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ABSTRACT
Given a video of a dynamic scene captured using a dynamic camera,
we present a method to recover a dense depth map of the scene with
a focus on estimating the depth of the dynamic objects. We assume
that the static portions of the scene help estimate the pose of the cam-
eras. We recover a dense depth map of the scene via a plane sweep
stereo approach. The relative motion of the dynamic object in the
scene however, results in an inaccurate depth estimate. Estimating
the accurate depth of the dynamic object is an ambiguous problem
since both the depth and the real world speed of the object are un-
known. In this work, we show that by using occlusions and putting
constraints on the speed of the object we can bound the depth of the
object. We can then incorporate this real world motion into the plane
sweep stereo framework to obtain a more accurate depth for the dy-
namic object. We focus on videos with people walking in the scene
and show the effectiveness of our approach through quantitative and
qualitative results.

Index Terms— Computer vision, Image sequences, Image se-
quence analysis, Depth from video

1. INTRODUCTION

Recovering a dense depth map of a scene from a video is a funda-
mental yet, hard problem that finds itself a number of applications
in video analysis such as video editing, image based rendering, 3D
modeling, scene understanding, etc. Given a sequence of images
captured using a dynamic camera, a number of variants of stereo
matching techniques have been proposed to recover a dense depth
map of the scene.

A common feature of the prior approaches is that they are de-
signed for videos of a static scene. In this work, we consider the
task of recovering a dense depth map of the scene in the presence
of dynamic objects. The depth of the dynamic objects in the scene
would be over-estimated or under-estimated based on whether the
object is moving in the same direction or the opposite direction of
the camera respectively. We wish to address this issue to infer a
more accurate depth estimate for the dynamic regions of the scene.

An overview of the approach is as follows. We assume that we
see enough static regions in the scene to recover the camera param-
eters for the frames of the video. Given the camera poses, we first
treat the video as that of a static scene and use a plane sweep stereo
algorithm to obtain a dense depth map of the scene. Clearly, the
depth estimates of the moving objects would be in error. We identify
the regions corresponding to the moving object across the frames us-
ing a simple bounding box from the user. Given calibrated cameras
there is a well defined relationship between the displacement of ob-
jects in the real world and the resulting image space displacement,
as a function of the depth of the object. Now, using the depth of
regions occluded by the moving object and by constraining the real
world speed of the object, we obtain bounds on the depth of the ob-
ject. We note that, in this work we focus on videos where the moving
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Fig. 1: ROW 1 shows two frames from a video sequence from the
movie Sound of Music where, the camera is translating to the left and
the person is walking in the same direction. ROW 2 shows the initial
depth maps estimated using plane sweep stereo (white is far, black is
close). The depth of the moving object is over-estimated as shown in
the red circles. ROW 3 shows the final depth maps inferred using the
proposed approach after identifying and modeling the motion of the
moving object. Note that more accurate depth map for the moving
object shown in the green circles.

object is a person walking. We now incorporate these into the origi-
nal plane sweep stereo framework to estimate a more accurate depth
map. We show some results of our algorithm in Fig. 1.
Contributions. The main contributions of this work are: to the best
of our knowledge this is the first work that tries to address dense
depth estimation of the dynamic scene captured by a single monoc-
ular camera. We show using quantitative and qualitative results that
by obtaining depth bounds via the real world motion, we can obtain
a more accurate depth estimate of the dynamic object.

2. RELATED WORK

The task of estimating the depth of a scene given a sequence of im-
ages captured from multiple viewpoints has been very well studied.
A number of approaches have been proposed to tackle this well de-
fined yet hard task. While enumerating all these is a mammoth task,
we refer to some relevant works here that also include exhaustive
summaries of the related works.

While one approach is to use the stereo matching algorithms
on pairs of rectified frames of the video [1, 2], multiview stereo ap-
proaches [3–5] try to estimate the best depth estimate for each pixel
using unstructured images. More recent large scale multiview stereo
techniques allow for obtaining a dense point cloud or voxelized rep-
resentation of the scene [6–8] however, our goal in this work is to
obtain a dense per view depth map from the video sequence.



Fig. 2: Resulting depth maps for two static scenes using our plane sweep stereo implementation (White is far, black is close).

A line of work on depth from video by Pollefeys et al. have
explored fast, real time depth estimation from monocular videos [9].
A recent line of work by Zhang et al. have shown some of the best
results on depth from video [10]. We note that some prior work
model the scene by breaking it down into piecewise planar regions
by hypothesizing global planes in the scene, which also provides
a dense depth map of the scene [11–13]. While these works have
considered the task of depth from video, they focus on the regime of
static scenes.

In this work, we wish to estimate a dense depth map of a dy-
namic scene. A few works have studied dynamic scenes captured
simultaneously by multiple cameras to obtain a dynamic point cloud
of the scene [14,15]. Works in non-rigid structure-from-motion have
not been cited here but the main focus of this line of work has been
to reconstruct key-points on non-rigid objects such as human face,
often using images from a static camera. More recently, Zhang et al.
explored dynamic scenes to segment the moving object with some
user interaction [16]. However, to the best of our knowledge we are
the first work to consider the task of dense depth estimation of a
dynamic scene captured by a monocular camera.

3. ALGORITHM

We describe our algorithm in detail in this section. Given a video of
a dynamic scene captured using a dynamic camera, we extract the
frames of the video sampled at 30fps. We assume that enough static
regions of the scene are observed and recover the camera parameters
for the frames of the video using structure-from-motion (SFM) [6].

3.1. Plane sweep stereo

Motivated by the success of the plane sweep stereo algorithm [4, 9,
10], we base our depth from video algorithm on the same framework.
We use fronto-parallel planes discretizing the 3D space in inverse
depth. In particular, we obtain the minimum ( 1

Dmax
) and maximum

inverse depth ( 1
Dmin

) by projecting the 3D points recovered from
SFM onto the optical axis. We divide this range into equally spaced
bins thus obtaining the 3D planes to perform the plane sweep stereo.

We use a sliding window of 10 frames and normalized cross cor-
relation (NCC) between the reference image and the image obtained
by warping the neighboring view onto the 3D plane, as a metric to
find the best depth. The result on videos of static scenes are shown in
Fig 2. However, scene irregularities such as homogenous surfaces,
thin structures and specular surfaces result in a very noisy cost cube.
We qualitatively compare algorithmic choices to filter this noisy data

(a) Reference image (b) Pixel-level NCC

(c) Median filtering (d) Pixel graphcut (e) Guided filtering

Fig. 3: Comparison of algorithmic choices (White is far, black is
close for the depth maps). (a) Sample image from a video; (b) Depth
map using pixel-level NCC score; (c) Cleaner depth map by median
filtering result (a); (d) A pixel-level labeling using graph cuts pro-
duces a better result but, noisy; (e) The best result was obtained by
guided filtering the cost cube, guided by edges in the original image.

in Fig 3. As we observe, the best depth map was obtained by filter-
ing the cost cube by using guided filtering [17]. Using the original
image to guide the filtering of the cost cube, we observe that the
dominant edges are preserved resulting in a clean output by using an
argmax 1 operation on the filtered cost cube.

3.2. Dynamic scene

We now consider a video of a dynamic scene. We start off by run-
ning the plane sweep stereo algorithm. Note that the depth of the
region corresponding to the dynamic object would be incorrectly es-
timated as observed in ROW 2 of Fig 1. Intuitively, one can obtain
a better depth estimate by identifying the spatial region correspond-
ing to the dynamic object and factoring the real world motion of the
dynamic object into the plane sweep stereo framework. While some
works attempt to segment out the dynamic object (with supervision),
estimating the real world motion of the object is non-trivial.

In this work, we segment out the dynamic object via a simple
user input in the form of a bounding box around the moving ob-
ject. We track the bounding box over the successive frames using
the optical flow of the spatial region within the bounding box. We
note that we can also use other interactive approaches to perform co-
segmentation across the frames [16, 18]. We however focus on the
second non-trivial task of modeling real world object motion in the
next section.

1Note that the larger the value, the better since we are using NCC.
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Fig. 4: Modeling the object motion: The relationship in the blue
box results from the similarity between the red and green triangles.
Please refer to Section 3.2.1 for more details.

3.2.1. Modeling the motion of the dynamic object

Estimating the depth of a moving object is a hard and ambiguous
task. We estimate the depth using plane sweep stereo by making
some assumptions about the object motion in the real world.

Let Oref and Onei be the camera centers of the reference and
neighboring frames respectively from a video sampled at r frames
per second (Fig 4). Let PA be the position of the dynamic object as
seen from Onei but moves to position P ′ when seen in Oref. Thus,
the depth of the object, D is incorrectly estimated as D′. Let ∆Y
be the real world distance travelled by the object between the frames
i.e. the distance traveled by the object traveling at a speed v in time
∆t = 1

r
. Given the focal length (f), the similarity between the red

and green triangles gives the relationship between the disparity ∆d
in the image space and the real world motion as,

∆d =
f ∗ ∆Y

D
=

f ∗ v ∗ ∆t

D
=

f ∗ v
r ∗D (1)

While on one hand the depth of the moving object is unknown, the
speed at which it is traveling is also unknown. A large object mov-
ing fast and far away from the camera, can appear very similar to a
smaller object moving slower and located close to the camera. We
see from Eqn (1) that this is an under-constrained problem since any
pair of the depth (D) and speed (v) can result in the same image pro-
jection. In order to relax this ambiguity, we make some assumptions
about the object motion in real world. We consider videos with peo-
ple moving and bound the speed of dynamic object (v) to be within
2 meters per second (human walking speed). Since the video is sam-
pled at r frames per second, this results in a bound on the image
space displacement (∆d) as a function of the depth (D) as follows,

∆d ≤ f ∗ 2

r

1

D
(2)

We add an additional bound on the actual depth of the object using
the region of the scene occluded by the object. We consider the
minimum depth of the 3D points from SFM that lies in the occluded
region or projects onto the segmented out dynamic object region and
use it to upper-bound the depth (D) since the object has to be in-
front-of the occluded region.

We then incorporate this into the plane sweep algorithm. While
evaluating the cost for a plane hypothesis for the reference frame (i.e.
a plane that falls within the depth upper-bound), we use the depth of
the hypothesized plane to obtain the bound on displacement (∆d)
using Eqn (2). We allow for the segmented dynamic object region
in the reference frame to undergo an in-plane shift of a maximum
of ∆d in either direction and evaluate the best score (NCC) for this
region. Intuitively, at the true depth, the in-plane shift will allow the
segmented region to obtain a better score than before, resulting in a
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Fig. 5: Quantitative analysis: We show the average RMS error in
estimated depth measure using kinect data (averaged over 5 videos
with about 50 frames in each video). Note that the proposed ap-
proach gives significant improvement.

better depth estimate. The result of incorporating the object motion
into the depth estimation is evident in Fig 5 and Fig 6. We note that
while the estimated depth is more accurate than before, the solution
is not unique and is subject to how tight the bounds are.

4. RESULTS

Quantitative results. We capture five indoor scene videos using a
Kinect by moving it on a dolly, and extract the aligned ground truth
depth map for each frame. A person walked across the scene in two
videos and an RC car was driven across the scene in three videos.
On an average each video had about 50 frames. We show in Fig 5
the average RMS error in the estimated dense depth maps, com-
puted over the spatial region corresponding to the dynamic object,
averaged over all the frames. We note that the proposed approach
significantly reduces the error.

Qualitative results. We qualitatively evaluate the performance of
the algorithm on amateur video sequences captured by a user and
video clips extracted from the movie Sound of Music. We show some
of the results in Fig 6. Note the inaccurate depth estimate of the dy-
namic object in ROW 2 of each video, and the significantly improved
depth map seen in ROW 3. We also use the depth map to synthesize a
stereo pair using a baseline of 77cm. The resulting anaglyph images
shown on ROW 4 gives the right perception of depth. We note here
that the result using the proposed algorithm may not be the accurate
depth due to ambiguous continuous space of possibilities mentioned
in Section 3.2.1 however, the proposed algorithm that incorporates
the object motion gives significant improvement (Fig 5).

5. CONCLUSIONS AND FUTURE WORK

We present an algorithm using the plane sweep stereo framework
to estimate the depth of a dynamic scene captured using a dynamic
camera. We develop the relationship between the real world object
motion and the displacement induced by it in on the image plane.
Adding bounds on the motion of the object and incorporating this
into the same plane sweep stereo framework we showed that we can
obtain a more accurate estimate of depth of the moving object. Fu-
ture work would explore relaxing some of the assumptions, by in-
telligently incorporating the user into the loop by quantifying the
ambiguity of the algorithm and accepting user input when needed.
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