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Abstract

Face images, varying under pose, are dramatically different
in their “pixel” appearance even if they stem from the same
subject. Our work concentrates specifically on the task
of verifying faces when the gallery set stems from frontal
face images, with the probe set stemming from a number
of alternate poses (i.e. pose mismatch). An argument is
put forward for attempting to recognize faces through inte-
grating holistic/monolithic and free-parts representations.
Canonical monolithic representations are investigated such
as Eigenface and Fisherface techniques, as well as recent
techniques that are able to deal with pose specifically, such
as Eigen-light fields. Similarly, parts representations are
investigated, with particular attention being paid to Free-
Parts Gaussian Mixture Models (FP-GMMs) as a useful
representation. A contribution is made via the analysis of
what traits, in a face, are most useful for each representa-
tion. Finally, we are able to demonstrate that there is: a)
benefit in combining free-parts and monolithic representa-
tions, and b) further benefit can be obtained by varying the
weight placed on each representation as a function of view
point.

1. Introduction

Face verification with a change in viewpoint, between 2D
gallery and 2D probe images, is inherently a difficult task
(i.e. pose mismatch). Images taken of the face from one
pose, for the same subject, are markedly different to images
captured under another pose. One can tell from visual in-
spection that pixel variation due to pose change is far greater
than the variation seen due to changes in identity. An exam-
ple of this problem can be seen in Figure 1. In this paper
we will be dealing specifically with the problem of trying
to verify clients from non-frontal viewpoint probe images
given that only a single frontal view image of that client
exists in the gallery.

In cognitive science, theories abound over whether hu-
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Figure 1: Example of the difficulty in recognizing subjects from
different pose as images from the same pose, irrespective of iden-
tity, are more similar in terms of their pixel representation.

mans recognize faces based on component parts or holistic
representations. In fact there is a large amount of litera-
ture [1, 2] indicating that both types of representations of
the face are important in human face recognition in the pres-
ence of pose mismatch. We use the termmonolithicin this
paper to describe the holistic vectorized representation of
the face based purely on pixel values within an image array,
which can be associated with the holistic mechanism used
in a human face recognition system. Similarly, we use the
term parts to denote a representation of the face that can
be considered as an ensemble of image patches of the im-
age array. The employment of parts representations for ob-
ject/face detection has recently gained much attention and
success in machine vision literature [3, 4, 5]. For the task
of face recognition we additionally categorize parts repre-
sentations into two subsets namelyrigid- and free- parts.
Rigid-parts representations assume the weight/contribution
of each patch in the image, towards the final recognition de-
cision, is not homogeneous; but the position/structure of the
patches within the image is preserved. Free-parts represen-
tations assume that the position/structure of patches within
the image can be relaxed so they can “freely” move to vary-
ing extents. Both rigid- and free- parts representations as-
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sume there is minimal dependence between the appearance
of other patches within the image.

Considerable work has already been performed with
monolithic face representations, for automatic face recog-
nition, in the presence of pose mismatch. Most notably
techniques like Tensorfaces [6], Eigen-light fields [7] and
Fisherfaces [8] have been employed with varying degrees
of success. There has already been some preliminary work
by Kanade and Yamada [9] demonstrating the benefit of a
rigid-parts representation, where weightings for each patch
in the face are learnt off-line, from a development set, as a
function of pose. Monolithic and rigid-parts approaches are
very similar in terms of the classification mechanism they
employ as they both essentially compare gallery and probe
“points” in a feature space; with rigid-parts approaches em-
ploying multiple points, with each point existing in separate
and largely independent feature spaces. Hitherto, the ben-
efit of employing a free-parts representation has not been
fully investigated for the task of automated face verification
in the presence of pose mismatch. Free-parts representa-
tions have an inherent advantage over monolithic and rigid-
parts representations in that they compare “distributions”
which are naturally able to cope with appearance variation.
In this paper we will be focussing on comparing free-parts
and monolithic representations as they are representativeof
“point” and “distribution” style classification mechanisms
for verification.

Recent work [10, 11, 12] has been conducted demon-
strating that good performance can be attained by employ-
ing a free-parts representation in the task of frontal view
face verification. Some generative models that have been
previously employed to model these free-parts face distribu-
tions are: pseudo 2-D hidden Markov models (HMMs) [12]
and Gaussian mixture models (GMMs) [10, 11]. GMMs
can be thought of as a special subset of HMMs where no
positional constraints are placed on the patch observations
whatsoever. This is a highly desirable characteristic when
trying to verify clients across pose as patch positions can
vary wildly across viewpoints.

In this paper we will attempt to address the following two
questions with respect to face verification via monolithic
and free-parts representations:
Q1: Are areas of the face which are often associated with

being the most salient and discriminative (i.e. eyes,
nose and mouth) equally important for all representa-
tions of the face? Or can other traits such as skin tex-
ture play a larger role depending on the representation
employed?

Q2: Is there any benefit in combining the match-scores re-
sulting from a free-parts and monolithic representa-
tion? Can additional benefit be gained by combining
these scores in an unequal manner?

As a result of answering the above questions we will also
be presenting an algorithm which we refer to as the Free-

parts and Holistic Integration (FHI) strategy. The FHI strat-
egy is able to give substantial performance improvement in
comparison to leading monolithic and free-parts approaches
in the presence of pose mismatch.

2. Monolithic representations
It is outside the scope of this paper to perform a large scale
evaluation of all possible monolithic approaches. Instead
we will be taking a sample of techniques that are represen-
tative of current paradigms in pose robust face recognition.
These paradigms differ largely by how they employ the de-
velopment set in their off-line training. We define the de-
velopment set as the set of observations used to obtain any
data-dependent aspects of the verification algorithm (e.g.
Eigenface, Fisherface, Eigen-light Field vectors, whitening
transform, etc.), but doesnot provide any client specific in-
formation like those found in the gallery and probe sets.

Specifically, we will be considering the Eigenface al-
gorithm [13] as a baseline due to its ubiquitous nature in
face recognition literature. The Eigenface algorithm can
be thought of as being representative of a paradigm that
make matches based purely on pixel appearance. The Fish-
erface algorithm [14] is also considered as a baseline due
to its simplicity and high performance in recent evalua-
tions [15, 16, 17]. This algorithm can be thought of as be-
ing representative of a paradigm that attempts to learn the
within-class and between-class differences between poses
in the development set. Finally, the Eigenlight-fields tech-
nique will be used as a baseline due to its specificity to pose
and its similar nature to other popular approaches such as
Tensorfaces [6] as well as Lee and Kim’s [8] pose trans-
formation technique. These types of algorithms are rep-
resentative of a paradigm that attempts to learn the rela-
tionships/transformations between each pose in the devel-
opment set.

2.1. Eigen- and Fisher-faces
Eigen- and Fisher-face approaches have been around for
quite some time and have enjoyed much success in full-
frontal face recognition. In this paper we will be evaluat-
ing a specific type of Eigen- and Fisher-face strategy. The
first, which will be referred to as MON-PCA, is the baseline
Eigenface [13] technique which employs principal com-
ponent analysis (PCA) to generate a subspace preserving
theK = 89 most energy preserving modes. The whitened
cosine distance (i.e. the cosine distance between two ob-
servations after performing the whitening transform [18] on
each of them) is then employed to gain a measure of sim-
ilarity between the gallery and probe observation vectors
which result after mapping the original pixel images into
the PCA generated subspace. The second technique which
we shall refer to as MON-LDA, is a variant on the Fish-
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erface [14] technique which employs linear discriminant
analysis (LDA), after PCA, to generate a subspace preserv-
ing theK = 89 most discriminant modes. As suggested
by [15, 16, 17] good performance can be attained if we em-
ploy the cosine distance to gain a measure of similarity.

2.2. Eigen-light Field Approach
Eigen-light fields were proposed by Grosset al. [7] as a
technique for learning the dependencies that exist between
monolithic representations of the face from different view
points. In their paper Grosset al. argue that a face’s light
field is an ideal representation to perform face recognition
under varying pose as the representation naturally encom-
passes all view points. A face was assumed to stem from
only a finite set of poses1, 2, . . . , P . In their work a light-
field was represented as the concatenation of the vectorized

view point imagesxp such thatℓ =
[
x

T
1 , . . . ,xT

P

]T
(i.e. the

light-field was assumed to be represented accurately fromP
sample viewpoints). From an ensemble ofK training light-
fields {ℓk}

K
k=1

a set of eigenvectorsV = {vk}
K
k=1

(i.e.
eigen-light fields) can be found through PCA that satisfy,

ℓ =

K∑

k=1

akvk + ℓ = Va + ℓ (1)

whereℓ is the sample mean of the light fields. As long
asℓ lies in the same approximate subspace as the eigen-light
fields the vectora can be used as a compact pose-invariant
representation of that subject’s face. In practice however,
one rarely has all possible view points to construct a com-
plete light-field. In fact, it is quite common to only have a
single gallery view point. In this common scenario a least
squares approximation ofa can be found by,

a ≈ V
+
p xp + xp (2)

whereVp is the subset, referring to posep, of the complete
set of eigen-light fieldsV = [V1, . . . ,VP ]

T . The Moore-
Penrose inverse, denoted by the+ superscript, ofVp needs
to be found to gain the least squares solution, as the set of
vectors contained inVp are not assured of being orthonor-
mal. Once the vectora is estimated the cosine distance is
used to gain a match-score between gallery and probe im-
ages. Throughout the experimental portion of this paper we
shall refer to this specific technique as LF-PCA.

3. Free-parts Representations
Learning the face as a distribution (i.e. many observa-
tions), as opposed to a single observation, has many ap-
pealing properties for face classification tasks. First, the
many observations (representing the face) can exist in a low
dimensional space circumventing problems associated with
the “curse of dimensionality” [18] when training a classi-
fier with high dimensional observations. Second, by repre-
senting a face with many observation points one naturally

has more observations (of a lower dimensionality) to aid
in the estimation of a classifier’s parameters. Through the
use of GMMs to model the face distribution, it has been
shown [10, 11] that good verification performance can be
attained by throwing away most position/structure informa-
tion. We refer to this type of face model as a free-parts
GMM (FP-GMM). In this subsection we briefly explain
what features we use to estimate the FP-GMM, how it is
estimated and how we evaluate the GMM during verifica-
tion.

3.1. Free-parts GMMs
To estimate or evaluate a FP-GMM for a subject, the sub-
ject’s geometrically and statistically normalized imagesare
first decomposed into16 × 16 pixel image patches with a
75% overlap between horizontally and vertically adjacent
patches. Each image patch has a 2D-DCT applied to it in
order to compact the 256 elements into a feature vectoro

of dimensionalityD. Based on preliminary experiments,
we have chosenD = 35. Additional information about the
generation of the feature representations can be obtained
from [10, 11].

A GMM models the probability distribution of aD di-
mensional random variableo as the sum ofM multivariate
Gaussian functions,

f(o|λ) =
∑M

m=1
wmN (o; µm,Σm) (3)

whereN (o; µ,Σ) denotes the evaluation of a normal distri-
bution for observationo with mean vectorµ and covariance
matrixΣ. The weighting of each mixture component is de-
noted bywm and must sum to unity across all components.
In our work the covariance matrices inλ are assumed to be
diagonal such thatΣ = diag{σ}, as substantial benefit can
be attained by reducing the number of parameters that need
to be estimated.

Given a world modelλw = {wwm
, µ

wm
,Σwm

}M
m=1

and training observations from a particular client,O =

{o1, · · · ,oR}, the GMM parameters for that client are es-
timated through relevance adaptation (RA) [10].

The world model is simply a single model trained from
a large number of subject faces representative of the gen-
eral population (i.e. the development set). In our work we
have found best performance was attained when the world
model was estimated using frontal observationsonly. This
was done to ensure the final client model was discriminat-
ing against subject identity only, and not other poses present
in the world model. The world model’s parameters are
estimated using the Expectation Maximization (EM) algo-
rithm [19], configured to maximize the likelihood of train-
ing data. RA is an instance of the EM algorithm configured
for maximuma posteriori (MAP) estimation, rather than
simply maximum likelihood (ML). It has been noted that
great benefit can be obtained in terms of estimating high
performance robust FP-GMMs by employing RA when
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only small amounts of client specific observations exist (e.g.
a single enrollment image). Using RA, parameters for client
c are obtained using the following update equations:

wcm
= β

[

(1 − αw
m)wwm

+ αw
m

∑
R

r=1
γm(or)

∑
M
m=1

∑
R
r=1

γm(or)

]

(4)

µ
cm

= (1 − αµ
m)µ

wm
+ αµ

m

∑
R

r=1
γm(or)or

∑
R
r=1

γm(or)
(5)

σcm
= (1 − ασ

m)
(
σwm

+ µ
2
wm

)

+ ασ
m

∑
R

r=1
γm(or)o2

r
∑

R
r=1

γm(or)
− µ

2
cm

(6)

where γm(o) is the occupation probability for compo-
nent m, µ2 indicates that each element inµ is squared,
andαρ

m is a weight used to tune the relative importance of
the prior; it is defined as:

αρ
m =

∑R

r=1 γm(or)

τρ +
∑R

r=1 γm(or)
(7)

whereτρ is a relevancefactor. The above definition ofαρ
m

can limit the adaptation to only the Gaussians for which
there is sufficient data. We have found effective perfor-
mance can be attained by using a single relevance fac-
tor (τ = τw = τµ = τσ). Based on empirical evaluation on
many data sets, we have chosenτ = 10. The scale factor,β,
in Equation 4 is computed to ensure that all the adapted
component weights sum to unity. The adaptation procedure
is iterative, thus an initial client model is required. Thisis
accomplished by copying the world model.

In RA, the distributions are estimated by finding and us-
ing observations that aid in discriminating client models
from the world model. As such, the distributions should
not be considered as generative distributions (i.e. distribu-
tions that can be used for producing synthetic observations
representative of a particular client). In this sense the GMM
based classifier, trained via RA, is inherently discriminative
and is able to obtain good classification performance with
sparse amounts of training data. Additional information on
RA can be found in [10].

3.2. Evaluating a FP-GMM
To evaluate a sequence of observations, generated from
a claimant’s probe image, we obtain the average log-
likelihood,

L(O|λc) =
1

R

∑R

r=1
log f(or|λc) (8)

Given the average log-likelihood, for the client and world
models, one can then calculate the log-likelihood ratio,

Λ(O) = L(O|λc) − L(O|λw) (9)

For our work we found good performance across pose could
be attained if we employed GMMs with512 components.

4. Face Database and Verification
Experiments were performed on a subset of the FERET
database [20], specifically images stemming from
the ba, bb, bc, bd, be, bf, bg, bh, and bi subsets; which
approximately refer to rotation’s about the vertical axis
of 0o, +60o, +40o, +25o, +15o, −15o, −25o, −40o, −60o

respectively. The database contains200 subjects which
were randomly divided into an evaluation and develop-
ment set both containing90 subjects. The remaining20
subjects were used as an imposter set for our verification
experiments. As mentioned previously, the development
set is used to obtain any data-dependent aspects of the
verification system (e.g. subspace, world models etc.). The
evaluation and imposter sets are where the performance
rates for the verification system are obtained.

Traditionally, before performing the act of face recogni-
tion, some sort of geometric pre-processing has to go on to
remove variations in the face due to rotation and scale. The
distance and angle between the eyes has long been regarded
as an accurate measure of scale and rotation in a face. How-
ever, this type of geometric normalization, based purely
on the eye position, becomes problematic when faced with
depth pose rotation due to a stretching of the image in the y-
axis. In our work we chose to employ the distance from the
eye line to the nose tip vertically to remedy the stretching
problem. The final geometrically normalized cropped faces
formed an98 × 115 array of pixels.

The face verification task is the binary process of accept-
ing or rejecting the identity claim (i.e. the log-likelihood
ratio or cosine distance match-score from the free-parts and
monolithic recognizers respectively) made by a subject un-
der test. A thresholdTh needs to be found so as to make
the decision. Face verification performance is evaluated in
terms of two types of error: a) being false rejection (FR)
error, where a true client is rejected against their own claim,
and b) false acceptance (FA) errors, where an impostor is
accepted as the falsely claimed subject. The FA and FR er-
rors increase or decrease in contrast to each other based on
the decision thresholdTh set within the system. A simple
measure for overall performance of a verification system is
found by determining the equal error rate (EER) for the sys-
tem, where FA = FR.

5. Leading monolithic techniques
Before embarking on our analysis of the differences be-
tween leading monolithic representations and our proposed
free-parts representation algorithm (i.e. FP-GMMs) it is
first important to establish which monolithic technique per-
forms best in the presence of pose mismatch for our exper-
imental framework. Interesting work has already been con-
ducted by Lee and Kim [8] concerning whether it is better
to: a) learn the within-class and between-class differences
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Pose MON-PCA LF-PCA MON-LDA
-60 26.67 14.58 13.33
-40 17.78 12.20 9.93
-25 10.22 11.27 6.64
-15 6.67 10.00 4.56
15 6.67 11.11 6.49
25 8.89 11.19 5.58
40 15.55 14.24 9.05
60 24.44 13.56 11.11

Average 14.61 12.27 8.34

Table 1: Comparison of monolithic paradigms for good perfor-
mance in the presence of a pose mismatch. In these results one
can see for a modest development set size of 90 subjects across 9
poses a strategy of learning the within-class differences, through
LDA, performs best overall.

between poses (i.e. discriminant analysis), or b) learn the
relationships (i.e. transformations) between each possible
within-class variation/view-point.

The technique Lee and Kim employed to learn transfor-
mations between poses, although not explicitly the same,
is very similar to previous techniques like Eigen-light
Fields [7] and Tensorfaces [6]. In all three techniques a least
squares linear mapping is learnt to transform from a previ-
ously unseen pose of the claimant to one or many view-
points (in the case of light-fields) that have been seen in en-
rollment. In Lee and Kim’s work a combination between the
two paradigms seemed to work best, where one first trans-
formed the probe image to a frontal view and then applied
discriminant analysis to the result. This approach was how-
ever, dependent on having ample development observations
(they used over 245 subjects in their development set with
only 5 poses) to learn both the transformation and discrimi-
nant analysis subspace.

In our work we opted to only compare the paradigms of
discriminant analysis and transformation through the MON-
LDA and LF-PCA approaches respectively, as the develop-
ment set we were employing (only 90 subjects with 9 poses)
gave poor results when trying to combine both paradigms.
In Table 1 one can see the results for all the monolithic ap-
proaches outlined in this paper.

Although by no means comprehensive, this analysis is
informative as it demonstrates that a monolithic paradigm
that attempts to learn the within-class and between-class
differences (e.g. MON-LDA), as opposed to learning the
within-class relationships/transformations (e.g. LF-PCA)
tends to perform better with our pre-defined development
set. As expected, both techniques on average performed
better than simple appearance techniques like Eigenfaces
(MON-PCA). An open issue for further investigation is how
the size and variation of the development set can affect
which monolithic paradigm to employ.

6. Q1: Face traits and representation?
In the plethora of work that has been done with monolithic
and rigid-parts approaches, for frontal view face recogni-
tion, it has been demonstrated that the eye, nose and mouth
regions are considered most salient for the purposes of face
recognition. Most notably the work by Moghaddam and
Pentland [21] concerning modular eigenspaces depicted the
superior performance attained by individually modelling
components of the face (eyes, nose, mouth) and discarding
the residual part of the face. A problem with face recogni-
tion across pose however, using monolithic and rigid-parts
techniques, is that these salient areas are most often the
most warped and distorted during pose variation due to their
3D nature (e.g. the nose). An important question was raised
during the development of our work; do free-parts represen-
tations of the face rely on these same salient areas prone to
large non-linear variation from pose change?

In Figure 2 one can see a number of evaluation images, in
the first column, along with their associated log-likelihood
ratio (LLR) score maps generated from the FP-GMM for
each image patch, in the second column. If one was to take
the sum of the LLR values in the map, they would result in
the final LLR values for that claimant image which is con-
sistent with Equations 8 and 9. Inspecting the LLR-maps
in Figure 2 one can see that regions of the face that are
often associated with being most salient for recognition in
monolithic and rigid-parts representations (i.e. the eye and
nose regions) are extremely dark indicating their minimal
contribution to the free-parts verification process. Otherar-
eas of the face which have often thought to be of minimal
benefit in monolithic and rigid-parts representations, such
as the brow and cheeks and most notably in this example
the nose bridge, demonstrate a very high contribution to the
free-parts verification process. This leads us to propose a
hypothesis. Do free-parts techniques like the one employed
by the FP-GMM actually learn the client’s skin texture and
not other traits (i.e. eyes and nose) of the face long thought
to be essential for good face recognition?

There is strong evidence to support this hypothesis. In
previous work [22], for the task of frontal face verifica-
tion, a complimentary relationship between monolithic and
free-parts based representations was first established. In
those experiments the authors were able to demonstrate that
monolithic type approaches like Fisherfaces operate pre-
dominantly on the lower-frequency information contained
in the face whereas free-parts based techniques like our
own FP-GMM technique are quite dependent on higher-
frequency traits, like skin texture, contained in the face
while largely ignoring the global structure of the face im-
age.

In this correspondence we have devised an experiment
where we have attempted to remove those areas of the face
thought to contribute most highly to the verification process
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Figure 2: Depiction of grayscale images in column 1 with their
respective FP-GMM log-likelihood ratio (LLR) maps in column
2. Row 1 depicts the client’s train image used to estimate the FP-
GMM. Row 2 depicts the client in a non-frontal pose, which was
not employed in training. Row 3 depicts an imposter in frontal
view. To the right of column 2 one can see the total LLR values
for each image demonstrating the pose invariant properties of the
FP-GMM algorithm (i.e. row 2 has a higher total LLR than row
3).

(i.e. the eyes and nose regions). We decided to form an
experiment where we compare the performance of the FP-
GMM and MON-LDA techniques, which for the purposes
of this paper are representative of free-parts and monolithic
techniques respectively. A depiction of the masks used to
ignore these regions for each pose can be seen in Figure 3.
One can see these masks are pose dependent as the size of
the eyes as well as the position and size of the nose vary as
a function of viewpoint.

0
o

15
o

25
o

40
o

60
o

Figure 3: Depiction of example FERET pose images having the
eye & nose regions ignored.

For the MON-LDA approach a similar technique to the
one employed in Section 2.2 for Eigen-light Fields was used
to cope with the problem of enrolling and evaluating face
images with missing data1. One can see the results in Ta-
ble 2, in terms of the difference with the normal non-masked
MON-LDA approach, for the situation where only the eye
& nose regions as well as the residual region (i.e. skin ar-
eas) were used to verify clients. To assure the accuracy of
the technique used with the MON-LDA approach for en-

1The subspace generated from LDA is usually not orthonormal soan
additional MP inverse had to be applied before applying the technique used
in Section 2.2.

POSE Eyes & Nose Residual Rnd (80%) Rnd (50%)
-60 30.08 26.58 -0.23 1.11
-40 22.29 22.29 0.00 0.06
-25 17.60 16.69 -0.14 -0.97
-15 13.04 5.45 0.15 -0.10
15 6.87 12.37 -0.69 -0.88
25 23.41 25.53 0.10 -0.04
40 37.62 44.04 -0.03 2.03
60 37.78 53.53 0.00 0.00

Average 23.59 25.81 -0.11 0.15

Table 2: Results demonstrating the subtracted difference between
the original MON-LDA EERs (%) and those for representations
where some areas of the face is masked. TheEye & Nosemasks
were for experiments where only those areas were available. The
Residualmasks were for the opposite situation where the eye and
nose regions were not available. To validate our results we also
employed random masks (Rnd) with a percentage (50 and 80 %)
of pixels being employed. One can see the dramatic deteriorating
affect in performance of removing both eye & nose regions as well
as the residual skin regions. Employing the random skin masks
however, had a negligible effect.

rolling and evaluating faces with missing data we also con-
ducted tests where random face masks were generated for
each pose so that 80% and 50% of the pixels remained.

One can see that the MON-LDA technique is very much
a technique reliant on a holistic representation of the face
with neither the eye & nose or residual skin masks giving
dominant results. Employing random masks resulted in no
performance degradation whatsoever for the 80% scenario
(with results actually being slightly better in most cases)
and only slightly poorer for the 50% scenario. This re-
sult demonstrates that the missing data technique being em-
ployed for the MON-LDA algorithm is valid and also gives
some additional evidence that the current MON-LDA rep-
resentation may be over sampled and could perform well
using only lower frequency detail. Results for both the eye
& nose and residual masks were considerably poorer in re-
lation to their original values with results becoming catas-
trophic the further in viewpoint from the frontal pose the
evaluation faces became.

A noticeably different result occurs in our analysis of
this same experiment with the FP-GMM approach. One
can see in Table 3 that there is minimal difference between
representations where the face contains and does not con-
tain eye & nose information. Further, for the FP-GMM
algorithm where only the eyes & nose regions were em-
ployed, performance is quite poor in comparison to results
attained from FP-GMM algorithm when employing the en-
tire face or residual face area. One can assume from this
result that the residual skin area is the dominant trait be-
ing used for verification with the FP-GMM approach. In-
terestingly however, the eye & nose only performance is
still comparable with the leading monolithic technique (i.e.
MON-LDA) for slightly off frontal view-points. One hy-
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POSE Eyes & Nose Residual
-60 7.7778 -3.33
-40 11.09872 0.25
-25 4.44445 0.00
-15 2.19136 -0.77
15 3.40741 -0.10
25 8.84255 1.06
40 13.5463 -0.06
60 22.7161 5.70

Average 9.25 0.34

Table 3: Results demonstrating the subtracted difference between
the original FP-GMM EERs (%) and those for representations
where some areas of the face is masked. TheEye & Nosemasks
were for experiments where only those areas were available. The
Residualmasks were for the opposite situation where the eye and
nose regions were not available. Note: there is minimal affect in
performance when the eyes and nose are removed, but there is a
substantial deteriorating affect in performance when only the eyes
and nose remain (i.e. no skin to texture to process).

pothesis for this result could be that there is some benefit in
obtaining different FP-GMM representations for different
salient regions of the face; as their may be a tendency for
the FP-GMM algorithm to learn the most dominating trait
(i.e. the skin texture) and not other traits when learning is
done in an unsupervised manner.

7. Q2: A rationale for integration?
One can see from the previous section that there is strong
evidence that the monolithic and free-parts representations
employ different or at least place unequal weights on dif-
ferent traits of the face. Heuristically we hypothesize that
there should be some benefit in combining these two repre-
sentations, which the concluding experiments of the paper
attempt to explore. We refer to the combination of these
two representations as a Free-parts and Holistic Integration
(FHI) strategy.

We employ the sum rule for combining the match scores
from the classifiers of the two representations. Kittleret
al. [23] demonstrated that the sum rule can obtain good per-
formance in classifier combination, when the two classifiers
are diverse and produce match scores approximately repre-
sentative of their true a posteriori probabilities. The final
combined match-score is generated by,

ms = α logsig(Λ)
︸ ︷︷ ︸

free parts

+(1 − α) logsig(dCOS)
︸ ︷︷ ︸

monolithic

(10)

where logsig(a) = 1/(1 + exp(−a)) is used to try and
make the match scores obtained from the MON-LDA and
FP-GMM algorithms more representative of their true a
posteriori probabilities. The employment of thelogsigoper-
ation results in the synergetic combination of match scores
from the MON-LDA and FP-GMM algorithms. A weight-
ing factorα, which was allowed to vary between zero and

one, was employed with the sum rule so as to place more
emphasis on one representation over another as a function
of pose. One can see in Figure 4 an example of how the
variation ofα can affect performance of the FHI algorithm.
Through a cross-validation process the performance seen in
Figure 4 tended to vary however, one could see two trends
emerge. First, that the weighting factor should be greater
than 0.5 for all poses, indicating more emphasis should
nearly always be placed on the free-parts representation
than the monolithic representation in the presence of pose
mismatch. Second, the further in viewpoint from the frontal
pose the probe image becomes the more sensitive the FHI
algorithm becomes to the correct selection ofα, as depicted
in Figure 4. From cross-validation we found anα = 0.75
performed best at the larger viewpoints of +/-45o and60o

with the smaller viewpoints being largely insensitive to the
selection.

Results for FHI strategies where equalα = 0.5 and un-
equal weightingsα = 0.75 were employed, can be seen
in Figure 5, compared to leading monolithic (MON-LDA)
and free-parts (FP-GMM) algorithms. One can see the FHI
strategy outperforms both monolithic and free-parts algo-
rithms across all poses and in most cases by a substantial
margin. One can also see that the accurate selection of an
appropriate weightα makes a difference in verification per-
formance for larger non-frontal viewpoints.
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Figure 4: Effect of varyingα in the FHI strategy for various poses.
Note: minimum EERs are achieved at different values ofα de-
pending on pose. Larger non-frontal pose angles are far more sen-
sitive to the correct selection ofα than smaller non-frontal pose
angles.

8. Summary and Conclusions
The FHI results presented in this paper give convincing evi-
dence that there is benefit in combining monolithic and free-
parts representations for the purposes of automatic face ver-
ification in the presence of pose mismatch. We have ad-
ditionally made the novel contribution in offering evidence
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Figure 5: Final results demonstrating the benefit of a FHI strategy
across all poses compared with monolithic (MON-LDA) and free-
parts (FP-GMM) representations. Results also demonstrate that an
unequal weighting ofα = 0.75 between monolithic and free-parts
match-scores produces improved results at the larger non-frontal
viewpoints.

that free-parts representations of the face may be placing
greater emphasis on traits of the face, such as skin texture,
that canonical monolithic representations at the moment do
not employ. This insight gives further explanation into why
these two representations are able to be integrated in such a
synergetic manner, as they are attempting to verify subjects
based on two different and diverse traits of the face.

Currently our FHI framework uses an adhoc technique
to calculate an appropriate weighting factor for use across
all poses. In future work we would like to explore a more
empirical and pose dependent weighting strategy for larger
viewpoints. In additional future work we would like to in-
corporate a rigid-parts based algorithm into our integration
strategy to see if further synergetic performance can be at-
tained.
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