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Executive Summary 

In this report, we look at the use of Local Color Pattern features in interactive co-segmentation. 
According to the Abstract, the goal was to additionally look at textual and DAISY features; 
however, due to time constraints, only Local Color Pattern features will be discussed. 
 
The layout of the report is as follows. In Section 1, the problem of interactive co-segmentation, 
as well as its uses, will be described. Section 2 gives an overview of aspects of this project that 
were already in-place at the onset of my research; namely, a Graphical User Interface for 
Interactive Co-segmentation, as well as co-segmentation results for Luv color feature vectors. 
Section 3 will introduce the idea of a Local Color Pattern feature vector, and discuss its merits. 
Section 4 will present co-segmentation results of both Luv color and Local Color Pattern 
features. It will be seen that although the two features have similar co-segmentation accuracies 
under most conditions, there are some image sets for which Local Color Pattern performs much 
better. Finally, Section 5 will conclude the report by suggesting future directions for this project. 
  



1 Introduction 

As computers become increasingly powerful and ubiquitous in our lives, we would like to use 
them to automate mundane or tedious tasks. One of these tasks involves locating Objects-Of-
Interest (OOIs) in a group of related images, and appears most notably in medical imaging, in 
the tagging of photos on Facebook, Flickr, and other image-hosting websites, and in the 
colorization of black-and-white films. In medical imaging, doctors look for anomalies (such as 
tumors) by looking for characteristic patterns or objects in a series of CT scans. The process of 
finding such objects is usually done subjectively by doctors or medical technicians, by looking at 
one image at a time. Similarly, photos in a Facebook album are tagged one photo at a time, and 
the process of coloring black-and-white films is done one frame at a time. 
 
The process of locating OOIs in a set of images can therefore be extremely time-consuming and 
prone to error. This is particularly true in the film colorization example, where the graphics 
artist will be working with hundreds of thousands of frames, each frame containing many 
objects. With interactive co-segmentation, the same process can be done automatically, with 
just a few mouse clicks. 
 
Co-segmentation can be described as the simultaneous segmentation of multiple images. 
Segmentation is the process of partitioning an image into multiple regions, sometimes called 
superpixels, such that the regions are similar with respect to some feature, such as color or 
texture. In interactive co-segmentation, the user inputs two sets of scribbles into an image in 
the image set. One set of scribbles defines the regions in the image that should be part of the 
foreground (the OOIs); the other set defines the regions that should be part of the background 
(everything else). These scribbles will then be used in conjunction with the extracted feature 
information to provide additional context as to the location of the OOIs in all the images. 
 
As mentioned in the Abstract, an interactive GUI for performing co-segmentation already 
existed at the onset of this project. Thus, the focus of this report will not be on the co-
segmentation process, but rather, on the evaluation of the performance of different features 
used in co-segmentation. 
 

 

 

2 Previously-Established Results 

There are two important programs/results that were already in existence prior to the onset of 
my research: a Graphical User Interface for Interactive Co-segmentation, as well as co-
segmentation results for Luv color features, which were obtained from the GUI. Both will be 
discussed below. 
 



A. Interactive Co-segmentation GUI 

The GUI for Interactive Co-segmentation runs from Matlab, and code for performing the co-
segmentation is also written in Matlab; however, the graphics portion of the program was 
coded in Java. Information on the various features of the GUI, as well as the steps for 
performing interactive co-segmentation, is listed in Appendix A. 
 
 
B. Luv Color Feature 

Before we can talk about specific features, we first need to define the concept of features in the 
context of computer vision. A feature can be defined as a piece of information that is relevant 
for solving a problem computationally. It does this by highlighting or emphasizing particular 
structures or patterns in the data. For instance, an edge is a feature used to describe sudden 
changes of intensity in an image. A binary matrix can be used to denote the existence or non-
existence of an edge at a specific pixel.  
 
Feature extraction is the process of representing data in such a way as to highlight certain 
features embedded in that data. Since features can be represented by vectors of different 
dimensions, feature extraction is often done by transformation of basis vectors. For example, 
most color-based representations of images are obtained from the RGB representation of that 
image. Once feature extraction has been done, the information obtained from features can be 
used in more complicated tasks, such as object recognition or co-segmentation. 
 
The Luv color feature, which is 3-dimensional, is obtained simply by representing each pixel in 
the Luv color space. To distinguish this feature from the LCP features, which also use color, the 
Luv color feature will also be referred to as an “absolute color feature”. Co-segmentation 
results for these features are presented later in the report. 

 
 
3 The Local Color Pattern Feature 

 
A. Description 

As its name suggests, the Local Color Pattern (LCP) feature incorporates information about the 
color of a pixel in addition to the color of nearby pixels. More specifically, for each pixel x in the 
image, the LCP feature contains information about the following five pixels: a) x; and b) the four 
nearest pixels in the north, south, east, and west (NESW) cardinal directions that have a color 
that is different from that of x. In order to understand exactly what that statement means, a 
couple of questions must be addressed: 

1) What does it mean to say that two pixels have different colors? 
2) How are the relevant pixels represented in the LCP feature vector? 



To answer the first question, we first need to define the terms clustering and color mode. 
Clustering is a process which attempts to partition a group of n points into k distinct groups, 
called clusters (usually k<<n). Since the data points being clustered are color space 
representations of pixels, the mean value of cluster s is known as the color mode of s with 
respect to the color space C. Furthermore, it can be said that points in cluster s belong to the 
color mode of s. Therefore, two pixels have different colors with respect to color space C if they 
belong to different color modes with respect to C [2]. 
 
To answer the second question, the relevant pixels are represented in the LCP feature vector 
according to their colors with respect to C. As an example, consider the following toy image 
shown below: 
 

 
Figure 1: Computation of LCP Feature for One Pixel of an Image 

The LCP feature vector for the highlighted pixel in Figure 1 would be given by the colors 
associated with points 1, 2, 3, 4, and 5, in that order. The order in which the pixels are 
represented is not important, as long as it is consistent for all pixels in all images in an image 
set. Since each point is represented by a 3-dimensional color space vector, the LCP feature 
vector is 15-dimensional. 
 
 
B. Obtaining Local Color Pattern Features 

The steps for obtaining LCP feature vectors for an image are as follows: 

1) Convert image to desired color space. 
2) Perform clustering to determine the color modes of the image. Assign a color mode 

label to each pixel in the image. 
3) Perform a 4-way linear search over all pixels to find the nearest pixels in the NESW 

directions that belong to a different color mode. 
 
For step 1, we will be looking at the RGB, HSV, and Luv color spaces. This step is done in Matlab; 
since the default representation for color images in Matlab is RGB, nothing needs to be done 



for this step if the desired color space is RGB. Appendix A has information on how to convert 
from the RGB color space to the other two color spaces, and vice versa. 
 
For step 2, I tried a couple of software packages for clustering. At first, I used Charles Bouman’s 
Gaussian Mixture Model (GMM) clustering package, which attempts to model the data as a 
linear combination of normal distributions with varying means and covariance matrices [1]. A 
good reference for GMM clustering, as well as the C code for performing GMM clustering, can 
be found here. However, I soon found that clustering using this package was far too slow, as it 
was taking around 20 minutes to cluster a single 300x500 image. I then tried Dan Pelleg’s k-
means clustering package [3], which was able to perform clustering of a similarly-sized image 

on the order of seconds. The k-means clustering package is run from Matlab using the system 
command. 
 
For step 3, a MEX-file was created for doing the linear search in order to keep feature 
extraction runtime to a minimum. More efficient methods for performing this step could be 
considered in the future; however, with a multi-directional linear search, LCP features for a 
300x500 pixel image could be obtained in under a second. 
 
The code for performing steps 1 and 3 above is listed in Appendix B. The code for performing 
step 2 is provided in the references given above. 
 
 
C. Motivation for Using Local Color Pattern Features 

It can be seen that computing LCP vectors is far more resource-consuming than computing 
absolute color vectors, since calculation of LCP vectors requires clustering and vector searching 
in addition to color space conversion. So why use LCP? 
 
It turns out that in many cases, looking solely at the colors of each pixel may not be enough to 
distinguish similarly-colored objects, if those objects don’t both belong to background or 
foreground. For instance, consider an example image of a boy wearing a yellow shirt lying in the 
grass, with the sun overhead. If we consider the boy to be foreground, and everything else to 
be background, then using absolute color features alone (i.e. not taking into consideration 
neighboring pixels) would fail to put the boy and the sun in different categories. However, by 
using LCP features, we would be able to separate the two objects, since the boy is surrounded 
by grass, which is green, while the sun is surrounded by sky, which is blue. 
 

 

  



4 Interactive Co-segmentation Results 
 

A. Testing Methodology 

Since the goal of co-segmentation is to automate a task that would normally be done by a 
human, the measure of success in co-segmentation for a particular image group would be to 
compare the co-segmentation results to a benchmark, which would be considered the 
“perfect” co-segmentation as perceived by a human observer. Qualitatively, this involves 
looking at each segmented image in an image group and seeing which pixels were marked 
correctly as foreground, and which pixels were not. Quantitatively, this involves computing the 
percentage of pixels that were correctly labeled as foreground or background. 
 
Quantitative results can be obtained by first creating a black-and-white image for each image in 
the image set, where the white pixels correspond to pixels that should be marked foreground, 
and the black pixels correspond to pixels that should be marked background. This black-and-
white image set is known as the ground truth, and is the baseline for comparison to the co-
segmentation GUI results. Once the ground truth has been obtained, it is a simple matter to 
determine which pixels were marked correctly by co-segmentation, and which pixels were not. 
 
One measure of accuracy of a particular feature can be obtained by counting the number of 
pixels marked correctly among all images in the image set, and dividing that number by the 
total number of pixels among all images in the image set. This gives an overall accuracy 
measure as a percent. We can obtain similar accuracies over the set of foreground and 
background pixels as well (as denoted in the ground truth). All of this information can be 
succinctly captured in a confusion matrix: 
 

 (1) 

 
where  represents the number of background pixels correctly marked as background,  
represents the number of foreground pixels correctly marked as foreground,  represents the 
number of background pixels that should have been marked as foreground, and  represents 
the number of foreground pixels that should have been marked as background. Thus, we can 
obtain foreground, background, and overall accuracies as follows: 
 

 (2) 

 

 (3) 

 

 (4) 

 



It is important to consider background and foreground accuracies in addition to the overall 
accuracy, especially for image sets where the number of foreground or background pixels is a 
large percentage of the total number of pixels. For instance, consider an image set where only 
one-sixth of the total pixels represent foreground. If co-segmentation fails to find 50% of the 
foreground pixels, then the foreground accuracy is only 50%; however, the overall accuracy 
would be over 91%. Thus, by looking at overall accuracy alone, there might be situations where 
the overall accuracy is high, but the algorithm might have still failed to do a good job in finding 
the object-of-interest. 
 
The co-segmentation GUI allows for scribbling on multiple images; however, only one image is 
marked with scribbles for each test run, to see how well the features perform with a minimal 
amount of information. Even so, there is some variation in this approach due to the fact that 
the scribbles will be different each time the GUI is run. However, this variation was reduced by 
scribbling on the same images for each image set, and by making the scribbles approximately 
the same for all trials. 
 
 
B. Comparison of Absolute Color and Local Color Pattern Features 

In this section, we will compare the co-segmentation performance of the Luv absolute color 
and LCP features for a group of one dozen different image sets. Out of these sets, 6 of them did 
relatively well with absolute color features, and the other 6 did relatively poorly. 
 
Analysis of “Easy” Image Sets 
First, we will look at the performance of image sets where co-segmentation using Luv color 
features resulted in an accurate labeling of foreground and background pixels. In the following 
three figures, the percentage of background pixels, foreground pixels, and combined 
background and foreground pixels labeled correctly is plotted for each of the following six 
image sets, 
 
017 – Taj Mahal 1     022 – Goose  025-1 – Airshows-Helicopter 
032 – Brighton Kite Festival  040 – Monks  050 – Kendo (Helsinki) 
 
using the following features: 
 

- Luv color space 
- LCP with respect to RGB, HSV, and Luv color spaces 

 
On the horizontal axis, the points are plotted in order of increasing set number (i.e. starting 
from the Taj Mahal set and working up to the Kendo set). 
 



 
 

Figures 2 and 3: Percentage of Background and Foreground Pixels Labeled Correctly – Easy 
Image Sets 

 
Figure 4: Overall Percentage of Pixels Labeled Correctly – Easy Image Sets 

 
It can be seen that all four feature vectors perform relatively well, achieving over 90% accuracy 
on most or all of the background labels, over 80% accuracy on most of the foreground labels, 
and over 90% accuracy on overall labels. Local Color Pattern with respect to the RGB color 
space had the best overall and background labels accuracy, while Local Color Pattern with 
respect to the HSV color space did the best with respect to foreground labels. 
 
The figures on the next page depict the segmentations for the Kendo image set for the Luv 
color and LCP with respect to HSV features. It can be seen that both segmentations are nearly 
perfect. A similarity between all of the high-accuracy sets is that the foreground colors and 
background colors are, for the most part, distinct, which means that a color feature can 
distinguish between the two even without contextual information from neighboring pixels. 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
82

84

86

88

90

92

94

96

98

100
% Background Labeled Correctly

 

 

Luv Color Space

LCP - RGB

LCP - HSV

LCP - Luv

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
65

70

75

80

85

90

95

100
% Foreground Labeled Correctly

 

 

Luv Color Space

LCP - RGB

LCP - HSV

LCP - Luv

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
84

86

88

90

92

94

96

98

100
% Labeled Correctly

 

 

Luv Color Space

LCP - RGB

LCP - HSV

LCP - Luv



 
Figure 5: Kendo Image Set 

 
Figure 6: Kendo Image Set – Luv Color Feature Co-segmentation 

 

 
Figure 7: Kendo Image Set – LCP with Respect to HSV Co-segmentation 

 
  



Analysis of “Hard” Image Sets 
Next, we will look at the performance of image sets where co-segmentation using Luv color 
features resulted in an inaccurate labeling of foreground and background pixels. In the 
following three figures, the percentage of background pixels, foreground pixels, and combined 
background and foreground pixels labeled correctly is plotted for each of the following six 
image sets. As before, the same features are being tested, and points are plotted in order of 
increasing set number (i.e. starting from the Bear set and working up to the Panda set). 
 
002 – Alaskan Brown Bear  009 – Stonehenge 1  012 – Stonehenge 2 
020 – Pyramids     021 - Elephants   023 - Pandas 
 
 

  
 

Figures 8 and 9: Percentage of Background and Foreground Pixels Labeled Correctly – Hard 
Image Sets 

 
Figure 10: Overall Percentage of Pixels Labeled Correctly – Hard Image Sets 
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It can be seen that overall accuracies are much lower across all features. This is expected, since 
many of the images in these six sets have similar background and foreground colors. Consider 
an image from the Bear set, and an image from the Pyramid set, shown below. 
 

 
Figure 11: Left - Image from Bear set. Right – Image from Pyramid set. 

If adjacent background and foreground regions are too similar in color, then points from both 
regions will fall into the same color mode, making accurate separation of foreground from 
background difficult. Interestingly enough, LCP with respect to HSV features had the best 
overall foreground labeling accuracies, just like it did with the “easy” image sets. Furthermore, 
for many of the sets where LCP-HSV did well in the foreground, it also did poorly in background 
labeling, which means that LCP-HSV tends to mark too many of the pixels as foreground. 
 
However, one image set where LCP did particularly well when compared to the Luv color 
feature was in one of the Stonehenge sets. The figures on the next page depict the 
segmentations for the Stonehenge image set for the Luv color and LCP with respect to HSV 
features. It can be seen that the Luv color feature has trouble distinguishing between the grass 
and the stones. This is because the stones are not completely grey, but have tints of green in 
them, as can be seen below after zooming in on one of the images. Because some of the 
foreground scribbles cut through these green areas (in addition to touching the more grayish 
portions of stone), pretty much all the grassy areas were labeled as foreground when Luv color 
features were used, as can be seen in Figure 14.  
 
 

 
Figure 12: Stonehenge Image Set – Image 3, Zoomed-In 

 
 



 

Figure 13: Stonehenge Image Set 

  

Figure 14: Stonehenge Image Set – Luv Color Feature Co-segmentation 

  

Figure 15: Stonehenge Image Set – LCP with Respect to HSV Co-segmentation 

 
However, when the LCP-HSV feature was used, the majority of the grassy areas were correctly 
labeled as background, except for image 5 in the set, where part of the grass is highlighted. One 
possible explanation for this segmentation result is that the LCP feature picks up the greenish 
patches on the rocks, but only highlights green areas if they are touching the sky, which is 
bluish in color. In image 5, the patch of grass above the dirt road is touching the sky, so only 
that part of the grass is highlighted. In the other images, since there are stones between the 
grass and the sky, the grassy areas are correctly labeled as background. 

  



5 Conclusion 

In this report, the motivation behind the use of contextual information in feature 
representation for interactive co-segmentation was discussed. Specifically, the Local Color 
Pattern (LCP) feature, which uses contextual information with respect to various color spaces, 
was described in detail. A comparison of co-segmentation accuracy between LCP features and 
the already-implemented Luv absolute color features was done. It was found that while Local 
Color Pattern and absolute color features often produced similar results, LCP features could 
perform significantly better for certain image sets, such as the Stonehenge set that was 
discussed in the previous section. 
 
If I were to continue work on this project, there would still be many things I could examine. For 
instance, I could look at using other types of features other than color, such as texture. The 
Bear image set, which did not have great co-segmentation accuracies using color features, 
should perform much better with textual features, since the bear (foreground) is the only 
object in the image that has a “furry” texture. I could also look into combining features. For 
instance, one of the features used in [1] combines LCP with edge information. There is still 
much that can be done with various types of features to improve co-segmentation accuracies to 
the point that we can reliably use co-segmentation to tag our photo albums on Facebook. 
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Appendix A: User’s Guide for the Interactive Co-segmentation GUI 

In order for co-segmentation to be performed, two things are needed: 1) an image set; and 2) 
feature representations of each image in the image set. Before the GUI can be loaded, the 
image folder must be specified in the GUI m-file (main_app.m). Additionally, a mat file 
containing the feature space representations of each image must be specified from within 
main_app.m. Once the image folder and mat file is specified, the GUI is run by typing in 
main_app on the command line. The following screen will appear: 
 
 

 
 

Figure 16: Interactive Co-segmentation GUI – Starting Screen 

The starting screen shows all images in the first image set. At this point, the user selects an 
image on which to scribble, by clicking on that image. The GUI will then zoom in on that image. 

 

Figure 17: Interactive Co-segmentation GUI – Selected Image 



There are several buttons on the top of the window. Below, ones needed to perform interactive 
co-segmentation are listed from left to right, along with their corresponding functions: 

- Background/Foreground: These buttons control whether your current scribble should 
mark a foreground or background region in the image. If background scribbles are 
currently selected, the leftmost button will be solid red, and the “Current Scribble” 
dialog will change to say “Background”. If foreground scribbles are currently selected, 
the second-to-leftmost button will be solid blue, and the “Current Scribble” dialog will 
change to say “Foreground”. 

- Mode: Switch between image selection and image scribbling screens. 
- Undo Scribble: Undoes scribbles. 
- Hide Scribbles: Hides all scribbles for the selected image. 
- Show Scribbles: Shows all scribbles for the selected image. 
- Segment now!: Performs co-segmentation with the current scribbles. 
- Next Group: Switches to the next image group. 

The image might look something like this after adding scribbles. Blue scribbles denote 
foreground and red scribbles denote background. 

 

Figure 18: Interactive Co-segmentation GUI – After Adding Scribbles 

Click “Segment now!” to begin co-segmentation. After the program is finished running, the 

screen will look like this: 



 

Figure 19: Interactive Co-segmentation GUI – After Co-segmentation 

At this point, you can click on any image from the scrolling window on the right to enlarge it. 
You can also add scribbles to other images in the image set and re-run the co-segmentation 
algorithm, if you so choose. 

  



Appendix B: Code 

getColorModeLabels.m 
 
This function assigns color mode labels to each pixel in the image using k-means clustering. 
 
%Folder which contains all image folders to be processed 

imgFolder = ''; 

%Folder which contains this file. Should also contain kmeans executable and all files 

necessary to run it. 

curFolder = ''; 

  

folderList = dir(imgFolder); 

%Count starts at 3 since first two entries are always ‘.’ And ‘..’ 

%Change end number based on number of image folders 

for(h=3:40) 

  

    folderGroup = folderList(h).name 

     

%Get name of each image in folder 

img_list = dir([imgFolder '/' folderGroup '/*.jpg']); 

  

start = clock; 

  

for(i=1:length(img_list)) 

    %Extract RGB data from image and put it into a file 

    %Each row of the file contains RGB data for one pixel 

    %Pixels are processed in row order 

    imgName = img_list(i).name 

    imgRGB = imread([imgFolder '/' folderGroup '/' imgName]); 

    [height width numChannels] = size(imgRGB); 

     

    %Use this to convert to HSV 

    img = rgb2hsv(imgRGB); 

    %Use this to convert to Luv 

    img = RGB2Luv(imgRGB); 

    %Use this if using RGB 

    img = imgRGB; 

 

    img = permute(img, [3 2 1]); 

    img = reshape(img, [1 height*width*numChannels]); 

         

     

    %Create .ds and .ds.universe files 

    datFileName = imgName(1:end-4); 

    fid = fopen([curFolder '/' datFileName '.ds'], 'w'); 

    fprintf(fid, 'x0 x1 x2\n'); 

    fprintf(fid, '%f %f %f\n', img); 

    fclose(fid); 

     

    fid = fopen([curFolder '/' datFileName '.ds.universe'], 'w'); 

    %Use these parameters for Luv image 

    fprintf(fid, '0 100\n'); 

    fprintf(fid, '-134 220\n'); 

    fprintf(fid, '-140 122');  

    %Use these parameters for HSV image 

%     fprintf(fid, '0 1\n'); 

%     fprintf(fid, '0 1\n'); 

%     fprintf(fid, '0 1'); 

    %Use these parameters for RGB image 



%     fprintf(fid, '0 255\n'); 

%     fprintf(fid, '0 255\n'); 

%     fprintf(fid, '0 255'); 

    fclose(fid); 

     

  

    %Get color mode labels for current image file 

    %ctrs - list of cluster centers 

    %clust - groups image indices (row major order) by cluster (not  

    %        necessarily in order listed in ctrs) 

    %labels - assigns a label to each index between 0 and N-1, where N 

    %         is the number of clusters 

    input_filename = [datFileName '.ds']; 

    ctrs_filename = ['ctrs_' datFileName]; 

    clust_filename = ['clust_' datFileName]; 

    labels_filename = ['labels_' datFileName]; 

  

    %Run xmeans to get pixel indices grouped by color mode 

    system(['kmeans kmeans -k 1 -method blacklist -max_leaf_size 40 ' ... 

            '-min_box_width 0.03 -cutoff_factor 0.5 -max_iter 200 ' ... 

            '-num_splits 6 -max_ctrs 15 -in ' input_filename ... 

            ' -save_ctrs ' ctrs_filename ' -printclusters ' clust_filename]); 

    system(['kmeans membership -in ' clust_filename ' >' labels_filename]); 

    

    %labels_filename contains pixel indices grouped by color mode, color modes     

    separated by blank line 

    %Assign label to each pixel 

    colorModeLabel = 0; 

    colorModeLabels = zeros(1, height*width); 

    fid = fopen([curFolder '/' labels_filename], 'r'); 

    while(1) 

        curIdx = fgets(fid); 

        if(curIdx==-1)      %EOF 

            break; 

        elseif(isempty(str2num(curIdx)))    %blank space line 

            colorModeLabel = colorModeLabel + 1; 

        else 

            colorModeLabels(str2num(curIdx)+1) = colorModeLabel; 

        end 

    end 

    fclose(fid); 

     

    %Write labels to a file 

    fid = fopen([imgFolder '/' folderGroup '/modes_' datFileName], 'w'); 

    fprintf(fid, '%d\n', colorModeLabels); 

    fclose(fid); 

end 

  

end 

 

 

 

  



RGB2Luv.m 
 
Converts an RGB image to Luv color space 
 
function luvim = RGB2Luv(im) 

  

%Ensure input image has 3 color channels 

if(size(im,3) ~= 3) 

    error('im must have three color channels'); 

end 

if(max(im(:)) > 1) 

    im = im./255; 

end 

  

  

XYZ = [.4125 .3576 .1804; .2125 .7154 .0721; .0193 .1192 .9502]; 

Yn = 1.0; 

Lt = .008856; 

Up = 0.19784977571475; 

Vp = 0.46834507665248; 

imsiz = size(im); 

im = permute(im,[3 1 2]); 

im = double(reshape(im,[3 imsiz(1)*imsiz(2)])); 

xyz = reshape((XYZ*im)',imsiz); 

x = xyz(:,:,1); 

y = xyz(:,:,2); 

z = xyz(:,:,3); 

  

l0 = y./Yn; 

l = l0; 

l(l0>Lt) = 116.*(l0(l0>Lt).^(1/3)) - 16; 

l(l0<=Lt) = 903.3*l0(l0<=Lt); 

c = x + 15*y + 3 * z; 

u = 4*ones(imsiz(1:2),class(im)); 

v = (9/15)*ones(imsiz(1:2),class(im)); 

u(c~=0) = 4*x(c~=0)./c(c~=0); 

v(c~=0) = 9*y(c~=0)./c(c~=0); 

  

u = 13*l.*(u-Up); 

v = 13*l.*(v-Vp); 

  

luvim = cat(3,l,u,v); 

 

  



lcpExtractHSV_pix.cpp 
 
This MEX-function extracts the LCP feature from an HSV image. It can also be used to extract 
LCP features from an Luv image.  
 

 

#include <stdio.h> 

#include "mex.h" 

 

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]); 

void getLCP(int height, int width, int *labels, double *imgHSV, double *lcpOutput); 

int findColorModeIdxNorth(int i, int j, int height, int width, int *colorModes); 

int findColorModeIdxEast(int i, int j, int height, int width, int *colorModes); 

int findColorModeIdxSouth(int i, int j, int height, int width, int *colorModes); 

int findColorModeIdxWest(int i, int j, int height, int width, int *colorModes); 

 

 

//Inputs: height, width - dimensions of image 

//  labels - length (height*width) array containing color mode label data 

//      entries are row major order 

//  imgHSV - length (3*height*width) array containing HSV image data 

//     entries are row major order 

//Outputs: lcpOutput - length (height*width*15) array containing HSV values of  

//        each pixel as well as nearest pixels in NESW directions 

//        that belong to a different color mode 

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 

{ 

 int *labels; 

 double *imgHSV; 

 int height, width; 

 double *lcpOutput; 

 

 //Get height and width of original image 

 height = mxGetScalar(prhs[0]); 

 width = mxGetScalar(prhs[1]); 

 //Get labels for each pixel 

 labels = (int *)(mxGetPr(prhs[2])); 

 //Get HSV colors for each pixel 

 imgHSV = (double *)(mxGetPr(prhs[3])); 

  

  

 //Output mex array 

 plhs[0] = mxCreateDoubleMatrix(1, height*width*15, mxREAL); 

 lcpOutput = (double *)(mxGetPr(plhs[0])); 

   

 //Obtain local color pattern of image 

 getLCP(height, width, labels, imgHSV, lcpOutput); 

} 

 

 

void getLCP(int height, int width, int *labels, double *imgHSV, double *lcpOutput) 

{ 

 int i, j; 

 //Distance from current point to nearest color mode in 4 cardinal directions 

 int colorModeIdxN, colorModeIdxE, colorModeIdxS, colorModeIdxW, colorModeIdxC; 

  

 for(i=0; i<height; i++) 

 { 

  for(j=0; j<width; j++) 

  { 

   //Locate nearest color mode boundaries in 4 cardinal directions 



   //Assume edges of image are always color mode boundaries 

    

   colorModeIdxN = findColorModeIdxNorth(i,j, height, width, labels); 

   colorModeIdxE = findColorModeIdxEast(i,j, height, width, labels); 

   colorModeIdxS = findColorModeIdxSouth(i,j, height, width, labels); 

   colorModeIdxW = findColorModeIdxWest(i,j, height, width, labels); 

   colorModeIdxC = width*i+j; 

    

   lcpOutput[i*15*width + j*15] = imgHSV[colorModeIdxC*3]; 

   lcpOutput[i*15*width + j*15 + 1] = imgHSV[colorModeIdxC*3 + 1]; 

   lcpOutput[i*15*width + j*15 + 2] = imgHSV[colorModeIdxC*3 + 2]; 

   lcpOutput[i*15*width + j*15 + 3] = imgHSV[colorModeIdxN*3]; 

   lcpOutput[i*15*width + j*15 + 4] = imgHSV[colorModeIdxN*3 + 1]; 

   lcpOutput[i*15*width + j*15 + 5] = imgHSV[colorModeIdxN*3 + 2]; 

   lcpOutput[i*15*width + j*15 + 6] = imgHSV[colorModeIdxE*3]; 

   lcpOutput[i*15*width + j*15 + 7] = imgHSV[colorModeIdxE*3 + 1]; 

   lcpOutput[i*15*width + j*15 + 8] = imgHSV[colorModeIdxE*3 + 2]; 

   lcpOutput[i*15*width + j*15 + 9] = imgHSV[colorModeIdxS*3]; 

   lcpOutput[i*15*width + j*15 + 10] = imgHSV[colorModeIdxS*3 + 1]; 

   lcpOutput[i*15*width + j*15 + 11] = imgHSV[colorModeIdxS*3 + 2]; 

   lcpOutput[i*15*width + j*15 + 12] = imgHSV[colorModeIdxW*3]; 

   lcpOutput[i*15*width + j*15 + 13] = imgHSV[colorModeIdxW*3 + 1]; 

   lcpOutput[i*15*width + j*15 + 14] = imgHSV[colorModeIdxW*3 + 2]; 

  } 

 } 

} 

 

 

int findColorModeIdxNorth(int i, int j, int height, int width, int *colorModes) 

{ 

 int temp = i; 

 

 //Stop moving up once we hit the top row or a different color mode 

 while(temp>0 && colorModes[width*i+j]==colorModes[width*temp+j]) 

 { 

  temp--; 

 } 

 

 return width*temp+j; 

} 

 

int findColorModeIdxEast(int i, int j, int height, int width, int *colorModes) 

{ 

 int temp = j; 

 

 //Stop moving up once we hit the rightmost column or a different color mode 

 while(temp<width-1 && colorModes[width*i+j]==colorModes[width*i+temp]) 

 { 

  temp++; 

 } 

 

 return width*i+temp; 

} 

 

int findColorModeIdxSouth(int i, int j, int height, int width, int *colorModes) 

{ 

 int temp = i; 

 

 //Stop moving up once we hit the top row or a different color mode 

 while(temp<height-1 && colorModes[width*i+j]==colorModes[width*temp+j]) 

 { 

  temp++; 

 } 



 

 return width*temp+j; 

} 

 

int findColorModeIdxWest(int i, int j, int height, int width, int *colorModes) 

{ 

 int temp = j; 

 

 //Stop moving up once we hit the rightmost column or a different color mode 

 while(temp>0 && colorModes[width*i+j]==colorModes[width*i+temp]) 

 { 

  temp--; 

 } 

 

 return width*i+temp; 

} 

  



lcpExtractRGB_pix.cpp 
 
This MEX-function extracts the LCP feature from an RGB image. It is pretty much exactly the 
same as lcpExtractHSV_pix.cpp, except that the function requires integer inputs. 
 

 

#include <stdio.h> 

#include "mex.h" 

 

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]); 

void getLCP(int height, int width, int *labels, int *imgRGB, double *lcpOutput); 

int findColorModeIdxNorth(int i, int j, int height, int width, int *colorModes); 

int findColorModeIdxEast(int i, int j, int height, int width, int *colorModes); 

int findColorModeIdxSouth(int i, int j, int height, int width, int *colorModes); 

int findColorModeIdxWest(int i, int j, int height, int width, int *colorModes); 

 

 

//Inputs: height, width - dimensions of image 

//  labels - length (height*width) array containing color mode label data 

//     entries are row major order 

//  imgRGB - length (3*height*width) array containing RGB image data 

//           entries are row major order 

//Outputs: lcpOutput - length (height*width*15) array containing RGB values of  

//        each pixel as well as nearest pixels in NESW directions 

//        that belong to a different color mode 

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 

{ 

 int *labels; 

 int *imgRGB; 

 int height, width; 

 double *lcpOutput; 

 

 //Get height and width of original image 

 height = mxGetScalar(prhs[0]); 

 width = mxGetScalar(prhs[1]); 

 //Get labels for each pixel 

 labels = (int *)(mxGetPr(prhs[2])); 

 //Get RGB colors for each pixel 

 imgRGB = (int *)(mxGetPr(prhs[3])); 

  

  

 //Output mex array 

 plhs[0] = mxCreateDoubleMatrix(1, height*width*15, mxREAL); 

 lcpOutput = (double *)(mxGetPr(plhs[0])); 

   

 //Obtain local color pattern of image 

 getLCP(height, width, labels, imgRGB, lcpOutput); 

} 

 

 

void getLCP(int height, int width, int *labels, int *imgRGB, double *lcpOutput) 

{ 

 int i, j; 

 //Distance from current point to nearest color mode in 4 cardinal directions 

 int colorModeIdxN, colorModeIdxE, colorModeIdxS, colorModeIdxW, colorModeIdxC; 

  

 for(i=0; i<height; i++) 

 { 

  for(j=0; j<width; j++) 

  { 

   //Locate nearest color mode boundaries in 4 cardinal directions 



   //Assume edges of image are always color mode boundaries 

    

   colorModeIdxN = findColorModeIdxNorth(i,j, height, width, labels); 

   colorModeIdxE = findColorModeIdxEast(i,j, height, width, labels); 

   colorModeIdxS = findColorModeIdxSouth(i,j, height, width, labels); 

   colorModeIdxW = findColorModeIdxWest(i,j, height, width, labels); 

   colorModeIdxC = width*i+j; 

    

   lcpOutput[i*15*width + j*15] = imgRGB[colorModeIdxC*3]; 

   lcpOutput[i*15*width + j*15 + 1] = imgRGB[colorModeIdxC*3 + 1]; 

   lcpOutput[i*15*width + j*15 + 2] = imgRGB[colorModeIdxC*3 + 2]; 

   lcpOutput[i*15*width + j*15 + 3] = imgRGB[colorModeIdxN*3]; 

   lcpOutput[i*15*width + j*15 + 4] = imgRGB[colorModeIdxN*3 + 1]; 

   lcpOutput[i*15*width + j*15 + 5] = imgRGB[colorModeIdxN*3 + 2]; 

   lcpOutput[i*15*width + j*15 + 6] = imgRGB[colorModeIdxE*3]; 

   lcpOutput[i*15*width + j*15 + 7] = imgRGB[colorModeIdxE*3 + 1]; 

   lcpOutput[i*15*width + j*15 + 8] = imgRGB[colorModeIdxE*3 + 2]; 

   lcpOutput[i*15*width + j*15 + 9] = imgRGB[colorModeIdxS*3]; 

   lcpOutput[i*15*width + j*15 + 10] = imgRGB[colorModeIdxS*3 + 1]; 

   lcpOutput[i*15*width + j*15 + 11] = imgRGB[colorModeIdxS*3 + 2]; 

   lcpOutput[i*15*width + j*15 + 12] = imgRGB[colorModeIdxW*3]; 

   lcpOutput[i*15*width + j*15 + 13] = imgRGB[colorModeIdxW*3 + 1]; 

   lcpOutput[i*15*width + j*15 + 14] = imgRGB[colorModeIdxW*3 + 2]; 

  } 

 } 

} 

 

 

int findColorModeIdxNorth(int i, int j, int height, int width, int *colorModes) 

{ 

 int temp = i; 

 

 //Stop moving up once we hit the top row or a different color mode 

 while(temp>0 && colorModes[width*i+j]==colorModes[width*temp+j]) 

 { 

  temp--; 

 } 

 

 return width*temp+j; 

} 

 

int findColorModeIdxEast(int i, int j, int height, int width, int *colorModes) 

{ 

 int temp = j; 

 

 //Stop moving up once we hit the rightmost column or a different color mode 

 while(temp<width-1 && colorModes[width*i+j]==colorModes[width*i+temp]) 

 { 

  temp++; 

 } 

 

 return width*i+temp; 

} 

 

int findColorModeIdxSouth(int i, int j, int height, int width, int *colorModes) 

{ 

 int temp = i; 

 

 //Stop moving up once we hit the top row or a different color mode 

 while(temp<height-1 && colorModes[width*i+j]==colorModes[width*temp+j]) 

 { 

  temp++; 

 } 



 

 return width*temp+j; 

} 

 

int findColorModeIdxWest(int i, int j, int height, int width, int *colorModes) 

{ 

 int temp = j; 

 

 //Stop moving up once we hit the rightmost column or a different color mode 

 while(temp>0 && colorModes[width*i+j]==colorModes[width*i+temp]) 

 { 

  temp--; 

 } 

 

 return width*i+temp; 

} 


