol. 1, pp. 127-130, 1998.

J. Luettin, N. A. Thacker, and S. W. Beet, “Speechreading using shape and intensity information,” in
International Conference on Spoken Language Processing, vol. 1, pp. 5861, 1996.

I. Matthews, T. Cootes, S. Cox, R. Harvey, and J. A. Bangham, “Lipreading using shape, shading and
scale,” in Auditory-Visual Speech Processing, (Sydney, Australia), pp. 73-78, 1998.

G. Potamianos, H. P. Graf, and E. Cosatto, “An image transform approach for HMM based automatic
lipreading,” in International Conference on Image Processing, vol. 3, pp. 173-177, 1998.

M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, vol. 3, no. 1,
1991.

B. Moghaddam and A. Pentland, “Probabilistic visual learning for object representation,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 696-710, July 1997.

K. Fukunaga, Introduction to Statistical Pattern Recognition. 24-28 Oval Road, London NW1 7DX:
Academic Press Inc., 2nd ed., 1990.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York, NY, USA: John Wiley
and Sons, Inc., 2nd ed., 2001.

M. Yang, N. Abuja, and D. Kriegman, “Mixtures of linear subspaces for face detection,” in Fourth
IEEE International Conference on Automatic Face and Gesture Recognition, pp. 70-76, 2000.

P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. fisherfaces: Recognition using
class specific linear projection,” IEEE Transcations on Pattern Analysis and Machine Intelligence,
vol. 19, pp. 711-720, July 1997.

S. Roweis, “EM algorithms for PCA and SPCA,” in Neural Information Processing Systems (NIPS’97),
vol. 10, pp. 626-632, 1997.

M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,” Tech. Rep.
NCRG/97/010, Neural Computing Research Group, Aston University, September 1997.

B. Chalmond and S. C. Girard, “Nonlinear modeling of scattered multivariate data and its application
to shape change,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, pp. 422—
432, May 1999.

S. G. Y. Li, J. Sherrah, and H. Liddell, “Multi-view face detection using support vector machines and
eigenspace modelling,” in Fourth International Conference on Knowledge-Based Intelligent Engineering
Systems and Allied Technologies, (Brighton, UK), pp. 241-244, August 2001.

D. J. Bartholomew, Latent Variable Models and Factor Analysis. London: Griffin and Co. Ltd., 1987.

16



[27] T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, “Use of active shape models for locating structures
in medical images,” Image and Vision Computing, vol. 12, pp. 355-365, July/August 1994.

[28] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and P. Przybocki, “The DET curve in assessment
of detection task performance,” in Eurospeech’97, vol. 4, pp. 1895-1898, 1997.

17



