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ABSTRACT

Current technology for automatic speech recognition
(ASR) uses hidden Markov models (HMMs) that recognize
spoken speech using the acoustic signal. However, no use
is made of the causes of the acoustic signal: the articula-
tors. We present here a dynamic Bayesian network (DBN)
model that utilizes an additional variable for representing
the state of the articulators. A particular strength of the
system is that, while it uses measured articulatory data
during its training, it does not need to know these values
during recognition. As Bayesian networks are not used
often in the speech community, we give an introduction
to them. After describing how they can be used in ASR,
we present a system to do isolated word recognition using
articulatory information. Recognition results are given,
showing that a system with both acoustics and inferred
articulatory positions performs better than a system with
only acoustics.

1. INTRODUCTION

In state-of-the-art automatic speech recognition (ASR),
hidden Markov models (HMMs) utilize two random vari-
ables xt and qt, the acoustics and the hidden state, respec-
tively. The likelihood of the acoustic sequence given the
model is then calculated from the emission probabilities
and the transition probabilities, respectively:

P (xtjqt) (1)

P (qtjqt�1): (2)

The inclusion of a third random variable, at, to represent
the articulatory information was shown to be bene�cial
in speaker-dependent ASR (Zlokarnik, 1995). That work
replaced the emission probability in (1) with

P (xt; atjqt): (3)

In one of his tests, the actual articulator values were re-
placed with estimated values that a multi-layer percep-
tron (MLP) provided based on the acoustics. This system
performed better than an acoustics only system.

The present paper investigates the use of dynamic
Bayesian networks (DBNs) for incorporating articulatory
data with acoustic data in ASR, building upon the ground-
work done in Zweig and Russell (1998); Zweig (1998). So
far, DBNs have not been used extensively in speech recog-
nition. The �nal chapter of Zweig (1998) outlines as a
future research area the incorporation of articulatory in-
formation into DBNs. Our current work is taking this
path. DBNs are well suited for handling articulatory in-
formation because

1. they model the causal relationships among the vari-
ables, and

2. they can readily handle missing data.

First, in standard ASR, the one causal relationship that
is modeled is that of phonetic state!acoustics, as given
in (1); that is, the part of the phone that the speaker
wants to say causes certain acoustics. A DBN can expand
this relationship to also model the more realistic causal
relationship of articulators!acoustics:

P (xtjat; qt); (4)

it can also model the dependency of the articulator on the
phonetic state and on the previous articulator:

P (atjat�1; qt): (5)

Second, while this articulatory data will be available dur-
ing the training of the DBN, it will not realistically be
available in a production setting. Nevertheless, DBNs can
readily handle missing data so that during recognition the
DBN is able to infer the distribution of the missing artic-
ulatory positions, given the observed acoustics.

2. BAYESIAN NETWORKS

A Bayesian network (Pearl, 1988) (see Figure 1) is com-
posed of the following three items:

� the variables X that are being modeled,

� a directed acyclic graph (DAG) where there is a
one-to-one mapping between the vertices in the graph
and the variables,

� a conditional, prior probability distribution for
each variable Xi, as given in (6) below.

Each variable has a probability distribution conditioned
on the variables who have edges pointing to it (i.e., its
parents), as illustrated in Figure 1. In other words, a vari-
able's probability distribution is

P (Xijparents(Xi)): (6)

Note that the edges themselves do not carry any probabil-
ity distributions. The joint probability of all the variables
X is then assumed to be the product of all the (local)
probability distributions within the variables:

P (X) =
Y

8Xi

P (Xijparents(Xi)): (7)
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Figure 1: A Bayesian network (representing one time-
frame) for ASR. Possible probabilities for the given values
are provided. This is for the simpli�ed case of phoneme
recognition.

A set of observations O may be assigned to a subset of
the variables in the Bayesian network. The variables that
are left unobserved have an uncertainty associated with
them as to what their values are. Each does have its prior
probability distribution, as given in (6), but needs to have
its posterior probability distribution inferred:

P (Xijparents(Xi);O) (8)

The junction tree algorithm (Peot and Shachter, 1991) is
an algorithm that can be used to infer these posterior prob-
ability distributions. A version of it, tailored to the needs
of ASR, can be found in detail in Zweig (1998). The junc-
tion tree algorithm is similar to the Baum-Welch algorithm
used in HMMs (Rabiner and Juang, 1993) in that it works
with variables � and �, which are analogous to the � and
� variables, respectively, used in HMMs:

�
i
j = P (O

�

i
;O

0
i jXi = j) (9)

�
i
j = P (O+

i
; Xi = j); (10)

where O
�

i
are the observations below Xi in the junction

tree, O0i is any observation for Xi itself, and O
+

i
are all

the remaining observations.

Equations (9) and (10) can then be used to compute the
likelihood of the model as well as the marginal posterior
probability for each variable, given the observations:

8i; P (O) =
X
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(12)

Dynamic Bayesian networks (Dean and Kanazawa,
1988) (DBNs, see Figure 2) are an extension of Bayesian
networks for modeling dynamic processes, in this case a
process over time. A regular Bayesian network is repli-
cated for each time slice. Edges are then added between
desired variables in neighboring time slices. When the
node for a variable takes in a connection from a previous
time frame, it then has to expand the number of variables
in its conditional probability distribution by one to ac-
commodate the possible values for the variable from the
previous time frame.

x[t] 155 23 201

     =0.02
P(x2=201|q2=T)

     =0.05
P(x1=23|q1=T)

     =0.01
P(x0=155|q0=T)

q[t] T T O

     =0.04
P(q0=T)

     =0.82
P(q1=T|q0=T)

     =0.06
P(q2=O|q1=T)

Figure 2: A dynamic Bayesian network (representing
three time-frames), using the Bayesian network in Figure 1
as its base. For each successive time frame, a possible
value for the phonetic state variable qt is given as well as a
possible value for the acoustic emission, xt. Possible prob-
abilities for the given values are also provided. This also
is for the simpli�ed case of phoneme recognition.

3. ISOLATED WORD
RECOGNITION WITH DBNS

3.1. Acoustics-based recognition

Bayesian networks are most easily used in problems
where each variable is discrete. For ASR, this means
that the speech signal needs to be quantized. This also
means that instead of Gaussian distributions being used
for calculating the emission probabilities, discrete proba-
bility tables are used. The DBN in Figure 2 is for doing
simple phoneme recognition. A DBN for doing isolated
word recognition is illustrated in Figure 3 (further exten-
sions for DBNs, which are not currently addressed in this
work, such as language modeling, noise modeling, speak-
ing rate modeling, etc. can be found in Zweig (1998));
it uses the following deterministic and stochastic variables
for acoustics-based recognition (for explanation of the Ar-

ticulator variable, see Section 3.2):

� Deterministic

{ Position refers to the current position in the word
model. It takes values 1; : : : ; N , where N is the
maximum length of a word model.

{ Phone refers to which phone is associated with
the current Position.

� Stochastic

{ Transition refers to whether a transition is being
taken out of this phone. It has only two possible
values: true or false.

{ Acoustics refers to the speech signal. In the case
of multiple acoustic streams, it can be replicated
for each stream for each time frame. The number
of values it takes is the size of the codebook for
the stream.

The increased complexity of Figure 3 over Figure 2 en-
forces which phones come in which order in the model
(which is the responsibility of the Position and Phone

deterministic variables).

The topology of the DBN di�ers signi�cantly from that
of HMMs. In HMMs, the transition probabilities are
encoded by the edges between the state variables; in
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Figure 3: Based on Zweig (1998), a dynamic Bayesian network for isolated word recognition, covering four time steps.
This DBNmodels the word \cat", pronounced using three phonemes: /k/-/�/-/t/. This is for the acoustics/articulatory-
based recognition; acoustics-based recognition uses the same model but with the Articulator variable and its dashed
edges removed. The black vertices (the Acoustics and the �nal Position and Transition variables) are always
observed. The grey vertices (the articulators) are observed in training (when available) but not in normal recognition.

DBNs the transition probabilities are encoded within the
Transition variable. Furthermore, the legal sequence of
phones in an HMM is encoded by concatenating the dif-
ferent phone models. In DBNs, the legal sequence of
phones is determined by using the Position and Phone

variables; that is, the Phone variable will determin-
istically indicate which phone can occur at each posi-
tion in the word model (e.g., for Figure 3, P (Phone =
KjPosition = 1) = 1, P (Phone = �jPosition = 2) = 1,
P (Phone = TjPosition = 3) = 1, with all other values of
P (PhonejPosition) equal to 0).

3.2. Acoustics/Articulatory-based
recognition

In Figure 3, theAcoustics variable models the emission
probability using (1) (if the Articulator variable and its
dashed edges are ignored). This is interpreted as saying
that the Phone that is being pronounced causes certain
acoustics. A more plausible model would incorporate the
direct causes of the acoustics, i.e., the articulators, giv-
ing (4). The dependency of at on both at�1 and qt is
given by (5). This is represented graphically by the DBN
in Figure 3 when the articulator variable and dashed con-
nections are utilized.

The exact same algorithms are used for training of and
recognition with the acoustics/articulatory DBN as when
using an acoustics only DBN. This is because the DBN
algorithms are independent of the topology of the DBN.
These algorithms can also be used if part of the data
is missing. This is vitally important during recognition.
While it is reasonable to have observed articulatory infor-
mation available during the training phase, articulatory
observations generally will not be available during recog-
nition. The DBN can readily handle missing data because
during recognition it is able to infer the distribution of the
missing articulatory positions, given the observed acous-
tics.

4. EXPERIMENTS

Using the University of Wisconsin X-ray Microbeam
Speech Production database (Westbury et al., 1994), we
did experiments on speaker-independent, task-dependent,
isolated word recognition. The speech is recorded at

21739 Hz with a recording of selected articulator positions
(lower lip, upper lip, four tongue positions, lower front
tooth, and lower back tooth) at approximately 146 Hz
(6.866 ms between samples). Of the 48 speakers in the
database, eight were randomly selected to be in the test
set; of the remaining 40 speakers, eight were randomly se-
lected to be in the validation set with the remaining 32
speakers comprising the training set. All three lists were
constructed as to be gender-balanced. There are di�erent
tasks that the speakers were asked to do. For this work,
we chose to use the \Citation Words" tasks, where the
speaker reads a list of single words, separated by pauses.
Using a segmentation produced by a forced alignment at
IDIAP with an HTK system (Young et al., 1999), the set of
words for each Citation Words task were cut into individ-
ual �les with some surrounding silence. The lexicon size
was 106 words; some of the words were repeated multiple
times by the same speaker, giving an average, across all of
the data, of about 260 utterances per speaker. Thirty-nine
monophones were used in addition to beginning and end-
ing silence. Three states were used for each monophone
and silence being modeled.

Twelve mel-frequency cepstral coeÆcients (MFCCs)
plus C0, the energy coeÆcient, were extracted per window
from the speech, using a Hamming window of 20.598 ms
with successive windows shifted by 6.866 ms. This shift
rate was chosen so as to have one articulatory observation
per window. There were 26 �lterbanks with a preemphasis
coeÆcient of 0.97. Energy normalization as well as cep-
stral mean subtraction were performed. The delta (i.e.,
�rst derivative) coeÆcients for all 13 MFCC coeÆcients
were used as well.

The cepstral coeÆcients are then quantized using K-
means clustering. Four codebooks are generated from the
training data: a 256 value codebook for the 12 MFCC
coeÆcients, a 256 value codebook for the 12 MFCC delta
coeÆcients, a 16 value codebook for the C0 coeÆcient, and
a 16 value codebook for the C0 delta coeÆcient. The C0

and the C0 delta values are concatenated bitwise in the
DBN to give a single 256 value variable.

Likewise, the articulatory values are also quantized, us-
ing K-means clustering. The measurements of the eight
articulators are used for the codebook. Occasionally (22%
of the frames, across all of the data), an articulator value
was not recorded for some time slices; in these cases, the



WER # Param.
Acoustics Only (baseline) 9.8% 31488
2 Discrete Articulatory Values 8.5% 62976
4 Discrete Articulatory Values 7.7% 126690
8 Discrete Articulatory Values 8.4% 257070

Table 1: Recognition results, given as Word Error Rate
(WER), for models trained on the training set, with recog-
nition performed on the validation set. The number of free
parameters is given in the �nal column.

WER
Acoustics Only (baseline) 8.6%
4 Discrete Articulatory Values 7.8%

Table 2: Recognition results, given as Word Error Rate
(WER), for models trained on both the training set and the
validation test with recognition performed on the test set.
Only the best acoustics/articulatory system from Table 1
was used.

whole vector was thrown out and not used in any part
of the experiments. One codebook was generated to rep-
resent all eight articulator positions. Various values for
the size of the codebook are presented in this paper: two,
four, and eight. The baseline DBN system did not use
an articulatory variable; with such a con�guration, it was
theoretically equivalent to a standard ASR HMM.

We used an in-house DBN program for training and
testing the models. This program has previously been
tested against the performance given by an standard dis-
crete HMM implemented using HTK, and the recogni-
tion performance between the two, acoustics-only sys-
tems were comparable on a large reference database
(Phonebook). All models were trained using expectation-
maximization (EM) training; after the log likelihood in-
creased by less then 1% from the previous iteration, one
more maximization step was done before termination.
Dirichlet priors of 0.1 were used on all probabilities to
prevent any from becoming 0. Except where noted, recog-
nition was then performed using only the acoustics from
the validation set (the articulators were ignored and thus
treated as hidden). Results are given in Table 1 for a sys-
tem trained on the training set with recognition on the
validation set. As can be seen, the word error rate is im-
proved when articulatory information is added.

Using the optimal number of discrete articulatory values
on the validation set given in Table 1, we then started the
experiments over using only the baseline system (acous-
tics only) and the best acoustics/articulatory system (with
four articulatory values). However, this time all codebook
generation and DBN training were done on the combina-
tion of the training set and the validation set. Recognition
was then done on the test set. The results are given in Ta-
ble 2. The results of these recognition tests are the true
estimates of the two systems' performances on new data
as the test set was not used previously to select any pa-
rameters for either system.

WER
4 Discrete Articulatory Values 7.6%

Table 3: Using observed articulator values, recognition
results, given as Word Error Rate (WER), for models
trained on both the training set and the validation test
with recognition performed on the test set. Only the best
acoustics/articulatory system from Table 1 was used.

5. CONCLUSIONS

We presented a system for doing isolated word recogni-
tion that infers articulatory information from the acoustics
and uses this information for enhanced recognition. Ar-
ticulatory observations are provided during training, but
articulatory information is only inferred from the acous-
tics as a probability distribution during recognition. The
results of Table 2 show that the performance of an acous-
tics/articulatory system was superior to that of the tra-
ditional, acoustics only system, 7:8% verses 8:6%, respec-
tively. Thus, a 10% reduction in the word error rate was
achieved. For comparison, Table 3 gives recognition re-
sults with the articulatory variable observed (even though
this is not a realistic scenario). The small di�erence of the
recognition performance of the articulatory/acoustic sys-
tem with missing articulatory data verses observed articu-
latory data, 7:8% verses 7:6%, respectively, suggests that
the DBN is able to fairly accurately infer the articulatory
positions from the acoustics.
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