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Abstract

Techniques that treat the face holistically as a vector of
pixel values, which we refer to as a monolithic represen-
tation, are still widely considered state of the art for the
task of face verification in literature. Recently good perfor-
mance has be attained in the task of face verification, using
Gaussian mixture models (GMMs), via estimating a parts
(i.e. image patch) face model; where the shape (i.e. spa-
tial) information is largely ignored. In this paper we postu-
late that the characteristics current algorithms employ for
verifying a face using monolithic and parts representations
differ and are in many ways symbiotic; lending themselves
to synergetic combination and improved verification perfor-
mance. Results are presented on the BANCA database that
demonstrate excellent verification performance in the pres-
ence of many common real world variabilities (e.g. cam-
era degradation, minor pose variabilities, some changes in
background and lighting).

1. Introduction

From its inception by Sirovich and Kirby [1] and subse-
quentEigenfacework by Turk and Pentland [2] the mono-
lithic representation of the face has been considered state
of the art; even in the most recent open evaluations (e.g.
FERET 2000 [3], AVBPA 2003 [4]) monolithic represen-
tations have obtained the best performance. We use the
termmonolithicin this paper to describe the holistic vector-
ized representation of the face based purely on pixel values
within an image array.

Many researchers have attempted to venture away from
the canonical monolithic representation. Previous work by
Brunelli et. al [5], Moghaddam et. al [6] and Wiskott et.
al [7] cited good recognition performance by representing
the face as a set of salient parts/regions (eg. eyes, nose,
mouth). Images in the gallery set were used to create mod-
ular templates for comparison with salient regions of the
probe images. Both Brunelli and Moghaddam noted supe-

rior performance by analyzing the image in a modular man-
ner, rather than holistically as long as the salient regionshad
been localized to a satisfactory accuracy. Wiskott employed
a technique of face recognition that obtained a similarity
measure from the Gabor filter response at each node. The
nodes of the grid normally, but not necessary, correspond
to so called fiducial points. Martı́nez [8] demonstrated a
technique to model the uncertainty associated with the lo-
calization of these salient regions during the estimation of
the modular templates. However, all these techniques es-
sentially compare “points” (i.e. the distance from a probe’s
eye image to a eye template) not distributions.

Recently work has been conducted [9, 10] demonstrat-
ing that good verification performance can be attained by
relaxing many of the spatial constraints in the canonical
monolithic face representation. The technique departs from
the traditional idea of comparing points on the face, plac-
ing greater emphasis on comparing distribution of the parts
themselves (i.e. the position of the parts has no bearing on
the final similarity measure). Through this technique very
good verification performance can be attained from collaps-
ing spatial constraints to generate a distribution of parts.

In this paper we attempt to demonstrate that monolithic
and parts face representations are in many ways symbiotic,
and can be combined in a synergetic manner leading to im-
proved face verification. We demonstrate that the symbi-
otic relationship is useful under matched and mismatched
gallery and probe conditions. We employ the relatively new
BANCA [11] database to demonstrate this ability as it con-
tains facial variabilities that are encountered in real world
environments (e.g. camera degradation, minor pose vari-
abilities, some changes in background and lighting).

2. Monolithic representation

In a monolithic representation one attempts to preserve all
dependencies in the pixel representation of the face, treat-
ing the face as a vector of pixel values. In this paper we
will be restricting ourselves to monolithic techniques based
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around a nearest neighbor classifier (i.e. the comparison
of individual probe images with gallery images, rather than
the generation of a single template/model from the ensem-
ble of gallery images) as this technique has been demon-
strated to work well when only a few gallery images of a
client are available [3, 4]. Most of these techniques have
largely differed from one another in a) the subspace cho-
sen to represent the vector [6, 12, 13, 14] (e.g. original
pixel space, principal component analysis (PCA), linear dis-
criminant analysis (LDA), independent component analysis
(ICA), etc.), and b) the metric of similarity [6, 12, 13, 14]
(e.g. Euclidean, Mahalanobis, cosine, Bayesian, support
vector machine). Other monolithic techniques that gener-
ate client specific templates (e.g. client specific support
vector machines (SVMs) [15], multilayer perceptron layers
(MLPs) [15], correlation filters [16]) are outside the scope
of this paper.

Recently Navarrete and Solar [12, 13] conducted a study
into the respective merits of common subspaces and sim-
ilarity measures used in nearest neighbor monolithic face
recognition. A similar study was undertaken by Sadeghi
et. al [14] on the BANCA database for the task of face
verification. In both studies they found good performance
could be obtained using differential techniques, first inves-
tigated by Moghaddam and Pentland [6], where a similar-
ity measure, commonly based on Bayesian or SVM clas-
sifiers, is estimated from intra-personal and extra-personal
differences of subjects in a development gallery. Differ-
ential similarity measures obtained using a Bayesian clas-
sifier [13] exhibited good performance when a dual PCA
space was found for the intra-personal and extra-personal
classes. When employing a SVM classifier [13, 14] good
performance was attained when the images were left in their
original pixel space. Solar stated that similar performance
can be achieved using either a Bayesian or SVM similar-
ity measure. A major drawback in all differential similar-
ity measure techniques is their data hungry nature; as they
require the estimation of intra-personal and extra-personal
observation classes.

Equivalent and sometimes superior performance was
also attained in both studies by Solar and Sadeghi by using
a simple cosine similarity measure in LDA space. A ma-
jor advantage of this measure, over differential measures,
is that the cosine similarity measure is data independent.
Due to its simplicity and good performance this will be the
monolithic face verification algorithm used in this paper.

2.1. Eigen- and Fisher-faces
In this paper we will be evaluating two monolithic tech-
niques. The first, which will be referred to asPCA-MAH ,
is the baseline Eigenface [2] technique which employs PCA
to generate a subspace preserving the50 most energy pre-
serving modes. The Mahalanobis distance is then employed

to gain a measure of similarity between the two observation
vectorsa andb,

dMAH = (a − b)′D−1(a − b) (1)

whereD is a diagonal matrix of eigenvalues found from
the PCA process. The second technique which we shall
refer to asLDA-COS, is a variant on the Fisherface [17]
technique which employs LDA to generate a subspace pre-
serving the50 most discriminant modes. As suggested
by [12, 13, 14] good performance can be attained if we em-
ploy the cosine distance to gain a measure of similarity,

dCOS =
a
′
b

||a||||b||
(2)

3. Parts representation
Recent work [9, 10] has demonstrated that Gaussian mix-
ture models (GMMs) can be used to great success for the
task of face recognition. In this type of approach the face is
represented as a distribution (of many points), as opposed to
the canonical single observation representation of the face
commonly employed by monolithic representations. This
“many point” representation can be attained by viewing
the face as being composed of bothparts andshape[18].
The parts are image patches containing information about
the face in a local region. Theshapecomponent provides in-
formation describing where these patches are located glob-
ally within the face. By collapsing some of theshapestruc-
ture of a face, accurate distributions can be estimated that
generalize well to most permutations of faces whilst still
providing distinction between faces.

Learning the face as a distribution (i.e. many observa-
tions), as opposed to a single observation, has many appeal-
ing properties for face classification tasks. First, the many
observations (representing the face) can exist in a low di-
mensional space circumventing problems associated with
the “curse of dimensionality” [19] when training a classi-
fier with high dimensional observations. Second, by repre-
senting a face with many observation points one naturally
has more observations (of a lower dimensionality) to aid in
the estimation of a classifier. Through the use of GMMs
to model the face distribution, it has been shown that good
verification performance can be attained by throwing away
mostshapeinformation. We refer to this type of face model
as a full shape collapse GMM (FSC-GMM ).

A major problem in applying a parts philosophy to face
verification is the typically small gallery set of images avail-
able for a subject. The lack of training observations drasti-
cally affects the ability to estimate conditional distributions
that are generalized to differing permutations of a subject’s
face yet still contain enough complexity to discriminate be-
tween subjects. A technique which we refer to as rele-
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vance adaptation (RA) [9], based on Bayesian learning, is
employed that is able to produce such distribution models.
These distributions, specifically GMMs, provide a drastic
improvement over techniques that do not employ adapta-
tion.

3.1. Parts feature representation
An initial investigation into what features are most effec-
tive for theparts representation of frontal face image was
conducted by Sanderson et. al [10] for the task of face veri-
fication. Sanderson’s work is pertinent to our work as it was
one of the first investigations forpartsbased face verifica-
tion using GMMs; albeit using a maximum likelihood (ML)
criterion. In this work a modified form of the 2D discrete
cosine transform (2D-DCT) was recommended, in compar-
ison to other representations like 2D-Gabor features, as an
ideal way to gain a compactparts representation that pro-
vided good distinction between the faces of subjects and fast
feature computation. A depiction of the feature extraction
process can be seen in Figure 1.

2 D � D C T2 D � D C T2 D � D C T
P i x e lR e p r e s e n t a t i o n P a r t sR e p r e s e n t a t i o n F e a t u r eR e p r e s e n t a t i o n

Figure 1: Graphical depiction of the parts and feature represen-
tations of a face. Note: even though overlapping blocks are not
depicted in practice the overlapping of blocks leads to greater per-
formance.

Additional information about the generation of the fea-
ture representations can be obtained from [9, 10].

3.2. Gaussian mixture models
A GMM models the probability distribution of ad dimen-
sional statistical variableo as the sum ofM multivariate
Gaussian functions,

f(o|λ) =

M
∑

m=1

wmN (o;µm,Σm) (3)

whereN (o;µ,Σ) denotes the evaluation of a normal
distribution for observationo with mean vectorµ and co-

variance matrixΣ. The weighting of each mixture com-
ponent is denoted bywm and must sum to unity across
all mixture components. The parameters of the model
λ = {wm,µm,Σm}M

m=1 can be estimated using the Ex-
pectation Maximization (EM) algorithm [20] based on ei-
ther a maximum a posteriori (MAP) or ML criterion. In
the ML case, K-means clustering [19] was used to provide
initial estimates of these parameters. In our work the co-
variance matrices inλ are assumed to be diagonal such
thatΣ = diag{σ2}, as substantial benefit can be attained
by reducing the number of parameters needing to be esti-
mated.

To evaluate a sequence of observations, generated from
a claimant’s probe image, we obtain the average log-
likelihood,

L(O|λc) =
1

R

R
∑

r=1

log f(or|λc) (4)

Given the average log-likelihood, for the client and
world models, one can then calculate the log-likelihood ra-
tio,

Λ(O) = L(O|λc) − L(O|λw) (5)

For our work we found good performance could be attained
if we employed GMMs with512 mixture components.

3.3. Relevance adaptation
Given a world modelλw = {wwm

,µwm
,Σwm

}M
m=1

and training observations from a single client,O =
[o1, . . . ,oR], using the iterative EM-algorithm one can ob-
tain update equations that incorporate the a priori knowl-
edge in the world model, to maximize the parametric rep-
resentation of a GMM. A world model is simply a single
model trained from a large number of subject faces repre-
sentative of the population of subject faces expected during
verification, and usually has been estimated from a train-
ing set independent of the clients to be adapted. This world
model is typically trained using the ML criterion (i.e. no
informative prior). We refer to the adaptation of the world
modelλw to produce a client modelλc as relevance adapta-
tion (RA). For RA this results in the following update equa-
tions,

wcm
=

[

(1 − αw
m)wwm

+ αw
m

∑

R

r=1
γm(or)

∑

M

m=1

∑

R

r=1
γm(or)

]

β (6)

µcm
= (1 − αµ

m)µwm
+ αµ

m

∑

R

r=1
γm(or)or

∑

R

r=1
γm(or)

(7)

σ2
cm

= (1 − ασ
m)

(

σ2
wm

+ µ2
wm

)

+ ασ
m

∑

R

r=1
γm(or)or

∑

R

r=1
γm(or)

− µ2
cm

(8)

3



whereγm(o) is the occupation probability for mixturem
andαρ

m is a weight used to tune the relative importance of
the prior and is calculated via a relevance factorτρ in,

αρ
m =

∑R
r=1 γm(or)

τρ +
∑R

r=1 γm(or)
(9)

Different relevance factors can be estimated for the
weights, means and variances respectively (i.e.ρ ∈
{w, µ, σ}). We have found effective performance can be at-
tained by using a single relevance factor(τ = τw = τµ =
τσ). Additional information on RA can be found in [9].

4. BANCA database and evaluation
The English portion of the BANCA database was employed
for these experiments containing52 subjects; evenly di-
vided into two sets[g1, g2] of 26 as per the BANCA pro-
tocol [11]. Inside those sets there are an equal number of
sexes (i.e. male=13, female=13). The g1 andg2 sets are
used for the development and evaluation sets in our exper-
iments. The development set is used to obtain any data-
dependent aspects of the verification system (e.g. thresholds
etc.). The evaluation set is where the performance rates for
the verification system are obtained.

If the g1 set is used as the development set then theg2
set is used for the evaluation set; and vice versa. This is
done to avoid any methodological flaw, as it is essential that
the development set is composed of a distinct subject popu-
lation as the one of the evaluation set. We will report results
in this paper using both theg1 and g2 sets so as to gain
a gauge for the statistical significance of our results. For
the experiments in this correspondence we have employed
images, examples of which can be seen in Figure 2, taken
under three conditions,

Controlled: using a high end digital camera with con-
trolled lighting and homogeneous background.

Degraded: using a low end (i.e. web) digital camera
with uncontrolled indoor lighting and inhomogeneous
background.

Adverse: using a high end digital camera with a combina-
tion of uncontrolled indoor and outdoor lighting and
inhomogeneous background.

For our experiments the faces are cropped and normalized
for scale and rotation so that their eyes line up in the same
position, resulting in a55× 51 gray scale image. Examples
can be seen in Figure 3. A lighting normalization method,
proposed by Gross and Brajovic [21], is then employed that
compensates for illumination variation in the face images
by making an estimate of the illumination field.

Several protocols [11] have been devised for the BANCA
database. We have restricted our investigation to protocols

where the gallery images are always taken undercontrolled
conditions, as this is a highly likely scenario in practice.
The four protocols, listed below, we employ only differ in
the probe images they use.

Mc: “matched controlled” protocol, probe taken un-
dercontrolledconditions.

Ud: “unmatched degraded” protocol, probe taken un-
derdegradedconditions.

Ua: “unmatched adverse” protocol, probe taken underad-
verseconditions.

P: “pooled” protocol, probe taken undercontrolled, de-
gradedandadverseconditions.

Further specifications of the protocols can be found in [11].

Figure 2: Example of images of a subject taken across (left to
right) controlled, degradedandadverseconditions.

Figure 3: Example of cropped images of a subject taken across
(left to right)controlled, degradedandadverseconditions.

Verification is performed by accepting a claimant
whenms ≥ Th and rejecting him/her whenms < Th,
wherems is a match score (i.e. a similarity measured
or log-likelihood ratioΛ) from the classifier andTh is a
given threshold. Verification performance is evaluated us-
ing two measures; being false rejection rate (FRR), where
a true client is rejected against their own claim, and false
acceptance rate (FAR), where an impostor is accepted as
the falsely claimed client. The FAR and FRR measures in-
crease or decrease in contrast to each other based on the
thresholdTh. A common technique for evaluating overall
performance is the Half Total Error Rate (HTER) which is
defined as,

HTER = [FAR(Th∗) + FAR(Th∗)] /2 (10)
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where the thresholdTh∗ is found a priori on the develop-
ment set, and is selected to obtain Equal Error Rate (EER)
performance (i.e. FAR = FRR).

5. A question of resolution
Lemieux and Parizeau [22] recently conducted a study on
parameters that affect eigenface recognition. In their study
they found the eigenface recognition engine relied mostly
on low frequency information for recognition. Lemieux
and Parizeau reported that no loss in recognition rate was
seen by downsampling (i.e. similar to blurring) the cropped
and normalized face images from200 × 220 to 12 × 13
pixel arrays. We achieved similar results on the Eigenface-
basedLDA-COS algorithm, whose results are depicted in
Figure 4(a), where we test the performance of the algo-
rithm after the probe images undergo blurring and sharp-
ening operations. The blurring and sharpening operations
employed a Gaussian kernel. The standard deviation of the
kernel was chosen for the blurring operation so the blurred
Mc probe images had a similar resolution to the normal Ud
probe images. A similar selection criteria was employed for
the sharpening operation so the sharpened Ud probe images
had a similar resolution to the normal Mc probe images. We
restricted ourselves to a comparison of the Mc and Ud pro-
tocols, as the main variation between the Mc and Ud proto-
cols, apart from lighting, was predominantly the resolution
of the images.
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Figure 4: The effect, on verification performance, of sharpen-
ing and blurring probe images employing the (a)LDA-COS and
(b) FSC-GMM algorithms. Note: HTER results presented are the
average acrossg1 andg2 evaluations sets, with black lines denot-
ing the deviation.

When a similar investigation is undertaken with
the FSC-GMM algorithm, as depicted in Figure 4(b), the

blurring and sharpening operations have a clear effect on
performance. Initially one can see that theFSC-GMM al-
gorithm receives far better performance than theLDA-COS
algorithm on the normal Mc protocol. Performing a simi-
lar comparison on the Ud protocol we obtain the reverse
situation where theLDA-COS algorithm receives far bet-
ter performance than theFSC-GMM algorithm. Assum-
ing that the Ud protocol probe images are missing much
of the high frequency information contained in the Mc pro-
tocol probe images, this gives us an initial indication that
theFSC-GMM is heavily dependent on high frequency in-
formation.

When the sharpening operation is performed, theFSC-
GMM algorithm performance on the Ud protocol improves
substantially, but little change is seen in theLDA-COS
algorithm; giving an additional indication that theFSC-
GMM algorithm is heavily dependent on high frequency
information. We should also note that performance on
the FSC-GMM algorithm for the Mc protocol degrades
when the sharpening operation is performed. One hypoth-
esis for this result is that the sharpening operation sharpens
areas of the face that normally contain only low frequency
information, hindering verification performance.

Finally we can see that the blurring operation has a def-
inite effect on theFSC-GMM algorithm on protocol Mc,
attaining similar verification performance toFSC-GMM ’s
Ud protocol in normal conditions. The blurring operation
further degrades performance on the blurred Ud protocol.
This final result gives additional support to our postulate
that theFSC-GMM algorithm, employing a parts repre-
sentation, requires high frequency information to gain good
verification performance; where as the theLDA-COS can
perform well with only low frequency information.

6. Combining representations

From Section 5 one can see that an argument can be made
about the characteristics used for verification by theLDA-
COS and FSC-GMM algorithms. Heuristically we can
also claim that the monolithic representation employed in
the LDA-COS algorithm preserves global, albeit low fre-
quency, dependencies across the entire face. TheFSC-
GMM algorithm employing the parts representation, al-
though only preserving local dependencies in the face, pre-
serves much of the high frequency detail. Using this very
preliminary evidence we shall now use the rest of this paper
to investigate the effect of fusing these two representations
through the combination of theLDA-COS andFSC-GMM
algorithms.

We shall refer to this technique as theCOMB algorithm,
where we employ thesum rule for combining the match
scores of multiple classifiers. Kittler et. al [23] demon-
strated that thesum rule can obtain good performance in
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classifier combination, when the two classifiers are diverse
and produce match scores approximately representative of
their true a posteriori probabilities. Another advantage of
the sumrule is that it is completely data independent; as
it requires no tuning set to effectively fuse match scores.
TheCOMB match score is generate by,

ms = logsig(dCOS) + logsig(Λ) (11)

where the logsig operation is used to try and make the
match scores obtained from theLDA-COS andFSC-GMM
algorithm more representative of their true a posteriori prob-
abilities. The logsig operation can be defined as,

logsig(a) =
1

1 + exp(−a)
(12)

The employment of the logsig operation results in the
synergetic combination of match scores from theLDA-
COS andFSC-GMM algorithms.

7. Results
Table 1 contains a summary of results for each algorithm
discussed in this paper across the Mc, Ud, Ua and P pro-
tocols. For completeness we have also included results
from [14] using their two best algorithms on the BANCA
database; which are both based on monolithic representa-
tions. The first algorithm, which we shall refer to asLDA-
NC, is basically their implementation of our ownLDA-
COSalgorithm which employs a LDA subspace and cosine
distance. The second algorithm, which we refer to asORG-
SVM, employs the original pixel representation of the im-
age in conjunction with a SVM classifier to calculate a dif-
ferential similarity measure.

Algorithm/Protocol Mc Ud Ua P
LDA-NC [14] 4.93 15.99 20.24 14.79

ORG-SVM [14] 5.43 25.43 30.11 20.33
PCA-MAH 10.2 17.84 26.63 21.57
LDA-COS 6.46 10.99 20.39 14.96
FSC-GMM 2.14 24.78 17.06 21.97

COMB 1.42 9.65 16.51 13.71

Table 1: Comparison of algorithms, in Half Total Error Rate
(HTER), on the BANCA database. Note: for a fair comparison
with results in [14] performance was averaged across theg1 andg2

evaluation sets.

It is interesting to immediately note the performance im-
provement of theFSC-GMM algorithm, in Table 1, over
all other algorithms using a monolithic representation for
protocol Mc. This indicates that even in matched con-
ditions, where the probe and gallery images stem from
similar recording conditions, parts based representations

are of some benefit due to their natural ability to general-
ize to unseen images and preserve high frequency detail.
When we include additional information from the mono-
lithic basedLDA-COS algorithm, resulting in theCOMB
algorithm, one can see that this additional information is
fused synergetically resulting in increased performance.

The parts based representations do not fare so well for
the Ud protocol, which can largely be explained by the
blurred nature of the Ud protocol’s probe images as investi-
gated in Section 5. They did however outperform all mono-
lithic representation algorithms on the Ua protocol. One hy-
pothesis for this performance, can be attributed to the natu-
ral pose variation present in the Ua protocol’s probe images.
Trying to verify a face in parts, instead of using a monolithic
representation, allows one to freely match areas of the face
that are not as perturbed by pose.

Inspecting Table 1 one can note the catastrophic per-
formance of theSVM-ORG algorithm, employing a data-
dependent differential similarity measure, across the Ud,Ua
and P protocols. This is an interesting result, indicating that
differential data dependent similarity measures are espe-
cially prone to changes in the data. TheLDA-NC andLDA-
COSalgorithms achieve similar performance across all pro-
tocols; as expected. A difference did occur for the Ud pro-
tocol with substantially better performance being witnessed
for theLDA-COS algorithm. This could be partially be at-
tributed to the lighting normalization technique [21], which
was not employed in [14]. The proposedCOMB algorithm
achieves superior performance to all other algorithms in-
vestigated, across all protocols. The superior performance
of the COMB algorithm seems to be limited by the best
performances of theLDA-COS andFSC-GMM algorithms
respectively.

8. Summary and Conclusions

In this paper we have taken some initial steps into under-
standing what type of representations are appropriate for
the task of face verification. We have investigated the ben-
efits and drawbacks of employing a monolithic and parts
representation for face verification through theLDA-COS
and FSC-GMM algorithms respectively. We have postu-
lated, based on empirical evidence and heuristics, that the
two representations are symbiotic; in the sense that they
try and verify using substantially different characteristics of
the face. TheLDA-COS algorithm attempts to preserve all
low-frequency dependencies, global and local, in the face
pixel representation. TheFSC-GMM algorithm attempts
to only preserve local dependencies but is then able to pre-
serve far more high-frequency information. We have seen
in our results that both representations are equally valid and
important; and that through synergetic combination of these
two algorithms superior verification performance can be at-
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tained than has been seen in literature previously [14].
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