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Abstract

Performance of face verification systems can be adversely
affected by mismatches between training and test poses, es-
pecially when only one pose is available for training. Com-
pared to holistic/monolithic representations, we show that
a “free-parts” representation of the face is less affected
by pose changes, due to: a) some patches of a subject’s
face retaining similar appearance across a number of dif-
ferent poses, and b) those patches being able to freely move
position across different poses. Furthermore, we propose
that this mismatch can be reduced further by synthesizing
the statistical model of a subject’s “free-parts” representa-
tion for a set of poses for which there are no gallery ob-
servations. The synthesis is accomplished by first learn-
ing how a model for a generic frontal face transforms to
represent a generic face at a particular non-frontal pose.
The learned transformation is then applied to each subject’s
frontal model to synthesize a non-frontal model. The origi-
nal and synthesized models are then concatenated in order
to automatically handle multiple poses.

1. Introduction

Pose mismatch between a client’s gallery and probe images
is a very important problem in automatic face recognition
at the moment. The pose mismatch problem can occur in
applications such as person spotting in surveillance videos
(e.g. at an airport). Generally the pose of faces in surveil-
lance videos is uncontrolled, and there may be only one ref-
erence image (e.g. a passport photograph) for the person to
be spotted.

Considerable work has already been performed with
monolithic face representations, for automatic face recog-
nition, in the presence of pose mismatch. Most notably
techniques like Tensorfaces [1], Eigen-light fields [2] and
Fisherfaces [3] have been employed with varying degrees
of success. The termmonolithic is employed in this paper
to describe the holistic vectorized representation of the face
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Figure 1: Depiction of our hypothesis on the benefit of matching
distributions (free-parts representation) rather than points (mono-
lithic representation) when dealing with pose variation. (a) De-
picts an example of the unwanted scenario where the distance to
Subject B’s point from Subject A’s point will be less than the dis-
tance to Subject A’s non-frontal point. (b) Depicts the desirable
example of where the divergence between Subject B’s distribution
and Subject A’s distribution will be more than the divergence of
Subject A’s frontal and non-frontal distributions.

based purely on pixel values within an image array, which
can be associated with the holistic mechanism used in a hu-
man face recognition system [4].

Our work is primarily motivated by the hypothesis that
monolithic “point” based face representations of the face
are much more prone to pose variation than parts “distribu-
tion” based representations. A graphical depiction of this
hypothesis can be seen in Figure 1. We base this hypothe-
sis on the assumption that the mismatch in appearance be-
tween viewpoints of the same subject is not homogeneous
across all patches of a face image. The employment of
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parts representations for object/face detection has recently
gained much attention and success in machine vision liter-
ature [5, 6, 7]. The termparts is used to denote a represen-
tation of the face that can be considered as an ensemble of
image patches of the image array; this representation can be
considered similar to the component parts mechanism seen
in a human face recognition system [4]. Parts representa-
tions have an advantage over monolithic representations in
that they are able to assume varying dependencies between
other patches within an image [5]. For all the work pre-
sented in this paper we shall assume minimal dependence
between patches in an image. We make a further distinction
in this paper betweenfree-partsandrigid-parts representa-
tions.

Free-parts representations employ a strategy of where
the position/structure of patches within the image can be
relaxed so that these patches are able, to varying extents,
“freely” move. Recently techniques that employ this repre-
sentation have achieved good performance in frontal view-
point face recognition tasks [8, 9, 10]. Generative models
have been used in this previous work to model these free-
parts face distributions such as pseudo 2-D hidden Markov
models (HMMs) [10, 11] and Gaussian mixture models
(GMMs) [8, 9]. GMMs can be thought of as a special sub-
set of HMMs where no positional constraints are placed on
the patch observations whatsoever; this is a highly desirable
characteristic when trying to verify clients across pose, as
patch positions can vary considerably across viewpoints.

Rigid-parts representations employ a strategy where the
weight/contribution of each patch to the recognition process
is not homogenous but the position/structure is preserved.
There has already been some preliminary work by Kanade
and Yamada [12] demonstrating the benefit of a rigid-parts
representation when attempting to recognize faces across
pose. However, these representations are still “point” based
with each patch/point existing in a separate feature space.
From this perspective free-parts representations are dissim-
ilar to monolithic and rigid-parts representations as they
generate many feature observations all existing within the
same feature space. The central focus of our work is to
demonstrate that there is considerable benefit in entertain-
ing a “distribution” style representation of the face when
there is a mismatch in viewpoint. Specific comparisons be-
tween free-parts and rigid-parts strategies will not be enter-
tained in this paper.

In this paper we will demonstrate that the defining fac-
tor in deciding which face representation (i.e. monolithic
or free-parts) and which learning algorithm to employ is the
variability available in the development set. We define the
development set as the set of observations used to obtain any
data-dependent aspects of the verification algorithm (e.g.
Eigenface vectors, world models, etc.), but doesnot pro-
vide any client specific information like those found in the

gallery and probe sets.
Throughout this correspondence we make the follow-

ing novel contributions to pose mismatch face verifica-
tion. First, we demonstrate that free-parts representations,
in the presence of pose mismatch, are inherently superior to
monolithic representations when there is minimal pose vari-
ation available in the development set. Second, we propose
a model synthesis approach that is able to make an estimate
of a client’s GMM for an unseen pose based on the client’s
GMM for a seen pose and prior knowledge obtained from
the development set. We also provide evidence to suggest
that when suitable pose variation does exist in the devel-
opment set, the synthesis of unseen client pose GMMs is
still non-trivial. We refer to this dilemma as the “model
correspondence problem”. Finally, we demonstrate that the
effects of the correspondence problem can be reduced by
employing a constrained version of relevance adaptation
(RA) [8] on the GMM, which we refer to as “modified”
RA.

2. Free-parts Representations

Learning the face as a distribution (i.e. many observa-
tions), as opposed to a single observation, has many ap-
pealing properties for face classification tasks. First, the
many observations (representing the face) can exist in a low
dimensional space circumventing problems associated with
the “curse of dimensionality” [13] when training a classi-
fier with high dimensional observations. Second, by repre-
senting a face with many observation points one naturally
has more observations (of a lower dimensionality) to aid
in the estimation of a classifier’s parameters. Through the
use of GMMs to model the face distribution, it has been
shown [8, 9] that good verification performance can be at-
tained by throwing away most position/structure informa-
tion. We refer to this type of face model as a free-parts
GMM (FP-GMM). In this subsection we briefly explain
what features we use to estimate the FP-GMM, how it is
estimated and how we evaluate the GMM during verifica-
tion.

2.1. Free-parts GMMs

To estimate or evaluate a FP-GMM for a subject, the sub-
ject’s geometrically and statistically normalized imagesare
first decomposed into16 × 16 pixel image patches with a
75% overlap between horizontally and vertically adjacent
patches. Each image patch has a 2D-DCT applied to it in
order to compact the 256 elements into a feature vectoro

of dimensionalityD. Based on preliminary experiments,
we have chosenD = 35. Additional information about the
generation of the feature representations can be obtained
from [8, 9].
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A GMM models the probability distribution of aD di-
mensional random variableo as the sum ofM multivariate
Gaussian functions,

f(o|λ) =
∑M

m=1
wmN (o; µm,Σm) (1)

whereN (o; µ,Σ) denotes the evaluation of a normal distri-
bution for observationo with mean vectorµ and covariance
matrixΣ. The weighting of each mixture component is de-
noted bywm and must sum to unity across all components.
In our work the covariance matrices inλ are assumed to be
diagonal such thatΣ = diag{σ}, as substantial benefit can
be attained by reducing the number of parameters that need
to be estimated.

Given a world modelλw = {wwm
, µ

wm
,Σwm

}M
m=1

and training observations from a particular client,O =

{o1, · · · ,oR}, the GMM parameters for that client are es-
timated through relevance adaptation (RA) [8].

The world model is simply a single model trained from a
large number of subject faces representative of the general
population. The world model’s parameters are estimated
using the Expectation Maximization (EM) algorithm [14],
configured to maximize the likelihood of training data. RA
is an instance of the EM algorithm configured for maximum
a posteriori (MAP) estimation, rather than simply maxi-
mum likelihood (ML). It has been noted that great benefit
can be obtained in terms of estimating high performance ro-
bust FP-GMMs by employing RA when only small amounts
of client specific observations exist (e.g. a single enrollment
image). Using RA, parameters for clientc are obtained us-
ing the following update equations:

wcm
= β

[

(1 − αw
m)wwm

+ αw
m

∑

R

r=1
γm(or)

∑

M
m=1

∑

R
r=1

γm(or)

]

(2)

µ
cm

= (1 − αµ
m)µ

wm
+ αµ

m

∑

R

r=1
γm(or)or

∑

R
r=1

γm(or)
(3)

σcm
= (1 − ασ

m)
(

σwm
+ µ

2
wm

)

+ ασ
m

∑

R

r=1
γm(or)o2

r
∑

R
r=1

γm(or)
− µ

2
cm

(4)

where γm(o) is the occupation probability for compo-
nent m, µ2 indicates that each element inµ is squared,
andαρ

m is a weight used to tune the relative importance of
the prior; it is defined as:

αρ
m =

∑R

r=1 γm(or)

τρ +
∑R

r=1 γm(or)
(5)

whereτρ is a relevancefactor. The above definition ofαρ
m

can limit the adaptation to only the Gaussians for which
there is sufficient data. We have found effective perfor-
mance can be attained by using a single relevance fac-
tor (τ = τw = τµ = τσ). Based on empirical evaluation on
many data sets, we have chosenτ = 10. The scale factor,β,
in Equation 2 is computed to ensure that all the adapted
component weights sum to unity. The adaptation procedure

is iterative, thus an initial client model is required. Thisis
accomplished by copying the world model.

In RA, the distributions are estimated by finding and us-
ing observations that aid in discriminating client models
from the world model. As such, the distributions should
not be considered as generative distributions (i.e. distribu-
tions that can be used for producing synthetic observations
representative of a particular client). In this sense the GMM
based classifier, trained via RA, is inherently discriminative
and is able to obtain good classification performance with
sparse amounts of training data. Additional information on
RA can be found in [8].

2.2. Evaluating a FP-GMM
To evaluate a sequence of observations, generated from
a claimant’s probe image, we obtain the average log-
likelihood,

L(O|λc) =
1

R

∑R

r=1
log f(or|λc) (6)

Given the average log-likelihood, for the client and world
models, one can then calculate the log-likelihood ratio,

Λ(O) = L(O|λc) − L(O|λw) (7)

For our work we found good performance across pose could
be attained if we employed GMMs with32 components.

3. Model Synthesis
We propose a model synthesis approach that is able to esti-
mate a client’s FP-GMM for an unseen pose, based on the
client’s FP-GMM for a seen pose and prior knowledge ob-
tained from the development set. In the proposed model
synthesis approach, prior information is used to construct
world face models for different views through amodified
form of the RA algorithm (described in Section 3.1). The
synthesis is accomplished by first learning how the frontal
world model differs from a non-frontal world model. The
differences between the models are comprised of the differ-
ences between the means in the corresponding Gaussians
(i.e. how the means have moved) and the differences be-
tween the covariance matrices (i.e. how the diagonal entries
in the covariance matrices have scaled). Weights are not
considered as empirical observations show that the differ-
ences are almost entirely reflected in the means and covari-
ances.

Let us denote the frontal world model asλ0o

w and the
non-frontal world model for angleΘ asλΘ

w. The set of pa-
rameters which describes the differences is formally defined
as:

Ψ = { ∆m, sm }M

m=1 (8)

The parameters of the above set are in turn defined as:

∆ = µ
Θ
w − µ

0o

w (9)

s
T = [ sd ]D

d=1 =
[

σ
Θ
w,(d)/σ

0o

w,(d)

]D

d=1
(10)
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where the subscript denoting the mixture component index
m has been dropped to improve clarity. The notationσw,(d)

denotes elementd of covariance vectorσw.
Since the two world models are a good representation

of a general face at two different views, and each frontal
client model is derived from the frontal world model, we
conjecture that we can apply the above differences to client
c’s frontal model in order to synthesize a model for angleΘ.
Formally, the parameters for each Gaussian in clientc’s Θ
model are found using:

wΘ
c = w0o

c (11)

µ
Θ
c

= µ
0o

c
+ ∆ (12)

σ
Θ
c = s ⋆ σ

0o

c (13)

where⋆ indicates element by element multiplication.

3.1 Model Correspondence Problem

The synthesis technique described above pre-supposes that
there is a correspondence between Gaussian mixture com-
ponents of the client’s frontal model, the frontal and non-
frontal world models; we define correspondence as each
Gaussian describing thesame aspectsof the face. How-
ever, under the training paradigm of RA, where an existing
GMM is iteratively adapted with new data, there is no ex-
plicit guarantee that Gaussians in the resulting model will
correspond to the Gaussians in the original model. This
problem arises from the nature of the EM algorithm, which
in the case of GMM parameter estimation can be considered
as a form of unsupervised soft clustering.

To address the correspondence issue, we propose to
modify RA and the EM algorithm upon which it is based.
Let us first define a “parent model” as the model to be
adapted and a “child model” as the model that resulted from
adapting a “parent model”; in a similar vein, let us define a
“parent Gaussian” as a Gaussian from the “parent model”
and a “child Gaussian” as the Gaussian that resulted from
a particular “parent Gaussian” through the process of adap-
tation. We wish to prevent the child Gaussians modeling
different aspects of the face than their parents by inhibiting
each child Gaussian from moving too far away from its par-
ent. We will assume that when a child Gaussian is closer to
some other child’s parent than its own parent, it has moved
too far.

Let us define the distance between two Gaussians as the
Mahalanobis distance [13] between their means:

M (µa, µb) = (µa − µb)
T
Σ

−1
all(µa − µb) (14)

whereΣall = diag(σall) is the overall covariance matrix of
the parent world model. It can be shown thatσall is found
using:

σall = −µ
2
all

+
∑M

m=1
wm(σm + µ

2
m) (15)

whereµ
all

=
∑M

m=1 wmµm. Note that we have omitted the
subscriptw from the world model’s parameters for clarity.

The RA algorithm is modified by introducing an early
stopping criterion. At the end of each iteration a check is
made to see if any child Gaussian is too far away from its
parent. If this has occurred, the parameters from the last
iteration are restored and the RA process is deemed to have
converged. The check is enabled from the second iteration
onwards in order to ensure the child model is different from
the parent model.

4. Monolithic representations
It is outside the scope of this paper to perform a large scale
evaluation of all possible monolithic approaches. Instead
we will be taking a sample of techniques that are repre-
sentative of current paradigms in pose robust face recog-
nition. Specifically, we will be considering the Eigenface
algorithm [15] as a baseline due is ubiquitous nature in face
recognition literature. The Fisherface algorithm [16] is also
considered as a baseline due to its simplicity and high per-
formance in recent evaluations [17, 18, 19]. Finally, the
Eigenlight-fields technique will be used as a baseline due to
its specificity to pose and its similar nature to other popular
approaches such as Tensorfaces [1].

4.1. Eigen- and Fisher-faces
Eigen- and Fisher-face approaches have been around for
quite some time and have enjoyed much success in frontal
face recognition. In this paper we will be evaluating a
specific type of Eigen- and Fisher-face strategy. The first,
which will be referred to as MON-PCA, is the baseline
Eigenface [15] technique which employs principal com-
ponent analysis (PCA) to generate a subspace preserving
theK = 89 most energy preserving modes. The whitened
cosine distance (i.e. the cosine distance between two ob-
servations after performing the whitening transform [13] on
both of them) is then employed to gain a measure of sim-
ilarity between the gallery and probe observation vectors
which result after mapping the original pixel images into
the PCA generated subspace. The second technique, which
we shall refer to as MON-LDA, is a variant on the Fisher-
face [16] technique which employs linear discriminant anal-
ysis (LDA), after an initial PCA stage, to generate a sub-
space preserving theK = 89 most discriminant modes. As
suggested by [17, 18, 19] good performance can be attained
if we employ the cosine distance to gain a measure of simi-
larity.

4.2. Eigen-light Field Approach
Eigen-light fields were proposed by Grosset al. [2] as a
technique for learning the dependencies that exist between
monolithic representations of the face from different view
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points. In their paper Grosset al. argue that a face’s light
field is an ideal representation to perform face recognition
under varying pose as the representation naturally encom-
passes all view points. A face was assumed to stem from
only a finite set of poses1, 2, . . . , P . In their work a light
field was represented as the concatenation of the vectorized
view point images. Canonical PCA was then applied, in a
similar manner to the Eigenface approach, to build a com-
pact representation of a subject’s light field. The subspace
which results from the PCA process, which the eigen-light
field vectors span, is created by preserving theK = 89

most energy preserving modes. In practice however, one
rarely has all possible view points to construct a complete
light field. In fact, it is quite common to only have a single
gallery view point. In this common scenario a least squares
approximation of the compact representation can be made
from the incomplete representation [2]. Gross et al. demon-
strated that this approach performed well in comparison to
the Eigenface algorithm and a commercial system. We em-
ployed the cosine distance to generate match-scores for ver-
ification. Throughout the experimental portion of this paper
we shall refer to this specific technique as LF-PCA.

5. Face Database and Normalization

Experiments were performed on a subset of the FERET
database [20], specifically images stemming from
the ba, bb, bc, bd, be, bf, bg, bh, and bi subsets; which
approximately refer to rotation’s about the vertical axis
of 0o, +60o, +40o, +25o, +15o, −15o, −25o, −40o, −60o

respectively. The database contains200 subjects which
were randomly divided into an evaluation and develop-
ment set both containing90 subjects. The remaining20

subjects were used as an imposter set for our verification
experiments. The development set is used to obtain any
data-dependent aspects of the verification system (e.g.
subspace, world models etc.). The evaluation and imposter
set is where the performance rates for the verification
system are obtained.

Traditionally, before performing the act of face recog-
nition, some sort of geometric pre-processing has to go on
to remove variations in the face due to rotation and scale.
The distancedeye and angleθeye between the eyes has long
been regarded as an accurate measure of scale and rota-
tion in a face. However, this type of geometric normaliza-
tion, based purely on the eye position, becomes problematic
when faced with depth pose rotation. An example of this
problem can be seen in row1 of Figure 2.

Essentially this type of normalization becomes more and
more problematic, in terms of stretching the image along
the y-axis thus changing the aspect ratio of the cropped face
image. An obvious way to remedy this situation is to em-
ploy a distance on the face that gives additional vertical in-

0
o

15
o

25
o

40
o

60
o

Figure 2: Problem of aspect-ratio across pose when usingdeye,
left horizontal sweep shown in row1. One can see, in row2, that
employing thednose distance greatly alleviates this effect. One
can further see in row3 that cropping the bottom of the mouth
increases the invariance to pose.

formation to circumvent this aspect ratio change. The dis-
tance from the eye line to the nose tip vertically,dnose, is an
obvious choice. One can see that the aspect ratio problem
is considerably diminished in row2 of Figure 2. One can
also see however that the mouth still remains a problem as
it changes dramatically in appearance across pose. In this
paper we additionally address this problem by cropping out
the mouth before passing the image to a verification algo-
rithm. An example of these final cropped images can be
seen in row3 of Figure 2. The final geometrically normal-
ized cropped faces formed an98 × 115 array of pixels.

6. Face verification task

The face verification task is the binary process of accept-
ing or rejecting the identity claim (i.e. the log-likelihood
ratio or cosine distance match-score from the free-parts and
monolithic recognizers respectively) made by a subject un-
der test. A thresholdTh needs to be found so as to make
the decision. Face verification performance is evaluated in
terms of two types of error: a) being false rejection (FR)
error, where a true client is rejected against their own claim,
and b) false acceptance (FA) errors, where an impostor is
accepted as the falsely claimed subject. The FA and FR er-
rors increase or decrease in contrast to each other based on
the decision thresholdTh set within the system. A simple
measure for overall performance of a verification system is
found by determining the equal error rate (EER) for the sys-
tem, where FA = FR.

7. Results and Discussion

We have elected to present results for two particular cases
in order to demonstrate the full benefit of a free-parts repre-
sentation for pose mismatched face recognition.
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Pose MON-PCA⊛ MON-PCA
-60 27.77 21.36
-40 20.00 15.56
-25 12.22 8.89
-15 7.78 7.70
15 6.61 4.44
25 10.00 10.00
40 18.95 16.67
60 24.44 18.89

Average 15.97 12.94

Table 1: Results illustrating the importance of enrolling a MON-
PCA representation with eigenface vectors that have been esti-
mated with a development set containing both frontal & non-
frontal poses, relative to those employing a development set that
contains frontal only observations. Models estimated with the
frontal-only data are denoted with⊛. Results are in terms of
EER (%).

1. For the case where a pose mismatch exists between
the probe set and the gallery & development set. In
this circumstance the development set contains only
the poses present in the gallery set (i.e. frontal).

2. For the case where a pose mismatch exists only be-
tween the probe and gallery sets. In this circumstance
the development set contains all the poses that will be
present in the probe and gallery sets (i.e. frontal and
non-frontal).

It is obvious for some techniques such as Fisherfaces
(MON-LDA) and Eigen-light Fields (LF-PCA) that the em-
ployment of frontal and non-frontal development observa-
tions is necessary as they are intrinsic to their framework.
These techniques can only be analyzed under the situation
described in Case 2. However, techniques like Eigenfaces
(MON-PCA) and Free-parts GMMs (FP-GMM) can actu-
ally be constructed employing either frontal only or frontal
& non-frontal development observations. The motivation
for this analysis is to: first, investigate whether the employ-
ment of additional pose information in the development set
is necessary for good performance in the presence of pose
mismatch; and second, is there a difference in how each
representation (i.e. monolithic or free-parts) performs de-
pending on the variability available in the development set.

7.1. Case I
Table 11 depicts results for the monolithic MON-PCA tech-
nique using frontal only and frontal & non-frontal develop-
ment sets in the creation of their eigenface vectors.

One can see in Table 1 that the employment of a de-
velopment set without non-frontal observations, as denoted
by the absence of a⊛, in the creation of eigenface vectors

1Note: throughout the entire results section all techniquesthat begin
with a MON-, LF- and FP- label refer to monolithic, light field and free-
parts feature representations respectively. The subsequent PCA, LDA or
GMM label refers to which subspace or classifier they employedto gener-
ate the match-score.

Pose FP-GMM⊛ FP-GMM
-60 19.58 26.10
-40 10.33 10.58
-25 5.33 5.35
-15 2.81 2.65
15 3.14 4.22
25 8.08 8.14
40 15.19 24.17
60 23.78 37.08

Average 11.03 14.79

Table 2: Results illustrating the importance of training FP-GMMs
with a world model that is estimated with development set contain-
ing only frontal poses relative to those employing a development
set that contains frontal and non-frontal observations. Models es-
timated with the frontal-only world model are denoted with⊛.
Results are in terms of EER (%).

has a catastrophic affect on performance when the probe
images are non-frontal. The results demonstrate that tun-
ing the eigenface vectors to frontal only views seriously af-
fects performance, as they are unable to adequately repre-
sent the non-frontal poses. This is inline with our intuitive
thoughts of the benefits of providing subject independent
prior knowledge, during training, about all possible varia-
tions that will be encountered in testing.

The results in Table 2 however depict an opposite result
for the FP-GMM algorithm, employing the free-parts rep-
resentation, with respect to what pose variation should be
present in the development set. Table 2 demonstrates there
is actually substantial benefit in employing a world model
that has been estimated from frontal only development ob-
servations as denoted by the⊛. A satisfactory explanation
of these results can be formed if one takes into account the
nature of how the development set observations are being
employed by the FP-GMM.

First, the FP-GMM algorithm employs the development
observations to create a background class (i.e. world model)
for the enrolled client to discriminate against during the es-
timation of the GMM. Depending on what type of varia-
tion is contained in the development set will dictate what
the GMM will be discriminating against. For example,
if the client set only contains observations from a frontal
pose of the client but the development set contains obser-
vations from many subjects across many poses the resultant
GMM will be discriminatory against the claimant’s iden-
tity and pose. However, if the development set contained
only observations from a frontal pose across many subjects
then the resultant GMM will be discriminatory against the
claimant’s identitynotpose. How habile the resultant GMM
is to different poses is dependent on how well that represen-
tation generalizes across pose. The MON-PCA algorithm
employs a match-score metric, namely the whitened cosine
distance, that is dependent of the development set. Unlike
the FP-GMM log-likelihood ratio match-score metric how-
ever, the whitening process of the whitened cosine distance
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Pose Synthesized Synthesized Concatenation
using std. RA using mod. RA synth. mod. RA

-60 +0.84 -3.05 -2.75
-40 -0.64 -2.19 -2.61
-25 -0.36 -0.41 -0.59
-15 +1.47 +0.30 -0.03
15 +0.17 -0.36 -0.20
25 -1.16 -1.77 -1.80
40 -2.08 -5.88 -5.30
60 -6.00 -8.25 -5.78

Average -0.97 -2.70 -2.23

Table 3: Results for synthesized FP-GMMs in terms of their rel-
ative difference (+/-) in EER (%) to the standard frontal model
results listed in Table 2. Column 1 denotes results for synthe-
sized models employing standard RA. Column 2 denotes results
for synthesized models employing modified RA. Column 3 de-
notes results for the synthesized models estimated using modified
RA when the pose of the probe image is unknown, and the pose
models are concatenated together.

is dependent on seeing pose variation in the development
set (in terms of the eigenvalues of the PCA process) that
will be seen in the probe set.

Second, the FP-GMM process employs a data-
independent feature extraction process (i.e. 2D-DCT)
which is in no way dependent on the development set. This
is a highly advantageous characteristic in comparison to the
MON-PCA algorithm. The MON-PCA approach employs
a feature extraction process that is extremely dependent on
the development set. If variations, whether they be pose or
subject, are present in the probe set that are not seen in the
development set then the ability to obtain features that are
able to represent these variations is seriously affected. For
the rest of the results in this correspondence the FP-GMMs
employing frontal only development observations shall be
referred to asstandard frontalFP-GMMs.

7.2. Case II
Table 3 shows the results for client models synthesized for a
specific angle, while using standard and modified RA. The
results for standard RA show only minor improvements in
performance, while for modified RA there is a considerably
greater improvement. These results thus support the use of
modified RA in order to address and show evidence for the
existence of the model correspondence problem.

If synthesized models were to be used in a real-life ap-
plication, then a pose detection step would be necessary to
select the most appropriate model. In order to mitigate the
need for pose detection, we have investigated the use of FP-
GMMs which represent a face at many poses. Such FP-
GMMs were obtained by concatenating each client’s frontal
FP-GMM with FP-GMMs synthesized for specific angles.
The frontal world model was also concatenated with non-
frontal world models. Since each FP-GMM had32 compo-
nents, each resulting concatenated FP-GMM had32 × 9 =

288 components. Results in Table 3 show that for most an-
gles the concatenated models obtain only a small reduction
in performance, when compared to models synthesized for
specific angles.

In Figure 3 one can see the final breakdown of perfor-
mance between leading monolithic and free-parts face veri-
fication approaches that are able to make use of pose varia-
tion in the development set. One can see the FP-GMM ap-
proach, which in this instance is employing model synthesis
and modified RA, either outperforms or is approximately
equal to the performance of both the LF-PCA and MON-
LDA approaches except at the extreme view points of+/-
60o. In this instance the both monolithic approaches out-
perform our free-parts approach with the Fisherface based
MON-LDA obtaining best performance. A partial expla-
nation for this result could be found in the strong assump-
tions (i.e. view point changes result in a global mean shift
and variance scaling across subjects for each Gaussian in
the FP-GMM) we have made during the model synthesis
process start to break down at extreme view points. The
Eigen-light field based LF-PCA approach fares the worst
on average across poses although performance is consistent
across all poses. Future work shall try to relax some of these
assumptions to improve performance at these extreme view
points. Investigating alternate patch sizes and relevancefac-
tors may also reduce the severity of the discrepancy between
monolithic and free-parts performance at these larger non-
frontal viewpoints. From these results one can see that there
is clear benefit in exploring both free-parts and monolithic
representations when developing a face verification system
that is robust to pose mismatches; provided there is ample
pose variation in the development set.

8. Summary and Conclusions

The verification results presented here convincingly demon-
strate that a free-parts representation of the face is benefi-
cial in the presence of a pose mismatch. In our work we
were able to demonstrate the habile behavior of FP-GMMs
to pose mismatch, in comparison to monolithic approaches,
when the development set does not contain any pose varia-
tion. This result is significant as it demonstrates that free-
parts representations can be used with some success in pose
circumstances that have not been seen in the development
set.

We were also able to demonstrate that improved perfor-
mance can be achieved with FP-GMMs when there is pose
variation present in the development set, even when the pose
of the probe image was unknown. This improved perfor-
mance was attained through the synthesis of unseen pose
models through transformations learned from the develop-
ment set along with the employment of the modified RA.
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Figure 3: Comparison between leading monolithic (Eigen-light
Fields (LF-PCA) and Fisherfaces (MON-LDA) approaches) and
free-parts (FP-GMMs using synthesis and modified RA) algo-
rithms that make use of pose variation in the development set.
Results demonstrate improved or equivalent performance for our
free-parts algorithm over leading monolithic algorithms in all but
the most extreme view point(+/- 60o).
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