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Abstract

In this paper we propose a new adaptation technique for
improved text-independent speaker verification with limited
amounts of training data using Gaussian mixture models
(GMMs). The technique, referred to as probabilistic subspace
adaptation (PSA), employs a probabilistic subspace description
of how a client’s parametric representation (i.e. GMM) is al-
lowed to vary. Our technique is compared to traditional max-
imum a posteriori (MAP) adaptation, or relevance adaptation
(RA), and maximum likelihood eigen-decomposition (MLED),
or subspace adaptation (SA) techniques. Results are given
on a subset of the XM2VTS databases for the task of text-
independent speaker verification.

1. Introduction
Maximum a posteriori (MAP) adaptation offers certain advan-
tages [1] over approaches, such as maximum likelihood (ML)
training, which ignore the fact that the parameter (i.e. client’s
speaker model) is itself a random variable. However, as is of-
ten the case with MAP type methods, the nature and creation of
the prior distribution governing how one’s parametric represen-
tation varies is unclear.

The rapid estimation of speaker models for the purposes
of speaker verification in emerging technologies such as mo-
bile applications (i.e. cell phones, PDAs), where memory and
computational capacity is at a premium, is a topic of great im-
portance. Unlike mobile speech recognition applications, feasi-
ble mobile speaker verification applications, due to security and
computational cost constraints, require both the evaluation and
estimation of speaker models on the system.

This paper addresses the latter problem of estimating robust
speaker models from a modest amount of training observations.
Often this form of estimation is referred to as adaptation where
one takes a pre-existing parametric representation for a known
class (i.e. all speakers), where the representation is known to
be well trained, and adapts it using a small amount of training
observations to a less known class (i.e. single speaker); the less
known class is usually a subset or a variant on the well known
class. The resulting parametric model is often more accurate
and robust than models trained purely from the less known ob-
servations alone.

We outline a technique that is able produce robust and gen-
eralizable client model’s by employing probabilistic a priori
knowledge of how a speaker’s parametric representation can
vary within a subspace that preserves the principal modes of
parametric variation across all speakers. This technique is able

to make estimates of “unseen” phonemic events1 by learning
many of the dependencies that exist between these events a pri-
ori from a developments set of well trained parametric speaker
models. The adaptation technique in this paper, which we refer
to as probabilistic subspace adaptation (PSA), is an extension to
the maximum likelihood eigen-decomposition (MLED) adapta-
tion technique proposed by Kuhn et. al [2] initially for the task
of speech recognition; we refer to this adaptation technique sim-
ply as subspace adaptation (SA).

PSA is able to employ a Bayesian perspective to SA, by us-
ing a MAP instead of ML criterion, which results in more robust
and stable client models, especially in the presence of scarce
amounts of training observations. PSA is able to use a well de-
fined subspace-prior distribution for MAP estimation, as the re-
duced dimensionality gained from the subspace representation
allows the calculation of stable statistics from a development
set of speakers. Previously, without the subspace representa-
tion, gaining such accurate statistics from the full parametric
space was untenable.

We compare PSA’s performance to the well known MAP
technique first presented by Gauvain and Lee [3] and used
with much success by Reynolds et. al [4] for the task text-
independent speaker verification, we refer to this adaptation
technique as relevance adaptation (RA). Throughout this paper
we shall only be concerned with adapting the means of the mix-
ture components, as the majority of class distinction between
speakers can be attributed to the mixture component mean po-
sitions.

2. MAP and ML estimation using the
EM-algorithm

Given that we have a set of training observations Strn i.i.d.
from an unknown distribution f(o), but has an approximately
known parametric form λ, our task in MAP estimation is to
find,

λMAP = arg max
λ

f(Strn|λ)g(λ|φ) (1)

where g(λ|φ) is the prior distribution of parametric form φ

governing how λ varies in parametric space.
Often times in statistics, it is not easy to select an appro-

priate prior distribution [1]. It is instead convenient to use
an improper distribution (non-informative prior) that is repre-
sented by a nonnegative density function whose integral over
the whole parameter space is infinite. We refer to this special

1The term phonemic event in this context refers to the mixture com-
ponents found in a client’s GMM, estimated from a data-driven cluster-
ing criteria as opposed to pre-ordained psychoacoustic labels.



case of MAP estimation as ML estimation where all knowledge
about λ stems from the observations.

λML = arg max
λ

f(Strn|λ) (2)

Dempster et. al [5] were able to develop an iterative algorithm
referred to as the EM-algorithm, made up of an expectation (E)
step and maximization (M) step, that is able to obtain a unique
solution to λ provided their parametric form stems from the ex-
ponential family so that their well-known convexity property [5]
can be taken advantage of. For ML estimation of λ whose para-
metric form is a mixture of M Gaussians (i.e. GMM) the EM-
algorithm requires the maximization of the auxiliary function,

Q(λ, λ
(n)) = E{log f(Strn,q|λ)|λ(n)} (3)

where q = [q1, . . . , qR] is the hidden mixture component se-
quence where qr ∈ [1, . . . , M ] and λ(n) is the previous itera-
tion’s estimate of λ. The EM-algorithm can be applied equally
well to MAP estimation [5] as long as the parametric form of φ

belongs to the conjugate family of the complete-data density
(i.e. the exponential family). The auxiliary function to be max-
imized according to the MAP criterion is defined by,

R(λ, λ
(n)) = E{log f(Strn,q|λ)|λ(n)} + log g(λ|φ) (4)

for both MAP and ML estimation using the EM-algorithm iter-
ations are continued until a stable result is obtained.

Gaussian mixture models (GMMs) have been shown [4]
empirically to be the classifier of choice for the task of text-
independent speaker verification. A GMM models the proba-
bility distribution of a d dimensional statistical variable o as the
sum of M multivariate Gaussian functions,

f(o|λ) =
M
∑

m=1

wmN (o; µm,Σm) (5)

where N (o; µ,Σ) denotes the evaluation of a normal dis-
tribution for observation o with mean vector µ and covariance
matrix Σ. The weighting of each mixture component is denoted
by wm and must sum to unity across all mixture components.
The parameters of the model λ = {wm, µm,Σm}M

m=1 can
be estimated using the Expectation Maximization (EM) algo-
rithm [5] based on either a maximum likelihood (ML) or maxi-
mum a posteriori (MAP). K-means clustering was used to pro-
vide initial estimates of these parameters. Using M = 80 mix-
ture components received good results in our experiments.

3. Relevance adaptation
MAP adaptation, or Bayesian adaptation as it is commonly re-
ferred to, is a technique for learning based on employing a pri-
ori knowledge of the parametric distribution p(λ). An explicit
form of MAP adaptation, which we refer to as relevance adap-
tation (RA), has been shown [3, 4] to greatly improve automatic
text-independent speaker verification performance over tradi-
tional ML training.

There are a variety of ways to gain a priori information
about the distribution of λ. In speaker verification, the employ-
ment of a world, or universal background model as it is some-
times referred to, in conjunction with a relevance factor has
been shown [4] empirically to greatly improve speaker verifica-
tion process. A world model is simply a single model trained
from a large number of speakers representative of the popula-
tion of speakers expected during verification, and usually has

been estimated from a training set independent of the client
to be adapted. This world model is typically trained using a
ML criterion and thus usually requires large amounts of train-
ing data to be trained satisfactorily.

Given a world model λw = {wwm
, µwm

,Σwm
}M

m=1 and
training observations from a single client, O = [o1, . . . ,oR],
using the iterative EM algorithm one can obtain update equa-
tions that incorporate the a prior knowledge in the world model,
to maximize the parametric representation of an GMM. This
results in the following update equation,

µcm

= (1 − αm)µwm

+ αm

∑R

r=1 γm(or)or
∑R

r=1 γm(or)
(6)

where γm(o) is the occupation probability for mixture m

and αm is a weight used to tune the relative importance of the
prior and is calculated via a relevance factor τ in,

αm =

∑R

r=1 γm(or)

τ +
∑R

r=1 γm(or)
(7)

for our experiments an τ = 16 received good results, it must be
reemphasized that the work in this paper is concerned only with
adapting the means. The total number of parameters per client
is M × d.

4. Subspace adaptation
Gauvain et. al [3], in their development of RA, made an as-
sumption of independence between mixture components, such
that a mixture component can only move if it has observations
“seen” in it. This assumption, although empirically valid in the
presence of reasonable amounts of training data, severely limits
the ability to train robust speaker models with small amounts
of data as there is often a number of “unseen” mixture compo-
nents. Reasonable performance is still obtained using RA [4],
as the relevance factor ensures that “unseen” mixture compo-
nents remain close to their world model (i.e. average speaker-
independent) positions.

An obvious approach to lessen the effect of these “unseen”
mixture components is to try and learn the dependencies that
exist between mixture components, such that mixture compo-
nents can still move in an appropriate direction even if their are
minimal to no observations “seen” in them. However, due to
the parametric size of a speaker’s GMM model (e.g. 80 mixture
components with d = 26 results in 2080 free parameters for the
mean representations) it is infeasible to gain accurate statistics
of all these dependencies (e.g. it would require at least 2080 lin-
ear independent speaker models to obtain a fully ranked sample
covariance matrix).

Kuhn et. al [2] recently developed a new approach for adap-
tation that preserves most of the variations between class mod-
els, but in a smaller parametric subspace K << M × d. The
main advantage of such an approach is the decrease in the num-
ber of free parameters needing to be found, allowing for the
estimation of better trained models using less observations. A
client model can be expressed as,

µc = Vx + µw (8)

where V = {vk}
K
k=1 is the concatenated matrix of the K

eigenvectors/voices vk corresponding to the K largest eigen-
values, µc is the concatenated vector of M mixture component
means µcm

and x is the parameter vector of client c within the
subspace.



A variant of the EM-algorithm [2, 5] is employed so as to
maximize the auxiliary function Q(λ, λ(n)) with respect to the
subspace representation x, whose update equation can be rep-
resented compactly in matrix form as,

xML = A
−1

b (9)

where,

ak,j =
M
∑

m=1

(

R
∑

r=1

γm(or)

)

v
′

k,mΣ
−1
m vj,m (10)

bk =

M
∑

m=1

R
∑

r=1

γm(or)v
′

k,mΣ
−1
m

(

or − µwm

)

(11)

and vk,m represents the subvector of the eigenvector vk cor-
responding to the mth mean mixture component. In a similar
fashion to the calculation of the world model µw , the eigen-
vectors in V are calculated using principal component analysis
(PCA) from a development set of well trained speaker models
independent of the clients to be adapted.

5. Probabilistic subspace adaptation
An obvious shortcoming of SA, and PCA in general, is there
is no constraint on the variation of parameters within the sub-
space. Tipping and Bishop [6] addressed this problem, for PCA,
in the form of probabilistic PCA (PPCA) which models the sub-
space spanned by the eigenvectors as a Gaussian,

x ∼ N (0,D) (12)

where D is the diagonal matrix containing the K largest eigen-
values corresponding to the eigenvectors vk.

Applying a MAP criterion, resulting in the maximization
of R(λ, λ(n)) with respect to x by assuming the distribution
of g(λ|φ) is described by the Gaussian in Equation 12, results
in the update equation,

xMAP =
(

A + D
−1)−1

b (13)

We refer to the iterative application of Equation 13 as proba-
bilistic subspace adaptation (PSA).

6. Front-end processing
For feature extraction we used standard mel-frequency cepstral
coefficients (MFCC) to generate 13 dimensional feature vec-
tor at 10ms intervals. Delta (first derivative) features were ap-
pended to this feature vector to create a 26 dimensional feature
vector. Silence detection was performed using the bi-Gaussian
method [7], where a two mode GMM is trained on a represen-
tative portion of the speech corpus with the hope that one Gaus-
sian shall represent the speech features and the other Gaussian
represent the silence features. Individual digit utterances were
obtained for each speaker based on the length of the silence seg-
ments and the known digit order. Log energy and static MFCC
coefficients were employed during the silence detection stage,
with good segmentation results obtained.

7. Experiments
Experiments were conducted on the acoustic digit portion of
the XM2VTS [8] database, involving 16 repetitions of the dig-
its ‘zero’ to ‘nine’ for each speaker taken over 4 recording ses-
sions. The use of digits was chosen as this corresponds to a

typical application scenario of speaker verification in a mobile
application. The Lausanne 1 protocol [8] was used for our ex-
periments with 200 speakers in the client set and 70 speakers
in the test imposter set. Of the 16 digit sequence repetitions
for each speaker, in the client set, 6 were used for training and
10 for testing. In total this resulted in 60 digit utterances of
training observations for each client. For our experiments only
a random subset of these training observations were ever used.
Tests were constructed with the emphasis being placed on how
well the client models generalize, irrespective of what digit ut-
terance was being said. To this end the training digits used to
train each client model were drawn randomly from the pool of
60 digit utterances available for each client.

To ensure the separation of clients the first 100 speakers in
the client set were used as the development set to train the world
model λw and generate the subspace V, with the remaining
100 speakers being used for testing. Each client model was
tested using a randomly constructed sequence approximately 4
digits in length, as this was thought to be a typical in mobile
applications (i.e. four digit security pin).

8. Speaker verification task
The speaker verification task is the binary process of accept-
ing or rejecting the identity claim made by a subject under test.
The verification process can be expressed simply as the decision
rule,

log f(O|λc) − log f(O|λw)
reject

≶
accept

Th (14)

where f(O|λ) =
∏T

t=1 f(ot|λ) is the likelihood score de-
scribing how likely the test utterance O = [o1, . . . ,oT ] be-
longs to the claimant speaker c and world model w respec-
tively. A threshold Th needs to be found so as to make the de-
cision. Speaker verification performance is evaluated in terms
of two types of error being false rejection (FR) error, where a
true client speaker is rejected against their own claim, and false
acceptance (FA) errors, where an impostor is accepted as the
falsely claimed speaker. The FA and FR errors increase or de-
crease in contrast to each other based on the decision thresh-
old Th set within the system. A simple measure for overall
performance of a verification system is found by determining
the equal error rate (EER) for the system, where FA = FR.

9. Results and discussion
Figure 1 contains comparative results between traditional RA
and subspace based techniques SA and PSA. SA was evaluated
in the form conceived by Kuhn et. al [2]; which we denoted
as SA∗ and essentially set the world means in Equation 11 to
zero (µw = 0) with all parametric variations being modelled in
the subspace representation. We also evaluated SA (denoted
without the * superscript) using the same world means used
in RA; as a consequence SA and SA∗ required the generation
of different subspaces2 from the development set. The world
means were used during the attainment of results for PSA. For
the three subspace techniques (SA∗, SA, PSA) in Figure 1 the
best EERs were quoted for each training data amount from
across 4 subspace sizes (K=20,40,60 and 80).

One can see in Figure 1 the benefit of using the world means

2For SA∗ a principal subspace was found using PCA on the develop-
ment set without subtracting the world means µw; for SA the principal
subspace was found after subtracting µw .



in the SA process, with equal to slightly better performance be-
ing seen across all amounts of training data. This improvement
may be explained from the fixing of the world model in SA as
opposed to SA∗ so that the variations modelled in the subspace
concentrate only on the relative differences between speakers.

For PSA, with small amounts of training data, one can
clearly see the performance improvement from employing a
probabilistic description of how x is allowed to vary within
the subspace. We think the benefit of the technique stems
largely from the additional stability gained from incorporating
the eigenvalues as well as the eigenvectors into the adaptation
process. This point can be reinforced by comparing Equations 9
and 13. In Equation 9 the presence of minimal training ob-
servations will cause A to be poorly ranked making its inver-
sion highly unstable. However, in Equation 13 the inversion
of
(

A + D−1
)

is well ranked due to the condition of D be-
ing a diagonal matrix of eigenvalues. This point can be further
argued from an empirical perspective if one inspects Figure 2.

In Figure 2(a) one can see that verification performance for
SA is poorer with a large subspace size (K=80) than with a small
subspace size (K=20) in the presence of small amounts of train-
ing data. This performance can largely be attributed to the curse
of dimensionality, as the larger the dimensionality of x gets, the
more observations are required to gain adequate statistics. The
increased stability stemming from the dimensionality reduction
comes at cost, with less parametric variation available to dis-
criminate between speaker classes. For SA a tradeoff must be
made between stability and variability. PSA can largely circum-
vent this tradeoff by ensuring stable performance, even when
the dimensionality is reasonably high (ensuring more variabil-
ity), as one can see from the results in Figure 2(b).

In this paper we have elucidated upon a technique that is
able to learn a priori the principal modes of dependency be-
tween phonemic events (mixture components) for a population
of speakers. The probabilistic description provided by PSA
largely removes the tenuous balance between stability and vari-
ability found in SA. PSA however, still suffers the serious prob-
lem faced by SA in the presence of ample training observations
as the result does not converge to the normal ML result as tra-
ditional RA does. Future work will try and incorporate work by
Kim and Kim [9] that try and employ a variant of SA that pro-
vides a latent-variable full parametric space based on the work
of Tipping and Bishop [6].
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Figure 2: EERs for (a) SA and (b) PSA across different amounts
of randomly drawn training digits and subspace sizes (K).
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