
2D TO 3D VIDEO CONVERSION WITH STATIC
SCENE AND HORIZONTAL CAMERA MOTION

A Design Project Report

Presented to the Engineering Division of Graduate School

Of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering(Electrical)

By

Ling-Wei Lee

Project Advisor: Tsuhan Chen

Degree Date: May, 2011

Abstract

Master of Electrical Engineering Program

Cornell University

Design Project Report

Project Title: 2D to 3D Video Conversion with Static Scene and

Horizontal Camera Motion

Author: Ling-Wei Lee

Abstract:

Four automate methods to convert two-dimensional (2D) video to three-dimensional (3D)

for video with only static scene and horizontal camera motion have been proposed in this

project. Our approaches try to generate the paired view for each frame in the video using

the pixels in the other frames. In two of the methods, we use structure from motion to

calculate the camera centers for all the frames and where their paired view suppose to be,

and synthesize those frames by interpolation using the two real frames next to them. We

also compare these methods with the other two naïve approaches that choosing the

constant N frame after each frame to be its pair or picking the real frame that is closet to

the virtual pair to be the paired view. The methods that synthesize the paired view by

interpolation output promising result under our assumption of static scene and horizontal

camera motion.

Report Approved by
Project Advisor:____________________________Date: _______

I. INTRODUCTION

	

A.	
 Summary	
 	

In recent years, consumer and film making industry have started to put more attention on

3D films and more 3D videos have been made using stereo cameras. However, most

videos are still filmed in 2D, and making those 2D videos into 3D in the post processing

stage often require retrieving the depth manually, which is costly and inefficient.

Although stereovision and depth perception retrieving for images have been studied in

the field of computer vision for a long time, there is still no standard method to automate

2D to 3D conversion process. In this project, we try to research on automate method to

convert 2D films into 3D for videos with static scene and horizontal camera motion as an

initial approach to the problem. We have explored four methods to solve the problem

using classic computer vision technique such as structure from motion, optical flow, and

block matching algorithm for motion estimation and depth retrieving. The basic idea

behind all the methods in this project is to use the information in the other frames of the

video to synthesize the paired view for each frame in the video so that in the output, each

frame will contain two views constructed by the original and its synthesized pair for left

and right eyes. We started this project by implementing the first method; in this method,

we synthesize the paired view for each frame by copying the frame, which is a constant N

after the target frame. One can image synthesizing the paired in this way should introduce

lots of error in the output when the camera does not move in constant speed. However,

this method is a base line to compare with the other methods in this project. In the

second, we try to improve the first one by choosing the paired view based on location

instead of time (constant Nth frame after). To do so, we use Bundler, a structure from

motion algorithm, to estimate the camera parameters for each frame in the video, and

therefore, we can calculate where the paired view for each frame supposed to be. With

the location calculated, we will pick the frame in the video that is closest to the paired

view to be the synthesized view. In the third method, we try to synthesize the paired view

by interpolating the two frames that is closest to the calculated paired view location at the

location of the paired view. We calculate the motion vector, by fixed sized block

matching algorithm, between the two frames, and then weight the motion vector

according to the relative distance between the paired view location and the real frames,

and finally, warp one of the real frames using the motion vector. In the fourth method,

instead of interpolating the paired view using motion vector, we compute the optical flow

between the two frames. Although the scope of this project is restricted to only videos

with static scene and horizontal camera motion, we believe that this project can be the

first step for future researches on 2D to 3D video conversion methods.

B. Design problem and issues

The motivation of this project is to explore ways to convert 2D video of any kind to 3D

since most of the videos are still filmed in 2D and 3D videos are more interesting to

watch. One can imagine that this is not a trivial task, since we miss the information for

the third dimension in 2D video. Theoretically, such algorithm should perform perfect

conversion if it some how retrieves the depth information for each frame in the video.

Although this kind of problem has been research in the field of computer vision for a long

time, there is still no standard way to solve the problem for every kind of camera motion

and scene, which is often complicated in the movies. However, the problem can be

further divided in to different sub-problems, since different kinds of scene have different

difficulty to solve the problem. Scenes with moving objects are hard to solve, since it is

hard to predict the motion of the object in relative to the camera. On the other hand, static

scene seems to be approachable, since we can estimate the depth by the camera motion.

Complicate camera motion also makes the difficulty higher because, we might not have

enough information from the video to retrieve depth or synthesize views. Therefore, with

the time constrain of this project, the scope of this project is only going to be the video

with static scene and horizontal camera motion. The main issues under these assumptions

become that how to synthesize the paired view for each frame in the video so that the

viewer has the depth perception and does not feel discontinuity while watching the video.

The requirements of the system are as follows:

• The algorithm should convert the 2D video of static scene and horizontal camera

motion into 3D.

• The viewer should feel that the output is similar to the 3D video filmed by stereo

camera.

• The output 3D video should represent content of the original 2D video without

much distortion.

II. METHOD

Each frame in the 3D videos contains different views for left and right eyes. The two

images are often synthesized together to generate anaglyph, which can be viewed using

polarized 3D glasses so that each eye sees different views. Therefore, in order to generate

the 3D video, the algorithm has to generate two views for each frame in the output. In

this project, we implemented four methods to convert 2D videos of static scene and one

dimensional camera motion to 3D. The general idea behind all the methods is that for

each frame in the video, each method tries to create its stereo-pair frame, called virtual

frame in this project, using data in other frames, where the original frame and the created

frame are used to mimic the output of stereo camera. The difference between the methods

implemented in this project is the way to synthesize virtual frames. Below are the

outlines of each method:

A. Pick N frame after the original

In this method, virtual frames are generated by picking the Nth frame after each frame,

where N is a parameter depends on the video input. For example, if we denote the frames

in the image by 1, 2…n, and choose N to be 3, in the output video, frame 1 will have two

views: the original frame 1 and frame 4. Frame 2 will be constructed by the original

frame 2 and frame 5, and so on. After having the two views, we make the anaglyph using

the two views as shown in figure 1. One can anticipant that this method will work well if

the camera moves only in one direction and in constant speed, since the real distance

between consecutive frames varies depends on the speed of camera motion This simple

approach is considered the base line to compare with other methods.

B. Pick the frame that is the closet to the virtual frame location

Since the method that picks constant N frame after each frame has poor performance with

camera moving in non-constant speed, we will improve the result by picking the frame

based on the location of the virtual frames instead of time (constant N frames after).

Structure from motion algorithm is applied here to estimate camera translation and

rotation in order to calculate camera center location for each frame. The implementation

uses Bundler to run structure from motion, which outputs rotation matrix and translation

vector for each frame. [1] Given this information we can calculate the location of camera

center for each frame by

−!! ∙ !

where R is the 3 by 3 matrix represents the rotation of the camera and t is a 3 by 1

translation vector. Both R and t are estimated by Bundler.

After we know the camera center for each real frame, we can also calculate the camera

center of its pair (virtual frame) with a parameter, which indicates the distance between

Figure 1, frames in 3D videos contains two
views for each eye

Right view Left view

Anaglyph

each real frame and its pair. The camera center of the virtual frame for each real frame

can be calculated by:

−!! ∙ (! − !)

where R and t are the same as above, and d is a 3 by 1 vector represents the relative

distance in each axis between the two views. Since we only deal with one-dimensional

movement here, d has only one non-zero entry; d is also the same for every frame.

Given the camera center of each frame and virtual frame, in this method, we synthesize

the virtual frames simply by picking the real frame that is closest to the virtual frame. For

each frame, we compute its distance to every other frame, and then search for the frame

that has the minimum distance to the location of the paired view. Therefore, the two

views for each frame in the output are the original frame, and the frame that has the

shortest distance to the calculated location of the paired view.

C. Synthesize virtual frames with motion vector

Always using other real frames to as the virtual frames will return poor result if the

camera is moving fast in relative to the sampling rate of the video because the actual

location of the virtual is often in between the real frames. Therefore, it is reasonable to

synthesize the virtual frame by interpolation using the two real frames that are in the two

sides of the virtual frame. Here we will also use structure from motion to calculate the

camera centers for each frame and its corresponding virtual frame. Given the locations of

the virtual frame and the two real frames next to it, we interpolate the virtual frame by

first, finding the motion vector between the two real frames with fix-sized block

matching algorithm, and second, weight the motion vector according the relative location

between the virtual frame and the real frames next to it, and finally, warp one of the real

frame using the weighted motion vector.

The fixed-sized block matching algorithm is a method that compares the motions in two

images and is easy to implement. Each image frame is divided into a fixed number of

square blocks. For each block in the frame, a search is made in the reference frame over

an area of the image, where the maximum search area is determined by a parameter. The

search is to find the best matching block that gives the least error. In this project, we

define the error to be the mean absolute difference which is much less computational

expensive than other error scheme. The output of the fixed –sized block matching is often

noisy and contains the blocky feature of the size of the input block size. Therefore, we

also use median filter on the block map to reduce the noise, and then use Gaussian filter

on the whole image to reduce the blockyness.

	

x
real frame 1 real frame 2 Calculated

virtual frame
location

real frame 1 real frame 2 Calculated
virtual frame
location

x

warp frame 2

Synthesized
frame

1.

2.

figure	
 2,	
 synthesize	
 the	
 virtual	
 frame	
 by	
 interpolation	
 	

Figure	
 3,	
 	
 left:	
 motion	
 vector	
 map,	
 right:	
 image	
 synthesized	
 using	

motion	
 vector	
 map	

D. Synthesize virtual frames with optical flow

This method is similar to the one above, the only difference is that, here, we use optical

flow instead of motion vector to estimate the motion between two real frames when

synthesizing the virtual frame by interpolation. We adopt the implementation of optical

flow from. [2]

E. Stereo pair alignment

Although we assume only one-dimensional camera motion in this project, the input video

often contain some motion in the vertical direction. One easy fix to make the result looks

better is to align the pair (real frame and the synthesized virtual frame) by using SIFT

feature points to determine the correspondence between the pairs, and then translate one

frame so that the two frames are at the same height.

Figure	
 4,	
 	
 left:	
 optical	
 flow	
 map,	
 right:	
 image	
 synthesized	
 using	

optical	
 flow	

Figure	
 5,	
 	
 left:	
 output	
 3D	
 image	
 before	
 stereo	
 pair	
 alignment,	
 right:	

after	
 alignment	

III. RESULTS

In this section, we will examine the result for each method under different conditions:

A. Pick N frame after the original

This method performs well with videos that have high sampling rate and move in

constant speed as expected (see figure ()). This is because that in those videos the two

views of each frame are apart by a constant in time (frame number), and under the

condition of high sampling rate and constant speed, the two views are also apart by a

constant in distance. Therefore the frame it choses represents the virtual frame well. On

the other hand, if the camera does not move in constant speed, the distance between the

views of two eyes will not be the same for different frames in the output as show in figure

(). The outcome of this effect is that, the viewer will have distorted depth perception

when viewing the 3D video, and if the error is too high, the viewer would feel that the

video does not move smoothly.

Figure	
 6,	
 	
 four	
 consecutive	
 frames	
 in	
 the	
 output	
 of	
 method	
 A	
 using	

high	
 sampling	
 rate	
 data	
 set.	
 Notice	
 that	
 the	
 distance	
 between	
 the	

two	
 views	
 are	
 the	
 same	
 for	
 each	
 frame.	

B. Pick the frame that is the closet to the virtual frame location

This method performs well when the sampling rate is high, and even when the camera

does not move in constant speed. However, when the sampling rate is low, it has the

same problem as above, since the location of virtual frame is too far from the closest real

frame.

C. Synthesize virtual frames with motion vector

In this method, distances between the two views in each frame in the output are

approximately the same because of interpolation. This means the viewers feel that the

camera motion is as smooth as the original 2D video. However, the motion vector map

Figure	
 7,	
 	
 four	
 consecutive	
 frames	
 in	
 the	
 output	
 of	
 method	
 A	
 using	

lower	
 sampling	
 rate	
 data	
 set.	
 Notice	
 that	
 the	
 distance	
 between	
 the	

two	
 views	
 changes	
 a	
 lot	
 for	
 different	
 frames	
 frame.	

calculated by block matching algorithm is often noisy as shown in figure (). Therefore,

the viewer will sense some distortion of the structures in the scene in the output video.

D. Synthesize virtual frames with optical flow

This method has the best performance among all the methods implemented in this

project. The distance between the two views are approximately the same for each frame

and the motion map estimated by optical flow is not as noisy as the block matching

algorithm output. If our assumption in this project is preserved, this method outputs

promising results.

IV. CONCLUSION

In this project, we have implemented four methods to convert 2D videos to 3D for videos

with only static scene and horizontal camera motion. The output in the first two

approaches often has errors so that the viewer feels as if the video motion is not smooth.

This is because in the output of first two methods, the distance between two views very

too much. With interpolation using either motion vectors or optical flow this kind of error

is minimized; however, the motion vector map calculated by block matching algorithm

often contains lots of noise and unwanted blackness, so the views will see many artifacts

in the output of the third method. The fourth method which use optical flow to interpolate

the synthesized view outputs promising result if the input video is under the assumption

of static scene and horizontal camera motion. Although the scope of this project is

restricted to only videos with static scene and horizontal camera motion, we believe that

this project can be the first step for future researches on 2D to 3D video conversion

methods.

V. ACKNOWLEDGMENTS

We are grateful for advice and support from Professor Tsuhan Chen, Dr. Yao-Jen Chang,

and Adarsh Kowdle at Advanced Multimedia Processing Laboratory, Cornell University.

VI. REFERENCES

[1] Noah Snavely, Steven M. Seitz, Richard Szeliski. “Modeling the World from Internet
Photo Collections”. International Journal of Computer Vision, 2007.

[2] C. Liu. “Beyond Pixels: Exploring New Representations and Applications for Motion
Analysis”. Doctoral Thesis. Massachusetts Institute of Technology. May 2009.

[3] Guofeng Zhang, Jiaya Jia, Tien-Tsin Wong and Hujun Bao. “Consistent
Depth Maps Recovery from a Video Sequence.” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 31(6):974-988, 2009.

VII. APPENDIX

to3d_constant.m
%%%
%%%%
%
% 2d to 3d conversion using constant method
%
% change following field for input
%
% im_dir - the directory of image set%
% out_dir - directory to save the output images and data
% constant - the constant N after
% number - number of frames
%
%
% Ling-Wei Lee
% 05-19-2011
%%%
%%%%

im_dir = '/Users/ling-weilee/workspace/mexOpticalFlow/road';
out_dir = '/Users/ling-weilee/workspace/mexOpticalFlow/out2_of';
constant = 3 ;
number=141;

im_list = dir([im_dir '/*.jpg']);
n=number-constant;

for i =1:n
 tempstr1 = sprintf('%s/%s%04d.jpg', im_dir, im_list(n).name(1:end-
8),i-1);
 tempstr2 = sprintf('%s/%s%04d.jpg', im_dir, im_list(n).name(1:end-
8),i+constant-1);
 tempstr3 = sprintf('%s/out_%04d.jpg', out_dir, i-1);
 anaglyph(tempstr1,tempstr2,tempstr3)
end

to3d_mindist.m

%%%
%%%%
%
% 2d to 3d conversion using closest distance method
%
% change following field for input
%
% im_dir - the directory of image set%
% out_dir - directory to save the output images and data
% datafile - outout of bundler (bundle.out)%
% number - number of frames
%
%
% Ling-Wei Lee
% 05-19-2011
%%%
%%%%

im_dir = '/Users/ling-weilee/workspace/mexOpticalFlow/road';
out_dir = '/Users/ling-weilee/workspace/mexOpticalFlow/out2_of';
datafile = '/Users/ling-weilee/workspace/mexOpticalFlow/cameras.txt';
number=141;

fbundle = fopen(datafile);
im_list = dir([im_dir '/*.jpg']);
data = {};
b_temp = textscan(fbundle, '%f %f %f',5, 'headerLines', 2);

camcenter = zeros(number,3);
vcamcenter = zeros(number,3);

for n=1:number

 data{n,1} = i;
 %tmpstr=sprintf('%s/%s', im_dir, im_list(n).name);
 %img = imread(tmpstr);
 %h = size(img,1); w = size(img,2);
 data{n,2} = [b_temp{1}(2:end-1) b_temp{2}(2:end-1) b_temp{3}(2:end-
1)]; %rotation
 data{n,3} = [b_temp{1}(end); b_temp{2}(end); b_temp{3}(end)];
%translation
 data{n,4} = [-b_temp{1}(1),0,0.5*w;0,b_temp{1}(1),0.5*h;0,0,1];%K
matrix
 data{n,5} = -data{n,2}'*data{n,3}; %camera center
 data{n,6} = data{n,2}'*([relative_dist; 0; 0] - data{n,3}); %camera
center of pair
 data{n,8} = sqrt(sum((data{n,6}-data{n,5}).^2)); %dist btw pair

 b_temp = textscan(fbundle, '%f %f %f',5);

 camcenter(n,:) = data{n,5}';
 vcamcenter(n,:) = data{n,6}';

end

n=n-5;

for i=1:n
 mdis = sqrt(sum((data{i,6}-data{i,5}).^2));
 pairid = i;

 for j = 1:number
 m = sqrt(sum((data{i,6}-data{j,5}).^2));
 if m<mdis
 mdis = m;
 pairid = j;
 end

 end

 data{i,7} = pairid;
end

for i =1:n
 tempstr1 = sprintf('%s/%s', im_dir, im_list(i).name);
 tempstr2 = sprintf('%s/%s', im_dir, im_list(data{i,7}).name);
 tempstr3 = sprintf('%s/out_%s.jpg', out_dir, im_list(i).name(end-
7:end-4));
 anaglyph(tempstr1,tempstr2,tempstr3)
end

to3d_bma.m
%%%
%%%%
%
% 2d to 3d conversion using block matching
%
% change following field for input
% im_dir - the directory of image set
% pair_dir - the directory to save the synthesized image pairs
% out_dir - directory to save the output images and data
% datafile - outout of bundler (bundle.out)
% relative_dist - the baseline of the distance between pairs
% number - number of frames
%
%
% Ling-Wei Lee
% 05-19-2011
%%%
%%%%

im_dir = '/Users/ling-weilee/workspace/mexOpticalFlow/road';
pair_dir = '/Users/ling-weilee/workspace/mexOpticalFlow/pair2_of';
out_dir = '/Users/ling-weilee/workspace/mexOpticalFlow/out2_of';
datafile = '/Users/ling-weilee/workspace/mexOpticalFlow/cameras.txt';
relative_dist = 3 ;
number=141;

fbundle = fopen(datafile);
im_list = dir([im_dir '/*.jpg']);
data = {};
b_temp = textscan(fbundle, '%f %f %f',5, 'headerLines', 2);

camcenter = zeros(number,3);
vcamcenter = zeros(number,3);

for n=1:number

 data{n,1} = i;
 %tmpstr=sprintf('%s/%s', im_dir, im_list(n).name);
 %img = imread(tmpstr);
 %h = size(img,1); w = size(img,2);
 data{n,2} = [b_temp{1}(2:end-1) b_temp{2}(2:end-1) b_temp{3}(2:end-
1)]; %rotation

 data{n,3} = [b_temp{1}(end); b_temp{2}(end); b_temp{3}(end)];
%translation
 data{n,4} = [-b_temp{1}(1),0,0.5*w;0,b_temp{1}(1),0.5*h;0,0,1];%K
matrix
 data{n,5} = -data{n,2}'*data{n,3}; %camera center
 data{n,6} = data{n,2}'*([relative_dist; 0; 0] - data{n,3}); %camera
center of pair
 data{n,8} = sqrt(sum((data{n,6}-data{n,5}).^2)); %dist btw pair

 b_temp = textscan(fbundle, '%f %f %f',5);

 camcenter(n,:) = data{n,5}';
 vcamcenter(n,:) = data{n,6}';

end

n=n-5;

for i=1:n
 mdis = sqrt((data{i,6}(1)-data{i,5}(1)).^2);
 weight = 0.5;
 pairid = [i i+1 weight];

 for j = 1:number
 m = sqrt(((data{i,6}(1)-data{j,5}(1)).^2));
 if m<mdis
 mdis = m;

 if sqrt(((data{i,6}(1)-data{j+1,5}(1)).^2))
>sqrt(((data{j,5}(1)-data{j+1,5}(1)).^2))

 weight = sqrt(((data{i,6}(1)-data{j,5}(1)).^2)) /
sqrt(((data{j,5}(1)-data{j-1,5}(1)).^2));

 pairid = [j-1 j weight];

 else

 weight = sqrt(((data{i,6}(1)-data{j+1,5}(1)).^2)) /
sqrt(((data{j,5}(1)-data{j+1,5}(1)).^2));

 pairid = [j j+1 weight];

 end
 end

 end

 data{i,7} = pairid;

 intercamcenter(i,:) = [data{pairid(2),5}(1)-(data{pairid(2),5}(1)-
data{pairid(1),5}(1))*weight,
 data{pairid(2),5}(2)-(data{pairid(2),5}(2)-
data{pairid(1),5}(2))*weight,
 data{pairid(2),5}(3)-(data{pairid(2),5}(3)-
data{pairid(1),5}(3))*weight];
end

fig=figure(1);
set(gca,'position',[0 0 1 1],'units','normalized')
hold on
scatter3(camcenter(:,1),camcenter(:,2),camcenter(:,3),8,'blue','filled'
);
scatter3(vcamcenter(:,1),vcamcenter(:,2),vcamcenter(:,3),8,'green','fil
led');
scatter3(intercamcenter(:,1),intercamcenter(:,2),intercamcenter(:,3),8,
'red','filled');

for i=1:size(camcenter,1)
 text(camcenter(i,1),camcenter(i,2),camcenter(i,3),['\color{blue}'
int2str(i)])

text(vcamcenter(i,1),vcamcenter(i,2),vcamcenter(i,3),['\color{green}'
int2str(i)])

end

for i=1:size(intercamcenter,1)

text(intercamcenter(i,1),intercamcenter(i,2),intercamcenter(i,3),['\col
or{red}' int2str(i)])

end

hold off
grid on
axis equal
xlabel('x')
ylabel('y')
zlabel('z')
tmpstr=sprintf('%s/location.m', out_dir);
saveas(fig,tmpstr)

for i=1:n
 i
 r=data{i,7}(1);
 l=data{i,7}(2);

 im_list(i).name
 im_list(r).name
 im_list(l).name

 tmpstr1=sprintf('%s/%s', im_dir, im_list(r).name);
 tmpstr2=sprintf('%s/%s', im_dir, im_list(l).name);
 im1= imread(tmpstr1);
 im2= imread(tmpstr2);
 [d, vy, vx, v, h] = bma(im1, im2, 16, 32);

 tmpstr6=sprintf('%s/mv_%s.mat',out_dir, im_list(i).name(end-7:end-
4));
 save(tmpstr6,'vx','vy','r','l');

 tmpstr7=sprintf('%s/flowmap_%s.jpg', out_dir, im_list(i).name(end-
7:end-4));
 flow(:,:,1) = vx;
 flow(:,:,2) = vy;
 imflow = flowToColor(flow);
 imwrite(imflow,tmpstr7);

 pairim=warpFLColor(im1,im2,vx.*data{i,7}(3),vy.*data{i,7}(3));

 tmpstr3=sprintf('%s/pair_%s.jpg', pair_dir, im_list(i).name(end-
7:end-4));
 imwrite(pairim, tmpstr3);

 tmpstr4=sprintf('%s/%s', im_dir, im_list(i).name);
 tmpstr5=sprintf('%s/out_%s.jpg', out_dir, im_list(i).name(end-7:end-
4));
 anaglyph(tmpstr4,tmpstr3,tmpstr5)
end

to3d_of.m

%%%
%%%%
%
% 2d to 3d conversion using optical flow
%
% change following field for input
% im_dir - the directory of image set
% pair_dir - the directory to save the synthesized image pairs
% out_dir - directory to save the output images and data
% datafile - outout of bundler (bundle.out)
% relative_dist - the baseline of the distance between pairs
% number - number of frames
%
%
% Ling-Wei Lee
% 05-19-2011
%%%
%%%%

im_dir = '/Users/ling-weilee/workspace/mexOpticalFlow/road';
pair_dir = '/Users/ling-weilee/workspace/mexOpticalFlow/pair2_of';
out_dir = '/Users/ling-weilee/workspace/mexOpticalFlow/out2_of';
datafile = '/Users/ling-weilee/workspace/mexOpticalFlow/cameras.txt';
relative_dist = 3 ;
number=141;

fbundle = fopen(datafile);
im_list = dir([im_dir '/*.jpg']);
data = {};
b_temp = textscan(fbundle, '%f %f %f',5, 'headerLines', 2);

camcenter = zeros(number,3);
vcamcenter = zeros(number,3);

for n=1:number

 data{n,1} = i;
 %tmpstr=sprintf('%s/%s', im_dir, im_list(n).name);
 %img = imread(tmpstr);
 %h = size(img,1); w = size(img,2);
 data{n,2} = [b_temp{1}(2:end-1) b_temp{2}(2:end-1) b_temp{3}(2:end-
1)]; %rotation
 data{n,3} = [b_temp{1}(end); b_temp{2}(end); b_temp{3}(end)];
%translation
 data{n,4} = [-b_temp{1}(1),0,0.5*w;0,b_temp{1}(1),0.5*h;0,0,1];%K
matrix
 data{n,5} = -data{n,2}'*data{n,3}; %camera center

 data{n,6} = data{n,2}'*([relative_dist; 0; 0] - data{n,3}); %camera
center of pair
 data{n,8} = sqrt(sum((data{n,6}-data{n,5}).^2)); %dist btw pair

 b_temp = textscan(fbundle, '%f %f %f',5);

 camcenter(n,:) = data{n,5}';
 vcamcenter(n,:) = data{n,6}';

end

n=n-5;

for i=1:n
 mdis = sqrt((data{i,6}(1)-data{i,5}(1)).^2);
 weight = 0.5;
 pairid = [i i+1 weight];

 for j = 1:number
 m = sqrt(((data{i,6}(1)-data{j,5}(1)).^2));
 if m<mdis
 mdis = m;

 if sqrt(((data{i,6}(1)-data{j+1,5}(1)).^2))
>sqrt(((data{j,5}(1)-data{j+1,5}(1)).^2))

 weight = sqrt(((data{i,6}(1)-data{j,5}(1)).^2)) /
sqrt(((data{j,5}(1)-data{j-1,5}(1)).^2));

 pairid = [j-1 j weight];

 else

 weight = sqrt(((data{i,6}(1)-data{j+1,5}(1)).^2)) /
sqrt(((data{j,5}(1)-data{j+1,5}(1)).^2));

 pairid = [j j+1 weight];

 end
 end

 end

 data{i,7} = pairid;

 intercamcenter(i,:) = [data{pairid(2),5}(1)-(data{pairid(2),5}(1)-
data{pairid(1),5}(1))*weight,

 data{pairid(2),5}(2)-(data{pairid(2),5}(2)-
data{pairid(1),5}(2))*weight,
 data{pairid(2),5}(3)-(data{pairid(2),5}(3)-
data{pairid(1),5}(3))*weight];
end

fig=figure(1);
set(gca,'position',[0 0 1 1],'units','normalized')
hold on
scatter3(camcenter(:,1),camcenter(:,2),camcenter(:,3),8,'blue','filled'
);
scatter3(vcamcenter(:,1),vcamcenter(:,2),vcamcenter(:,3),8,'green','fil
led');
scatter3(intercamcenter(:,1),intercamcenter(:,2),intercamcenter(:,3),8,
'red','filled');

for i=1:size(camcenter,1)
 text(camcenter(i,1),camcenter(i,2),camcenter(i,3),['\color{blue}'
int2str(i)])

text(vcamcenter(i,1),vcamcenter(i,2),vcamcenter(i,3),['\color{green}'
int2str(i)])

end

for i=1:size(intercamcenter,1)

text(intercamcenter(i,1),intercamcenter(i,2),intercamcenter(i,3),['\col
or{red}' int2str(i)])

end

hold off
grid on
axis equal
xlabel('x')
ylabel('y')
zlabel('z')
tmpstr=sprintf('%s/location.m', out_dir);
saveas(fig,tmpstr)

for i=1:n
 i
 r=data{i,7}(1);
 l=data{i,7}(2);

 im_list(i).name
 im_list(r).name
 im_list(l).name

 tmpstr1=sprintf('%s/%s', im_dir, im_list(r).name);
 tmpstr2=sprintf('%s/%s', im_dir, im_list(l).name);
 im1= imread(tmpstr1);
 im2= imread(tmpstr2);
 [vx, vy, warpI2]=Coarse2FineTwoFrames(im1,im2);

 tmpstr6=sprintf('%s/flow_%s.mat',out_dir, im_list(i).name(end-7:end-
4));
 save(tmpstr6,'vx','vy','r','l');

 tmpstr7=sprintf('%s/flowmap_%s.jpg', out_dir, im_list(i).name(end-
7:end-4));
 flow(:,:,1) = vx;
 flow(:,:,2) = vy;
 imflow = flowToColor(flow);
 imwrite(imflow,tmpstr7);

 pairim=warpFLColor(im1,im2,vx.*data{i,7}(3),vy.*data{i,7}(3));

 tmpstr3=sprintf('%s/pair_%s.jpg', pair_dir, im_list(i).name(end-
7:end-4));
 imwrite(pairim, tmpstr3);

 tmpstr4=sprintf('%s/%s', im_dir, im_list(i).name);
 tmpstr5=sprintf('%s/out_%s.jpg', out_dir, im_list(i).name(end-7:end-
4));
 anaglyph(tmpstr4,tmpstr3,tmpstr5)
end

bma.m

function [d, vvector, hvector, v, h] = bma(frame, frame_s, blocksize,
displacement)

m= size(frame,1);
n= size(frame,2);

a = floor(m/blocksize);
b = floor(n/blocksize);

v=zeros(a,b);
h=zeros(a,b);

hvector = zeros(m,n);
vvector = zeros(m,n);
d = zeros(m,n);

for i = 1:a
 for j = 1:b

 ind = [(i-1)*blocksize+1 (j-1)*blocksize+1];

 m1 = frame(ind(1):ind(1)+blocksize-1,ind(2):ind(2)+blocksize-
1,:);
 m2 = frame_s(ind(1):ind(1)+blocksize-1,ind(2):ind(2)+blocksize-
1,:);

 %err = sum(reshape(mean(mean((double(m1) -
double(m2)).^2,2),1),[1,3]));
 err = sum(sum(sum(abs(double(m1)-double(m2)))));
 mind = [ind(1) ind(2)];

 for s = -displacement:1:displacement
 for k = -displacement:1:displacement

 m2 = zeros(blocksize, blocksize);
 up = ind(1)+s;
 down = ind(1)+s+blocksize-1;
 left = ind(2)+k;
 right = ind(2)+k+blocksize-1;

 if (up>1 && down <m && left>1 && right <n)

 m2 = frame_s(up:down,left:right ,:);

 tmp = sum(sum(sum(abs(double(m1)-double(m2)))));
 %tmp = sum(reshape(mean(mean((double(m1) -

double(m2)).^2,2),1),[1,3]));

 if tmp<err
 err = tmp;
 mind = [up left];
 end

 end

 end

 end

 ind = [(i-1)*blocksize+1 (j-1)*blocksize+1];

 v(i,j) = mind(1)-ind(1);

 h(i,j) = mind(2)-ind(2);

 end
end

 v=medfilt2(v);
 h=medfilt2(h);

for i = 1:a
 for j = 1:b

 ind = [(i-1)*blocksize+1 (j-1)*blocksize+1];

 vvector(ind(1):ind(1)+blocksize-1,ind(2):ind(2)+blocksize-1)
=...
 v(i,j);

 hvector(ind(1):ind(1)+blocksize-1,ind(2):ind(2)+blocksize-1)
=...
 h(i,j);

 end
end

H=fspecial('gaussian',blocksize,blocksize/2);
vvector=imfilter(vvector,H,'replicate');
hvector=imfilter(hvector,H,'replicate');

d = (vvector.^2+hvector.^2).^1/2;

