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Abstract —Scene understanding includes many related sub-tasks, such as scene categorization, depth estimation, object
detection, etc. Each of these sub-tasks is often notoriously hard, and state-of-the-art classifiers already exist for many of them.
These classifiers operate on the same raw image and provide correlated outputs. It is desirable to have an algorithm that can
capture such correlation without requiring any changes to the inner workings of any classifier.

We propose Feedback Enabled Cascaded Classification Models (FE-CCM), that jointly optimizes all the sub-tasks, while requiring
only a ‘black-box’ interface to the original classifier for each sub-task. We use a two-layer cascade of classifiers, which are
repeated instantiations of the original ones, with the output of the first layer fed into the second layer as input. Our training method
involves a feedback step that allows later classifiers to provide earlier classifiers information about which error modes to focus on.
We show that our method significantly improves performance in all the sub-tasks in the domain of scene understanding, where
we consider depth estimation, scene categorization, event categorization, object detection, geometric labeling and saliency
detection. Our method also improves performance in two robotic applications: an object-grasping robot and an object-finding
robot.

Index Terms —Scene understanding, Classification, Machine learning, Robotics.
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1 INTRODUCTION Even beyond vision, in many other domains, state-of-the-ar
. classifiers already exist for many sub-tasks. Howevergthes

ONE of the primary goals in computer vision is hOIIStICcarefully engineered models are often tricky to modify, or

scene understgndmg, which involves many SUb'ta.Sig/en to simply re-implement from the available descrip-
such as dep_th est|mat!on, scene categquza}uon, salie S. Heitz et. al. [11] recently developed a framework for
dgtectlon, object detection, event categorization, See( cene understanding called Cascaded Classification Models
F|gu_re 1.) Each of th_ese tasks explains some aspect ?_Z M) treating each classifier as a ‘black-box’. Each
particular scene and in order to fully understand a sce sifier is repeatedly instantiated with the next layéngis

S
we would need to solve for each of these sub-task;._ Sev F% outputs of the previous classifiers as inputs. While this
independent efforts have resulted in good classifiers fWor

h of th b-tasks. | i that th k proposed a method of combining the classifiers in a
each of these sub-tasks. In practice, we see that the S\W&S/ that increased the performance in all of the four tasks
tasks are coupled—for example, if we know that the sce

) ind i d hel timate depth f 'ﬂ?ey considered, it had a drawback that it optimized for
Iti a;n_m IO(_)r scene, T wou tel P IUS estlhma N epl _r(; ch task independently and there was no way of feeding
at singie image more accurately. In another exampie I e q intormation from later classifiers to earlier classifie

robotic grr?\sping domain, if we knov_v what kind of Ob.jecﬁuring training. This feedback can potentially help the
we are trying to grasp, then it is easier for a robot to figur CM achieve a more optimal solution

out how to pick it up. In this paper, we propose a unifie
model that jointly optimizes for all the sub-tasks, allogin !N our work, we propose Feedback Enabled Cascaded

them to share information and guide the classifiers towarfé@ssification Models RE-CCM), which provides feed-

a joint optimal. We show that this can be seamlessly appli@dck from the later classifiers to the earlier ones, during
across different applications. the training phase. This feedback, provides earlier stages

R " | hes h rried t bine th information about what error modes should be focused on,
_~ecently, several approaches have tried 1o combing e, nar can pe ignored without hurting the performance
different classifiers for related tasks in vision [1-10];

. f the later classifiers. For example, misclassifying aestre

however, mpst of them tend to be_ a_d—hoc (ie., a har cene as highway may not hurt as much as misclassifying a
°°d?‘d rule is _used) and _oftgr_1 an intimate knowledge freet scene as open country. Therefore we prefer the first
the inner workings of the individual classifiers is require ayer classifier to focus on fixing the latter error instead

c Ui Adareh Kowdle and Tsuhan ch i the Sai of optimizing the training accuracy. In another example,
’ EI(()arc]:?r?ge?lganlc’j Coar;SputeorV\IIEnZirili(re]erin?;,J ggrnellegr?i:/i\rglitm;;cz, NY(,)o a”O,ng the depth estimation to focus on Some S-peCIfIC

14853. E-mail:{cl758, apk6d@cornell.edu, tsuhan@ece.cornell.edu r'egions can help perform better scene categorization. For
e Ashutosh Saxena is with the Department of Computer Sci@weell  instance, the open country scene is characterized by its
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m ERS4 5 In the past, the focus has been to address each task in
B — isolation, where the goal of each task is to produce a label
Y; € S; for the i!” sub-task. If we are considering depth

- e Scene and Event — ) ) )
[Festimage ] | Categorization | [ Deptn estimation | estimation (see Figure 1), then the label wouldYee

m - S1 = R1%°*1% for continuous values of depth in10 x

100 output. For scene categorization, we will have €
IObject detectionl I Geometric layout I I Saliency detectionl

S. ={1,...,K} for K scene classes. If we havesub-
Fig. 1. Given a test image, Holistic Scene Understanding corre-

tasks, then we would have to produce an output as:
y:{Yi,...,Yn}Esl X So...X Sph.

sponds to inferring the labels for all possible scene understanding The interesting part here is that often we want to solve
dimensions. In our work, we infer labels corresponding to, scene  (ifferent combinations of the sub-tasks depending on the
categorization, event categorization, depth estimation (Black = close, . . . . . .
white = far), object detection, geometric layout (green = vertical, red situation. The goal of this work _'S to deS|gn an _algorlthr_n
= horizontal, blue = vertical) and saliency detection (cyan = salienty ~ that does not depend on the particular sub-tasks in question
as shown above and achieve this jointly using one unified model.
Note that different tasks help each other, for example, the depth
estimate of the scene can help the object detector look for the horse; 2.2 Related Work . . .
the object detection can help perform better saliency detection, etc. ~ Cascaded classifiersUsing information from related tasks

depth well in that region by sacrificing some regions in thE0 Improve the performance of the task in question has

. . Been studied in various fields of machine learning. The idea
bottom may help to correctly classify an image. In detai 9

d by iointl timizi Il the tasks: th tout f cascading layers of classifiers to aid a task was first
We do so by jointly optimizing afl the 1asks, IN€ Outputs O, y,ced with neural networks as multi-level percepsron
the first layers are treated as latent variables and train

ing . .
) ’ . . . . ere, the output of the first layer of perceptrons is passed
is done using an iterative algorithm. Another benefit of o P Y P b P

method is that each of the classifiers can be trained uslign as input to the next layer [12-14]. However, it is often

. . g . %d to train neural networks and gain an insight into its
their own mdepender_lt training datasets, i.e., our mOded;Oloosperation, making it hard to work for complicated tasks.
not require a datapoint to have labels for all the sub-tasks,

and hence it scales well witheterogeneoudatasets. The idea of improving classification performance by
combining outputs of many classifiers is used in methods

Such as Boosting [15], where many weak learners are
combined to obtain a more accurate classifier; this has

(Often each of these individual classifier could be qui%een applied to tasks such as face detection [16, 17]. To

| ducing label ols i t.'ﬁlcorporate contextual information, Fink and Perona [18]
compiex, €.g., producing 1abelings over pIxeis in an en Ir&ploited local dependencies between objects in a boost-
image.) Therefore, our method is applicable to many other

i %g framework, but did not allow for multiple rounds of
tasks that have different but correlated outputs. communication between objects. Torralba et al. [19] intro-

In extensive experiments, we show that our methafliced Boosted Random Fields to model object dependency,
achieves significant improvements in the performance @hich used boosting to learn the graph structure and local
all the six sub-tasks we consider: depth estimation, objeSidence of a conditional random field. Tu [20] proposed a
detection, scene categorization, event categorizatieo; gmore general framework which used pixel-level label maps
metric labeling and saliency detection. We also succdgsfulp |earn a contextual model through a cascaded classifier
apply the same model to two robotics applications: robotigyproach. All these works mainly consider the interactions
grasping, and robotic object detection. between labels of the same type. However, in our CCM

The rest of the paper is organized as follows. We firftamework [21, 22], the focus is on capturing contextual
define holistic scene understanding and discuss the relaiefgéractions between labels of different types. Furtheemo
works in Section 2. We describe our FE-CCM methodompared to the feed-forward only cascade method in
in Section 3 followed by the discussion about handling20], our model with feedback not only iteratively refines
heterogeneous datasets in Section 4. We provide the imglee contextual interactions, but also refines the individua
mentation details of the classifiers in Section 5. We presenassifiers to provide helpful context.

the experiments and results in Section 6 and some robofiensor fusion. There has been a huge body of work in
applications in Section 7. We finally conclude in Section §he area of sensor fusion where classifiers output the same
labels but work with different modalities, each one giving
2 OVERVIEW OF SCENE UNDERSTANDING additional information and thus improving the performance
2.1 Holistic Scene Understanding e.g., in biometrics, data from voice recognition and face
When we look at an image of a scene, such as in Figure'¢cognition is combined [23]. However, in our scenario,
we are often interested in answering several different-quelée consider multiple tasks where each classifier is tackling
tions: What objects are there in the image? How far afedifferent problem (i.e., predicting different labels)ithw
things? What is going on in the scene? What type of scel{i¢ Same input being provided to all the classifiers.
itis? And so on. These are only a few examples of questioSguctured Models for combining tasks. While the meth-
in the area of scene understanding; and there may evendds discussed above combine classifiers to predictaie
more. labels, there is a group of works that designs models

In our approach, we treat each classifier as a ‘black-bo
with no restrictions on its operation other than requiring t



—> Feed-forward

$1(X) W,(X)

== Feed-bac
for predicting heterogenous labels. Kumar and Hebert [ Feadtbeel

developed a large MRF-based probabilistic model to lin
multi-class segmentation and object detection. Li et &] [2
modeled mulitple interactions within tasks and acrosssas | oy >
by defining a MRF over parameters. Similar efforts hav Y
been made in the field of natural language processir g
Sutton and McCallum [6] combined a parsing model wit
a semantic role labeling model into a unified probabilis_. 3 B
tic framework that solved both simultaneously. Ando ang'd: 4: The proposed Feed-back enabled cascaded classifi-
. Ccation model (FE-CCM) for combining related classifiers. (Vi €

Zhang [25] proposed a general framework for learing 2 ... n}, w;(X) = Features corresponding to Classifier; ex-
predictive functional structures from multiple tasks. Allracted from image X, Z; = Output of the Classifier; in the first
these models require knowledge of the inner workings §fi9¢ parameterized by 0;, ¥; = Output of the Classifier; in the
. tp . . . .27 Second stage parameterized by w;). In the proposed FE-CCM model,
the individual classifiers, which makes it hard to fit exigtinihere is feed-back from the latter stages to help achieve a model

state-of-the-art classifiers of certain tasks into the rfseode which optimizes all the tasks considered, jointly. Here Classi fier;'s
. . on the two layers can have different forms though they are for the
Structured learning algorithms (e.qg., [26—-28]) can also Rgme classification task. (Note that different colors of lines are used

a viable option for the setting of combining multiple tasksnly to make the figure more readable.)
There has been recent development in structured learnijg generality of the approaches in introducing new tasks
on handling latent variables (e.g. hidden conditional cand easily or being applied to other domains.

field [29], latent structured SVM [30]), which can be poten- . . .
tially applied to multi-task settings with disjoint datése Deep Learning. There is also a large body of work in the

With considerable understanding into each of the tasks, HEas of deep Iearning, and we refer the reader_ to Bengio
nd LeCun [47] for a nice overview of deep learning archi-

loss function in structured learning provides a nice way 3 . . X
gp y ctures and Caruana [48] for multitask learning with stare

leverage different tasks. However, in this work, we foc . . - !
on developing a more generic algorithm that can be eas[ resentation. While efficient back-propagation methods
Ike [49] have been commonly used in learning a multi-

applied even without intimate knowledge of the tasks. o
layer network, it is not as easy to apply to our case where

There have been many works which show that with @& node is a complex classifier. Most works in deep learn-
well—d¢3|gned model, one can improve the performance mfg (e.g., [50-52]) are different from our work in that, teos
a particular task by using cues from other tasks (€.9., [{yorks focus on one particular task (same labels) by building
9]). Saxena et al. manually designed the terms in an MRfiterent classifier architectures, as compared to ouinggtt
to combine depth estimation with object detection [2] angk gitterent tasks with different labels. Hinton et al. [51]
stereo cues [10]. Sudderth et al. [5] used object recognitigsed ynsupervised learning to obtain an initial configarati
to help 3D structure estimation. of the parameters. This provides a good initialization and
Context. There is a large body of work that leverages corhence their multi-layered architecture does not suffemfro
textual information to help specific tasks. Various soufes local minimas during optimization. At a high-level, we
context have been explored, ranging from the global sceg&n also look at our work as a multi-layered architecture
layout, interactions between objects and regions to logalhere each node typically produces complex outputs, e.g.,
features. To incorporate scene-level information, Thaat labels over the pixels in the image); and initialization in
al. [31, 32] used the statistics of low-level features agrosur case comes from existing state-of-the-art individual
the entire scene to prime object detection or help deptlassifiers. Given this initialization, our training pracee
estimation. Hoiem et al. [33] used 3D scene information finds parameters that (consistently) improve performance
provide priors on potential object locations. Park et ad][3 across all the sub-tasks.
used the ground plane estimation as contextual information
for pedestrian detection. Many works also model context®® Erepgack ENABLED CASCADED CLAS-
capture the local interactions between neighboring regio IFICATION MODELS
[35-37], objects [38—42], or both [43—45]. These methods
improve the performance of some specific tasks by cortit the field of scene understanding, a lot of independent
bining information from different aspects. However, mogd€search into each of the vision sub-tasks has led to excel-

of these methods can not be applied to cases when we olﬁzw_t classifier.s. These independent classifiers are typical

have “black-box” classifiers for the individual tasks. ~trained on different oheterogenousiatasets due to the

Holistic Scene UnderstandingHoiem et. al. [3] proposed lack of ground-truth _'?be's for all t_he sub_-tasks. In amt'

an innovative but ad-hoc system that combined bounﬁgCh of these classifiers come with th§|r own learning and

ary detection and surface labeling by sharing some |O\}\r,1_ference methods. Our goal is to consider each of them as
‘black-box’, which makes it easy to combine them. We

level information between the classifiers. Li et. al. [4, 4 e what bv ‘black-b lassifiers’ bel
combined image classification, annotation and segmen -Scribe what we mean Dy black-Dox classifiers: below.

tion with a hierarchical graphical model. However, thesglack-box Classifier. A black-box classifier, as the name

methods required considerable attention to each classifigliggests, is a classifier for which operations (such as
and considerable insight into the inner workings of eadBarning and inference algorithms) are available for use,
task and also the connections between them. This limigt their inner workings are not known. We assume that,

T



given the training dataseX, features extracted?(X) With the notations in place we will now first describe
and the target outputs of thé" task Y;, the black-box the inference and learning algorithms for the proposed
classifier has some internal learning functigf,,, with model in the following sections, followed by probabilistic
parameter®; that optimizes the mapping from the inputsnterpretation of our method.

to the outputs for the training dath.Once the parameters

have been learnt, given a new data poikitwith features 3.2 Inference Algorithm

U(X) € RX, where K can be changed as desirethe During inference, the input$;(X) are given and our goal
black-box classifier returns the outpht according to its is to infer the final output’;. Using the learned parameters
internal inference functiorfi,. This is illustrated through 6; for the first level of classifiers and; for the second

the equations below. For thé&" task, level of classifiers, we first infer the first-layer outpufs
Learning: 6; = optimize fisam(¥ (X), Yi; 0;) (1) and then infer the second-layer outplits More formally,
0; we perform the following.
Inference: Y; = optiyl;ﬂize finter(¥(X), Y3; 67). ) Z; = optimize finter(Ws(X), Zi; 0;) (3)
This approach of treating each classifier as a black-box al- Y; = optimize fier([¥:(X) Z], Yi; @) (4)
lows us to use different existing classifiers which have been ¥

known to perform well at specific sub-tasks. Furthermor@he inference algorithm is given in Algorithm 1. This

without changing their inner workings, it allows us to commethod allows us to use the internal inference function

pose them into one model which exploits the informatiofEquation 2) of the black-box classifiers without knowing

from each sub-task to aid holistic scene understanding. its inner workings. Note that the complexity here is no
more than constant times the complexity of inference in

3.1 Our Model the original classiers.

Our model _is bgilt in the form_of a two-layer_ CascadeAlgorithm 1 Inference

as shqw_n in Figure 2. The first layer C(_)rj5|sts_of & nference for first layer

instantiation of each of the black-box classifiers with the¢, . _ .,

image features as input. The second layer is a repeated infer the outputs of thet” classifier using Equation 3;

instantiation of each of the classifiers with the first layer end

classifier outputs as well as the image features as inputgnference for second layer:

Note that the repeated classifier on the second layer i Orlrffe:r tlh:enoutputs of theth classifier using Equation 4:

not necessary to have the same mathematical form withkeng

the one on the first layer. Instead, we consider it as™a

repeated instantiation only because they are used for t§1§ Learning Algorithm

same classification task. During the training stage, the inputg,(X) as well as

Notation: We considem related sub-task€lassifier;, : € the target outputsyi, Ys,...,Y, of the second level of
{1,2,...,n} (Figure 2). We describe the notations used inlassifiers, are all observed (because the ground-trugislab
this paper as follows: are available). In our algorithm, we considgr (outputs
T, (X) Features corresponding @assifier; extracted from  of layer 1 and inputs to layer 2) as hidden variables. In
image X. ; i i
2. 2 7, indicates output from the first layeflassificr,. previous work, Heitz et al. [11] assume that each layer is

Many classifiers output continuous scores instead ofindependent and that each layer produces the best output
labels. In cases where this is not the case, it is trivial independently (without consideration for other layersil a

to convert a binary classiers oufput to a log-odds therefore use the ground-truth labels feven for training
scores. For d(-class (' > 2) classifier, we consider

the output to be & -dimensional vectorZ indicates ~ the classifiers in the first layer.

the set{Z1, 23, ..., Zn}. . . On the other hand, we want to optimize for the final
6;, © 0; indicates parameters corresponding to first layer . . e

Classifier;. © indicates the sefdy,.. ., 0, . outputs as much as p_055|ble. Thus the first layer classifiers
Y;, Y Y; indicates output for thg*" task in the second need not perform their best (w.r.t. groundtruth), but rathe

layer, using the original featurew;(X) as well  focus on error modes that would result in the second
as all the outputs from the first layer as inpDt.

indicates the sefY1, Ya, ..., Yn}. layer's output {1,Y>,...,Y,) being more correct. There-
wj, w; indicates parameters for the second layer fore, we learn the model through an iterative Expectation-
- glattssiﬁte;j- ft?h"?gicfltei thiSﬁ(le-;-tMnf}i eled Maximization formulation, given the independencies be-
g ataset 1or ey askK, wnicn consists of lapbele e H H
pairs {X, Y;} in the training setr" represents all the tween classifiers represented by the model in Flgure 2. 1n
labeled data. one step (Feed-forward step) we assume the varidhles

fiior fam  the inte_rtr;al inference function and learning function are known and learn the parameters and in the other step
. forthes™ classifier on the first layer. _ (Feed-back step) we fix the parameters estimated previously
flinterr f'leam  the internal inference function and learning function - . , . , ’
for the ith classifier on the second layer. and estimate the variableg’s. Since theZ;’s are not fixed
1. Unless specified, the regular symbols (eXg.Y;, etc.) are used for to the grqund truth, as the lterations progress, the_ firgtl lev
a particular data-point, and the bold-face symbols (Xg.Y;, etc.) are Of classifiers start focusing on the error modes which would
used for a dataset. give the best improvement in performance at the end of

2. If the input dimension of the black-box classifier can netthanged, i - . .
then we will use that black-box in the first layer only. the second level of classifiers. The learning algorithm is
summarized in Algorithm 2.




Algorithm 2 Learning 3.4 Probabilistic Interpretation

1. Initialize latent variablesz with the ground-truthpy. Our algorithm can be explained with a probabilistic inter-

2. Do until convergence or maximum iteratiofi: pretation where the goal is to maximize the log-likelihood
Feed-foward step: Fix latent variablesZ, estimate the parametegs  Of the outputs of all tasks given the observed inputs, i.e.,

and 2 using Equation 5 and Equation 6. log P(Y|X), where X is an image belonging to training
Feed-back step:Fix the parameter® and(2, compute latent variables setI". Therefore, the goal of the proposed model shown in

Z using Equation 7. Figure 2 is to maximize

) log [] P(VIX;0,9) ®

Initialization: We initialize the model by setting the IatentTO introduce the hidgg; valuableg's, we expand Equa-

. B . o gt ..
Va}trr']attf)]l.i S‘?ti\lt'oatth:ngcr)oﬁrg;(zj;srzg:j’eﬁ% . Zalﬁe.n:trc?lggsﬁ .tion 8 as follows, using the independencies represented by
Wi IS Inffialization, o IS equlv 'the directed model in Figure 2.

[11], where the classifiers (and the parameters) in the first

layer are similar to the original state-of-the-art classifi = Z logz P(Y1,...,Y,, Z2|X;0,Q) 9)
and the classifiers in the second layer use the outputs of xer =z

the first layer in addmon_ to the or|g|nal.features as input. _ Z logZHP(Yth/i(X),Z;wi)P(Zi|\I/i(X);9i) (10)
Feed-forward Step: In this step, we estimate the parame- = Z i1

ters© and(2. We assume that the latent variabléss are  However, the summation inside thes makes it difficult
known (andY;’s are known because they are the groundo learn the parameters. Motivated by the Expectation
truth during learning, i.eY; = Y/). We then learn the Maximization algorithm [53], we iterate between the two
parameters of each classifier independently. Learfling steps as described in the following. Again we initialize the
precisely the learning problem of the ‘black-box classifierclassifiers by learning the classifiers with ground-truth as

and learningu; is also an instantiation of the original learndijscussed Section 3.3.

ing problem, but with the original input features appendelgeed-forward Step: In this step, we estimate the param-
with the outputs of the first level classifiers. Therefore, wi '

. ) etore, Werers by assuming that the latent variablgs are known
can use the Ieg_rmng met_hod provided by the 'nd'v'duf’:gnin’s are known anyway because they are the ground-
black-box classifier (Equation 1).

truth). This results in

0; = optimize fian(T1(X), Zi; 0; 5 n
P 21 17 flearn( ( ) ) ®) m%Ximize Z log H P(K|\I’2(X)7 Z; wL)P(le\I’Z(X)7 OL)
i Teeey MWl seeny Wn e
wi = Optimize f Iearn([‘IJi(X) Z]7 Yi;wi) (6) Xer ! (11)
We now have the parameters for all the classifiers. Now in this feed-forward step, the terms for maximizing

Feed-back Step:In the second step, we will estimate theg:g gkﬁi{sgstiﬁg:ﬂe;j\?;um outto be independent. So, for

values of the variableg;’s assuming that the parameters

are fixed (andY;’s are given because the ground-truth is maximize > log P(Zi|Ws(X); 0:) (12)
available, i.e.Y; = th). This feed-back step is the crux ' Xer
that provides information to the first-layer classifiers wha maximize » _ log P(Yi|¥;(X), Z;w;) (13)
error modes should be focused on and what can be ignored Yt Xer

without hurting the final performance. Givéls andw;’s ~ Note that the optimization problem nicely breaks down
are fixed, we want the;'s to be good predictions from theinto the sub-problems of training the individual classifier
first-layer classifiers and also help to increase the caorect for the respective sub-tasks. We can solve each sub-problem

predictions ofY;'s as much as possible. We optimize th&eparately given the probabilistic interpretation of tioe-
following function for the feed-back step: responding classifier. When the classifier is taken as ‘black

n box’, this can be approximated using the original learning
optimizez(Jf(\lli(X)7Zi;éi)+J§(Q/i(X)7Z7§Q;Qi)) method provided by the individual black-box classifier
Z i3 (Equation 5 and Equation 6)

where Ji’s and Ji's are functions respectively Feed-back Step:In this step, we estimate the values
related to the first-layer classifiers and th@f the latent variablesZ;'s assuming that the parameters
second-layer classifiers. one option is to hawre fixed. We perform MAP inference off;’s (and not
JHY(X), Zi;0;) — fﬁ{fer(‘l’i(X)v Z;;0;) and marginalization). This can be considered as a specialnaria
JiU(X), 2, Y50 = e ((Wi(X), 2], Yis ) if of the general EM framework (hard EM, [54]). Using
the intrinsic inference functions for the classifiers argquation 10, we get the following optimization problem:
known. More discussions will be given in Section 3.4 ifmaximizelog P(Y1,...,Yn, Z|X;01,...,00,@1,...,00) <
the intrinsic functions are unknown. The updatég's z n
will be used to re-learn the classifier parameters in thﬁlaximizez (logP(Yi|\I/i(X),Z;dzi)+logP(Z¢|¢/i(X);éi))
feed-forward step of next iteration. Note that the updated ~ i=1 (14)

Z;'s have continuous values. If the internal learning, . . .
iis maximization problem requires that we have access to

function of a classifier accepts only labels, we thresho o D o
the values ofZ,’s to get labels. the characterization of the individual black-box classifie



in a probabilistic form. If the probabilistic interpretatis Given the structure of our directed graph, the outputs
of the classifiers are known, we can solve the abover different classifiers on the same layer are independent
function accordingly. Note that Equation 14 is same agven their inputs and parameters. Therefore, Equations 19
Equation 7 withJ; (¥;(X), Z;;0;) = log P(Z;|¥;(X);6;) and 20 are equivalent to the following:
and J;(Vi(X), Z,Yi; ;) = log P(Y;|¥;(X), Z;&5). Z; = argmaxlog P(Z;|0;(X);6;),i=1,...,n (1)

In some cases, the classifier log-likelihoods in Equa- Zi .
tion 14 actually turn out to be convex. For example, if the Yi = argmax log P(Yi|Vi(X); Z5wi),i=1,...,n  (22)
individual classifiers are linear or logistic classifierse t ‘

As we see, Equation 21 and Equation 22 are instantiations
. g Equation 3 and Equation 4 in the probabilistic form.
gradient descent (or any such method).

. e . 4 TRAINING WITH HETEROGENEOUS

However, if the probabilistic interpretations of the clas-
sifiers are unknown, the feedback step requires extra mddATASETS o ) )
eling. Some modeling options are provided as follows: Often real datasets are disjoint for different tasks, iazhe
datapoint does not have the labels for all the tasks. Our

° r?ase 1: Insight 'ntl?j the wzlondprob_len': IS alv?jllable]; lBormulation handles this scenario well. In this section, we
this case, one could use the domain knowledge o tgﬁow our formulation for this general case, where we use

task into the problem to properly modé{'s and.J;'s. I; as the dataset that has labels only for tHetask.

« Case 2: No insight into the vision problem is available . ) e
and no internal function of the original classifier is In the following we provide the modifications to the feed-

known. In this case, we formulate th&’s and Ji's forward step and the feed-back step while dealing with
as follows. TheJ{ is defined to be a distance functiondisjomt datasets, i.e., data in dataebnly have labels for

! th i
between the targef; and the estimated;, which serves :jhg v task._Thesef n;]odlﬁc%tlcl)ng alsqbal(ljoyv lés tq de\llleiop
as a regularization for the first-layer classifiers. literent variants of the model, described in Section 4.1.

; P 112 Feed-forward Step: Using the feedback step, we can have

Jl(\I'Z(X)’Z”?Z) o ‘ Zi—Zi (15) Z;'s for all the data. Therefore, we use all the datasets

s.t. Z; = optimize fier(Vi(X), Zi; ;) in order to re-learn each of the first-layer classifiers. If
Zi the internal learning function of the black-box classifigr i

To formulateJj's, we make a variational approximation,qgitive over the data points, then we have
on the output of the second-layer classifier for tagke., A ‘ ; , L
approximating it as a Gaussian, [55]) to get: bi = Optgfuzezj: X;V ™ fieam(Wi(X), Zi; 6:), (23)
. o112 . ’ . .
minimize Z ‘ Y — OZZT[\I’i(X),Z]H (16) Where;’s are the importance factors given to different
o Xer ? _datasets, and satisfy; m; = 1. (See Section 4.1 on how
whereq; are parameters of the approximation modgl. to chooser;’s.) '
is the actual output of the second layer classifier for the |f the internal learning function is not additive over the
- : 3 ! ~, . . " .
task i, i.e. Y; = optimizey, [/ine([Vi(X) Z],Yi;@:). data points, we provide an alternative solution here. We
7, . S -
Then we define thel;’s as follows. sample a subset of dak’ from each datasdt’, i.e. X7 C
J5(0,(X), Z,Yi; i) = ’ Y; — aiT[\Ili(X%Z]W (17) TY and combine them into a new s&t = [X',..., X"].
2

i i J )
Sparsity: Note that the parameterx; is typically ex- .In )‘()’(jt‘he ratio of data belonging t&’ is equal tor;,

tremely high-dimensional (and increases with the numbk$: =7 _= 7, Where| - | indicates the number of data-
of tasks) because the second layer classifiers take as inpRif'tS: Then we can learn the parameters of the first-layer
the original features as well as outputs of all previoddassifiers as follows.

layers. The learning for the approximation model may 0i = optimize fiearn(W:(X), Zs; 0:), (24)

become ill-conditioned. Therefore, we want our modely (e jearn the second-layer classifiers, the only change

to select only a few non-zero weights, i.e., only & feW,5qe to Equation 6 is that instead of using all data while

non-zero entries iny;. We do this by introducing the ontimizing for a particular task, we use only the data-pint

[ sparsity in the parameters [S56]. So Equation 16 {§4t have the ground-truth label for the corresponding. task

extended as follows. ) o i = optimize fjaan([¥:(X) 2], Yi;wi), st X =T; (25)

minimize > (( Vi — ] [\I/i(X),Z]H —|—ﬂ|ai|> (18) wi
i xer : Feed-back Step In this step, we change Equation 7 as

Inference: As introduced in Section 3.2, our inferencdollows. Since a datapoint in the s&t only has ground-
procedure consists of two steps: f|rst3maX|m|ze over hiddefith label for the;*" task ;). we only considerss in
variableZ and then maximize over'. the second term. However, since this datapoint has outputs

Z= argmax log P(2]X,0) (19)  for all the first-layer classifiers using the feed-forwarepst
) — argmaxlog P(V|Z, X, Q) o0) We con_S|der all the/i’s,i=1,--- 1. Therefore, in orde_r
Y gy P ) (20) to obtain the value o corresponding to each data-point

) o X €Ty, we have
3. Another alternative would have been to maximizY|X) =

>, P(Y, Z|X); however, this would require marginalization over the R e A I\, D
varable Z which is expensive to compute. optgmze Zl (Jl(qjj(X)’ Zs; 91)) + 3 (U5(X), 2, Y5;05).
- (26)



4.1 FECCM: Different Instantiations categorization i = 3), saliency detectioni(= 4), object
The parameters:; allow us to formulate three differentdetection { = 5) and geometric labeling & 6). The inputs
instantiations of our model. for the j*" task at the first layer are given by the low-level

« Unified FECCM: In this instantiation, our goal is to features¥ ;. At the second layer, in addition to the original

achieve improvements in all tasks with one set of pararE_atureS\Ifj, the inputs include the outputs from the first

eters{©, }. We want to balance the data from differen yer classifiers. This is given by,

datasets (i.e., with different task labels). Towards this ;= [V; 2y Zy Zs Zy Zs Zs (27)
goal,; is set to be inversely proportional to the amourwhere,®; is the input feature vector for thg" task on the
of data in the dataset of th¢" task. Therefore, the second layer, and; (: = 1,...,6) represents the output
unified FECCM balances the amount of data in differefitom thei'” task which is appended to the input to tfié
datasets, based on Equation 23. task on the second layer and so on.

« One-goal FECCM: In this instantiation, we set; = 1 Scene CategorizationFor scene categorizqtion, we clas-
if j = k, andr; = 0 otherwise. This is an extreme settingify an image into one of the 8 categories defined by
to favor the specific task. In this case, the retraining of Torralba et al. [57] tall building, inside city, street, higay,
the first-layer classifiers will only use the feedback frorioast, open country, mountain and forest. We evaluate the
the Classifier;, on the second layer, i.e., only use thé@erformance by measuring the rate of incorrectly assigning
dataset with labels for the!" task. Therefore, FECCM a scene label to an image on the MIT outdoor scene dataset
degrades to a model with only one target task @e [57]. The feature inputs for the first-layer scene classifier
task) on the second layer and all the other tasks are ofly € R°'? is the GIST feature [57], extracted atx 4
instantiated on the first layer. Although the goal in thisegions of the image, on 4 scales and 8 orientations.
setting is to completely benefit tHe” task, in practice  We use an RBF-Kernel SVM classifier [58], as the first-
it often results in overfitting and does not always achievayer scene classifier, and a multi-class logistic clagsifie
the best results even for the specific task (see Table 1fén the second layer. The output of the first-layer scene
Section 6). In this case, we train different models, i.&lassifierZ; € R® is an 8-dimensional vector where each
different6;’s andw;’s, for different target tasks. element represents the log-odds score of the corresponding

image belonging to a scene category. This 8-dimensional

« Target-Specific FECCM: This instantiation is to opti- %Jtput is fed to each of the second-layer classifiers,

mize the performance of a specific task. As compared
one-goal FECCM where we manually remove the oth&epth Estimation. For the single image depth estimation
tasks on the second layer, in this instantiation we keégsk, we estimate the depth of every pixel in an image.
all the tasks on the second layer and conduct data-drivafe evaluate the estimation performance by computing the
selection of the parameters; for different datasets. root mean square error of the estimated depth with respect
In detail, 7; is selected through cross validation on & ground truth laser scan depth using the Make3D Range
hold-out set in the learning process in order to optimizenage dataset [59, 60]. We uniformly divide each image
the second-layer output of a specific task. Since Targétto 55 x 305 patches as [59]. The feature inputs for the
Specific FECCM still has all the tasks instantiated on tHist-layer depth estimatio®, € R'%* are features which
second layer, the re-training of the first-layer classifiesapture texture, color and gradient properties of the patch
can still use data from different datasets (i.e., witfihis is obtained by convolving the image with Laws’ masks
different task labels). Here we train different models, i.eand computing the energy and Kurtosis over the patch along
different#,’s andw;’s, for different target tasks. with the shape features as described by Saxena et al. [59].

We use a linear regression for the first-level and second-
5 SCENE UNDERSTANDING: IMPLEMENTA- |evel instantiation of the depth estimation module. The
TION output of the first-layer depth estimaticf, € R, is the

In this section we describe the implementation details of ogredicted depth of each patch in the image. In order to feed
instantiation of FE-CCM for scene understanding. Eacthe first-layer depth output to the second-layer classifiers
of the classifiers described below for the sub-tasks di@f the scene categorization and event categorizatiors task
our “base-model” shown in Table 1. In some Sub-taskw’e use a vector with the prEdiCted depth of all patCheS in
our base-model will be simpler than the state-of-the-dft€ image; for the other tasks, we use the 1-dimensional
models (that are often hand-tuned for the specific sub-tagkgdicted depth for the patch/pixel/bounding-box, etc.

respectively). However, even when using base-models gfyent Categorization: For event categorization, we clas-
our FE-CCM, our model will still outperform the state- sify an image into one of the 8 sports events as defined by
of-the-art models for the respective sub-tasks (on the saé&t g|. [46]: bocce, badminton, polo, rowing, snowboard-
standard respective datasets) in Section 6. ing, croquet, sailing and rock-climbing. For evaluatiore w
In order to explain the implementation details for theompute the rate of incorrectly assigning an event label
different tasks, we will use the following notation. Letto an image. The feature inputs for the first-layer event
i be the index of the tasks we consider. We considerdiassifier U5 € R*3 is a 43-dimensional feature vector,
tasks for our experiments on scene understanding: scevidch includes the top 30 PCA projections of the 512-
categorization i = 1), depth estimationi(= 2), event dimensional GIST features [61], the 12-dimension global



color features (mean and variance of RGB and YCrCb colBor evaluation, we compute the accuracy of assigning the
channels over the entire image), and a bias term. correct geometric label to a pixel. The feature inputs for

We use a multi-class logistic classifier on each laydpe first-layer geometry labeling classifiég € R are the
for event classification. The output of the first-layer everigdion-based features as described by Hoiem et al. [33].
classifier Z; € R® is an 8-dimensional vector where each We use the dataset and the algorithm by [33] as the first-
element represents the log-odd score of the correspondiager geometric labeling module. To reduce the computation
image belonging to a event category. This 8-dimension@ine, we avoid the multiple segmentations and instead use
output is feed to each of the second-layer classifiers. a single segmentation with 100 segments per image. We

Saliency Detection.The goal of the saliency detection task'>¢ @ logistic _model as the second-lay_er cIassTe_r. The
output of the first-layer geometry classifiefy € R° is

is to classify each pixel in the image as either salient or

non-salient. We use the saliency detection dataset usedabé;-dimensional vector with each .elem_ent represqnting the
Achanta et. al. [62] for our experiments. The feature inpukg -odd score of the corresponding p|xel_belong|ng toa
for the first-layer saliency classifieb; € R* includes the geometric category. In order to feed the first-layer geom-

3-dimensional color-offset features based on the Lab col%ttry output to the second-layer classifiers, for sceneteven
. . categorization we form a vector with the predicted scores

space as described by Achanta et al. [62] and a bias terr%]. . ) . :
of all pixels; for the other tasks we use the 3-dimensional

We use a logistic model for the saliency estimatiogctor with each element representing the average scores

classifiers on both layers. The output of the first-laygg, the corresponding pixel/patch/bounding-box.
saliency classifierZ, € R is the log-odd score of a

pixel being salient. In order to feed the first-layer saliencg ExpPERIMENTS AND RESULTS
detection output to the second-layer classifiers, for teasc 1 Experimental Setting

categorization and event categorization tasks, we formT.'ﬂe proposed FE-CCM model is a unified model which
vector with the predicted saliency of all the pixelsintheim-ointly optimizes for all the sub-tasks. We believe this is

aglg; for tfhe (;]ther tasks, wde_ use.thelz/ 1-dihm/§nsio(r;_al al;/er epowerful algorithm in that, while independent efforts
saliency for the corresponding pixel/patch/bounding=box qar4s each sub-task have led to state-of-the-art algosit

Object Detection. We consider the following object cate-that require intricate modeling for that specific sub-takk,
gories: car, person, horse and cow. We use the train-set @mdposed approach is a unified model which can beat the
test-set of PASCAL 2006 [63] for our experiments. Oustate-of-the-art performance in each sub-task and, can be
object detection module builds on the part-based detecsmamlessly applied across different applications.

of Felzenszwalb et. al. [64]. We first generate 5 to 100 \we evaluate our proposed method on combining six tasks
candidate windows for each image by applying the partitroduced in Section 5. In our experiment, the training of
based detector with a low threshold (over-detection). Th8=-CCM takes 4-5 iterations. For each of the sub-tasks
feature inputs for the first-layer object detection classifijn each of the domains, we evaluate our performance on
U5 € R are the HOG features extracted based on thge standard dataset for that sub-task (and compare against
candidate window as [65] plus the detection score frofje specifically designed state-of-the-art algorithm fuatt
the part-based detector [64) depends on the number ofgataset). Note that, with such disjoint yet practical detss
scales to be considered and the size of the object templa{g.image would have ground truth available for more than
We learn an RBF-kernel SVM model as the first layepne task. Our model handles this well.
classifier. The classifier assigns each windowt+-& or |y experiment we evaluate the following algorithms as
0 label indicating whether the window belongs to th@nhown in Table 1,
object or not. For the second-layer classifier, we learn as Base model: Our implementation (Section 5) of each
logistic model over the feature vector constituted by the sub-task, which serves as a base model for feigf
outputs of all first-level tasks and the original HOG feature ~ CCM. (The base model uses less information than
We use average precision to quantitatively measure the state-of-the-art algorithms for some sub-tasks.)
performance. The output of the first-layer object detection, All-features-direct: A classifier that takes all the fea-
classifier Z; € R* are the estimated 0 or 1 labels for a  tures of all sub-tasks, appends them together, and
region to belong to the 4 object categories we consider. In  puilds a separate classifier for each sub-task.
order to feed the first-layer object detection output to the , State-of-the-art model: The state-of-the-art algorithm

second-layer classifiers, we first generate a detection map for each sub-task respectively on that specific dataset.
for each object. Pixels inside the estimated positive boxes, ccm: The cascaded classifier model by Heitz

are labeled as “+1”, otherwise they are labeled as “0”. For &t g1. [11], which we re-implement for six sub-tasks.
scene categorization and event categorization on the decon
layer, we feed all the elements on the map; for the other

tasks, we use the 1-dimensional average value on the map
for the corresponding pixel/patch/bounding-box.

FE-CCM (unified): This is our proposed model. Note
that this isone single modelhich maximizes the joint
likelihood of all the sub-tasks.

o« FE-CCM (one goal): In this case, we have only one
Geometric labeling. The geometric labeling task refers sub-task instantiated on the second layer, and the goal
to assigning each pixel to one of three geometric classes: is to optimize the outputs of that sub-task. We train a
support, vertical and sky, as defined by Hoiem et al. [33]. specific one-goal FE-CCM for each sub-task.



TABLE 1
Summary of results for the SIX vision tasks. Our method improves performance in every single task. (Note: Bold face corresponds to our
model performing equally with or better than state-of-the-art.)

Event Depth Scene Saliency Geometrid Object detection
Model Categorization Estimation Categorization Detection Lialge Car Person Horse Cow [ Mean
(% Accuracy) (RMSE in m) (% Accuracy) (% Accuracy) (% Accwpc (% Average precision)
Images in testset 1579 400 2688 1000 300 2686
Chance 22.5 24.6 22.5 50 33.3 - - - - [ -
Our base-model 71.8 @0.8) 16.7 E£0.4) 83.8 {£0.2) 85.2 £0.2) 86.2 (£0.2) 62.4 36.3 39.0 399 444
All-features-direct 72.7 &0.8) 16.4 £0.4) 83.8 -0.4) 85.7 ¢0.2) 87.0 0.6) 62.3 36.8 38.8 40.0 | 445
State-of-the-art 73.4 16.7 (MRF) 83.8 82.5 {£0.2) 88.1 61.5 36.3 39.2 40.7 | 444
model (reported) Li [46] Saxena [59] Torralba [58] Achanta [62] Hoiem [33] Felzenswalb et. al. [38] (base
CCM [171] 73.3 &1.6) 16.4 £0.4) 83.8 £0.6) 85.6 {0.2) 87.0 0.6) 62.2 37.0 38.8 40.1 | 445
(our implementation)
FE-CCM
(unified) 74.3 (£0.6) 15.5 (£0.2) 85.9 (0.3) 86.2 (+0.2) 88.6 (+0.2) 63.2 37.6 40.1 40.5 45.4
FE-CCM
(one goal) 74.2 (£0.8) 15.3 (0.4) 85.8 (0.5) 87.1 (£0.2) 88.6 (+0.3) 63.2 37.9 40.1 40.7 | 455
FE-CCM
(target specific) 74.7 (£0.6) 15.2 ¢0.2) 86.1 (-0.2) 87.6 (£0.2) 88.9 (+0.2) 63.2 38.0 40.1 40.7 | 455
 All-features-direct results (A) H State-of-the-art results (S) M CCM results (C) FE-CCM results (F)

7 Accuracy 87 Accuracy 8 T Accuracy %0 7 Accuracy 18 TError

75 8 87 89 17

7 85 86 ™ 16

73 84 85 87 15

71 82 83 85 13

) 81 8 8 12

0 As C F 80 AS C F s AsS C F 83 A S C F " A S C F

Event Categorization Scene Categorization Saliency Detection Geometric Labeling Depth Estimation
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45 64 38 40 40

44 63 37 39 39

43 62 36 38 38

42 61 35 37 37

41 60 34 36 36

40 59 33 35 35

3 A s C F 8 A S C F > A s c F '™ A s C F * A S C F

Object Detection Car Person Horse Cow
Individual Objects

Fig. 3. Results for the six tasks in scene understanding. Top: the performance for event categorization, scene categorization, saliency
detection, geometric labeling, and depth estimation. Bottom: the average performance for object detection and the performance for the
detection of individual object categories: car, person, horse, and cow. Each figure compares four methods: all-features-direct method, state-
of-the-art methods, CCM, and the proposed FE-CCM method.

« FE-CCM (target specific): In this case, we train d&he state-of-the-art classifiers improve on the base model
specific FE-CCM for each sub-task, by using cros®y explicitly hand-designing the task specific probakist
validation to estimater;’s in Equation 23. Different model [46, 59] or by using adhoc methods to implicitly use
values forr;’s result in different parameters learnednformation from other tasks [33]. Our FE-CCM model,
for each FE-CCM. which is a single model that was not given any manually

Note that both CCM and All-features-direct use inform<31tio}:165igned task-specific insight, achieves a more significant
from all sub-tasks, and state-of-the-art models also use cdMProvement over the base model.
fully designed models that implicitly capture information We also compare the three instantiations of FE-CCM
from the other sub-tasks. in Table 1 (the last three rows). We observe that the
target-specific FE-CCM achieves the best performance, by
electing a set ofr;'s to optimize for each task inde-
dently. Though the unified FE-CCM achieves slightly
se performance, it jointly optmizes for all the tasks by
gining only one set of parameters. The performance of
e-goal FE-CCM is less stable compared to the other two
stantiations. It is mainly because the first-layer cles
a; ly gain feedback from the specific task on the second
fﬁa%/er in one-goal FE-CCM, which easily causes overfitting.

We note that our target-specific FE-CCM, which is
optimized for each task independently and achieves the best
6.3 Results performance, is a more fair comparison to the state-of-the-
To quantitatively evaluate our method for each of the sulart because each state-of-the-art model is trained specifi-
tasks, we consider the metrics appropriate to each of tbglly for the respective task. Furthermore, Figure 3 shows

six tasks in Section 5. Table 1 and Figure 3 show that Fighe results for CCM (which is a cascade without feedback
CCM not only beats state of the artadl the tasks but also information) and all-features-direct (which uses feature

does it jointly asone single unified model
in d i h II-f di . 4. The state-of-the-art method for depth estimation in [f8pws a
n detall, we see that all-features-direct improves ngﬁghtly different testing procedure. In that case, ougétspecific FE-

the base model because it uses features from all the task@v method achieve® M SE = 15.3.

6.2 Datasets

The datasets used are mentioned in Section 5, and
number of test images in each dataset is shown in Tabl%r
For each dataset we use the same number of traini
images as the state-of-the-art algorithm (for compariso
We perform 6-fold cross validation on the whole modq
with 5 of 6 sub-tasks to evaluate the performance on e
task. We do not do cross-validation on object detection
it is standard on the PASCAL 2006 [63] dataset (1277 tra
and 2686 test images respectively).
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FE-CCM result | Source Ground-Truth CCM result FE-CCM result

Source FE-CCM result

Fig. 4. Results showing improvement using the proposed model. From top to bottom: Depth estimation, Saliency detection, Object
detection, Geometric labeling. All depth maps in depth estimation are at the same scale (black means near and white means far); Salient
region in saliency detection are indicated in cyan; Geometric labeling: Green=Support, Blue=Sky and Red=Vertical (Best viewed in color).

TABLE 2
Summary of results for combining scene categorization and object
detection, with partially-labeled datasets and fully-labeled datasets.

bocce |40 .10 .03 .07 .07 .20 .03 .10| uilding [EE14.08 .01 .01 .01 .01 .02 .01
badminton

idecity Support

polo street

rowing | ghway Vertical

snowboarding coast

croquet |.08 .07 .08 .02 .02 ountry Scene Categorization Object Detection
saling | .02 .07 02 untain Sky Model . (% accuracy) . (% mean AP)
RockClimbing |02 05 forest partial-labeled / full-labeled partial-labeled / fulldeled
Soc 80029 0,270,705 0, WUt st 005 06,70, 2%, S, o, % Our base-model 4561475 67.6770.7
M 0 6olles 9 1Cy, z%/"e o St 0, Mt 70) 7 2 ¢ . . . .
Ty T, AN or o % All features direct 6.8 749.1 7127725
f . . P CCM [11] 50.8 /52.3 740/76.1
Fig. 5. Confusion matrix for (a) Event categorization; (b) Scene FE-CCM (unified) S5 75iS —ETT7 9

categorization; (c) Geometric labeling. All the results are gained
with the proposed FE-CCM method. The average accuracy achieved datasets. The improvement can be caused by one or both

by the proposed FE-CCM model outperforms the state-of-the-art ; . :
methods for each of these tasks, as listed in Table 1. of the following reasons: (1)_the feedback process finds
better error modes for the first-layer classifiers; (2) the
from all the tasks). This indicates that the improvement fg¢edback generates additional “labels™ to retrain the-first
strictly due to the proposed feedback and not just becadayer classifiers. In order to analyze this, we consider the
of having more information. two tasks of scene recognition and object detection on the

We show some visual improvements due to the proposbgéﬁ dhataselt(in \[/\1/1]’ which coEtains.ground-tr:u:;w Iab(ejls for
FE-CCM in Figure 4. In comparison to CCM, FE-CCM oth the tasks. We compare the various methods under two

leads to better depth estimation of the sky and the grour?t?ttings; (1) train with the fully-labeled data; (2) trairthv

and it leads to better coverage and accurate labeling Qjly the scene labels for one half of the training data and

the salient region in the image, and it also leads to bet lply the object labels for the second half. Table 2 compares

geometric labeling and object detection. Figure 5 aidhe performance of training with partially-labeled datase

provides the confusion matrices for the three tasks: scefiad the performance of different methods under these two

categorization, event categorization, geometric lalelin set_ting_s. The expe-ri.ments are performed using 5-fold cross
g g g e validation. The unified FE-CCM method outperforms the

Figure 6 provides scatter plots of the performance diffefiher methods under both partially-labeled and fully-latie
ence for each image between the unified FE-CCM methaf arions. We note that all methods listed perform better
and the all-features-direct method, respectively for thgnen fyii labels are provided. In fact, FE-CCM achieves
tasks of geometric labeling, saliency detection, and depth e performance in both settings. We also note that the
estimation. We note that for all three_tasks, the unified FlEe_ccM method trained with partially-labeled datasets
CCM outperforms the all-features-direct method on Mo§f,iperforms the CCM method trained with fully-labeled
images. For geometric labeling and saliency detection, thgiasets, which indicates that the improvement achieved by
improvement from the unified FE-CCM method is mainly,o FE.cCM method is not simply from generating more

due to large improvements on some images. For deplfye|s for training the first-layer classifiers, but also toe
estimation, the improvement is scattered over many imag@ging useful modes for the first-layer classifiers,

The cause of improvementWe have shown improvements Figure 7 illustrates the first-layer outputs of a test image,
of FE-CCM in Table 1 under the situation of heterogeneousspectively at initialization and at thg” iteration. Our
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Task: Geometric Labeling Task: Saliency Detection Task: Depth Estimation
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Fig. 6. Performance difference between the proposed unified FE-CCM method and the all-features-direct method for each test image,
respectively for the tasks of geometric labeling, saliency detection, depth estimation, on one of the cross-validation folds.
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(b) Layer-1 Event  (c) Layer-1 Scene (d) Layer-1 Depth (e) Layer-1 Saliency (f) Layer-1 Geometry (g) Layer-1 Object (h) Layer-2 Event

Mountain

ar
Horse

Forest

Fig. 7. lllustration of the FE-CCM first-layer outputs for a single image. (a) the input image from the sports-event dataset. Its groundtruth

event label is “Bocce”. (b-g)Outputs of the first-layer classifiers, at initialization (top row) and at the 5" iteration (bottom row). (h) Outputs

of the second-layer event classifier. Note that at initialization the first-layer classifiers are trained using ground-truth labels, i.e. the same as

CCM. In (b)(c)(d)(e)(h), Red=High-value, Blue=low-value. In (f), Blue=Ground, Green=Vertical, Red=Sky. In (g) Red=Object Presence. (Best
viewed in color.)

initialization is the same as CCM, i.e., using grounctlass. These illustrate some of the relationships the model

truth labels to train the first-layer classifiers. We notet théearns automatically without any manual intricate modglin
with feedback, the first-layer output shifts to focus on Figure 8(c) visualizes the weights given to the depth
more meaningful modes, e.g., At initialization, the evenributes (first-layer depth outputs) for the task of event
classifier has widespread confusion with other categorigteqgorization. Figure 8(d) shows the same for the task
With feedback, the event classifier turns to be confusegl scene categorization. We see that the depth plays an
with only the ‘rock-climbing’ and "croquet’ events whichjmportant role in these tasks. In Figure 8(c), we observe tha
are more similar to "bocce’. Moreover, the first-layer scengnost event categories rely on the middle part of the image,
depth, and object classifiers also give more meaningijghere the main objects of the event are often located.
predictions while trained with feedback. With better firste g most of the “polo” images have horses and people
layer predictions, our FE-CCM correctly classifies the évefy the middle of the image while many “snowboarding”
as 'bocce’, while CCM misclassifies it as rowing’. images have people jumping in the upper-middle part. For
. . scene categorization, most of the scene categories (e.g.,
6.4 Discussion coast, mountain, open country) have sky in the top part,

FE-CCM allows each classifier in the second layer to Iea\r/vqwich is not as discriminative as the bottom part. In scene

which information from the other first-layer sub-tasks '%ategories of tall buildings and street, the upper part ef th

useful, and this can be seen in _the '.ea”.‘ed welghfsr_ treet consists of buildings, which discriminates these tw
the second-layer. We provide a visualization of the weighfs

for the six vision tasks in Figure 8(a). We see that th ategories from the others. Not surprisingly, our method

model agrees with our intuitions that large weights ar@ad automatically figured this out (see Figure 8(d)).

assigned to the outputs of the same task from the first layei@bility of the FE-CCM algorithm: In this paper, we
classifier (see the large weights assigned to the diagon3f/e presented results for six sub-tasks. In order to find
in the categorization tasks), though saliency detectianis Ut how our method scales with different combination and
exception which depends more on its original features (n¢mber of sub-tasks, we have tried several combinations,
shown here) and the geometric labeling output. We al§§d in each case we get consistent improvement in each
observe that the weights are sparse. This is an advantag@#1-task. For example, in our preliminary experiments, we
our approach since the algorithm automatically figures of@mbined depth estimation and scene categorization and
which outputs from the first level classifiers are useful f@ur reduction in error are 12.0% and 13.2% respectively.

the second level classifier to achieve the best performang@Mbining scene categorization and object detection gives
us 15.4% and 10.2% respective improvements (Table 2).

Figure 8(b) provides a closer look to the positive Weigh\ﬁ/e then combined four tasks: event categorization, scene

given to_t_he various outputs for a seconq'level.geomeéétegorization, depth estimation, and saliency detectiod
ric classifier. We observe that large positive weights are

assianed to “mountain”. “forest’. “tall buildina”. etc. fo got improvements in all these sub-tasks [22]. Finally, we
gne . S 9, €€ 10 4150 combined different tasks for robotic applicationg] an
supporting the geometric class “vertical”, and similarl

“coast’, “sailing” and “depth” for supporting the “sky” ¥he performance improvement was similar.
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Fig. 8. (a) The absolute values of the weight vectors for second-level classifiers, i.e. w. Each column shows the contribution of the various

tasks towards a certain task. (b) Detailed illustration of the positive values in the weight vector for a second-level geometric classifier. (c)(d)
lllustration of the importance of depths in different regions for predicting different events (c) and scenes (d). An example image for each class
is also shown above the map of the weights. (Note: Blue is low and Red is high. Best viewed in Color).
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- asesee TABLE 3
Object classification
3 . Summary of results for the the robotic grasping experiment. Our
Q 1 © | x - method improves performance in every single task.
Cerealbowl  Eraser Tea cup Book  Martiniglass  Pencil Graping point Object
Model Detection Classification
Grasping point detection (% accuracy) (% accuracy)
Images in testset 6000 1200
‘ I ! Chance 50 16.7
‘ All features direct 87.7 45.8
.. Our base-model 87.7 45.8
Image Depth map Grasping point CCM (Heitz et. al.) 90.5 495
, : praer, _ FE-CCM 92.2 79.7
Fig. 9. Examples in the dataset used for the grasping robot —
experiments. The two tasks considered were a six-class, object v
classification task and grasping point detection task. T

7 ROBOTIC APPLICATIONS

In order to show the applicability of our FE-CCM to,. e . .
. . . ig. 10. Left: the grasping point detected by our algorithm. Right:
different scene understanding domains, we also used robot grasping an object using our algorithm.

proposed method in multiple robotic applications. dimensional vector representing the log-odds score fdn eac

category. The final classification is performed by assigning

7.1 Robotic Grasping the image to the category with the highest score.

Given an image and a depthmap (Figure 9), the goal of t i )
learning algorithm in a grasping robot is to select a poit esults: We evaluate our algorithm on a dataset published

to grasp the object (this location is called the grasp poirf, [66], and perform cross-validation to evaluate the perfo
[66]). It turns out that different categories of objects demd  Mance on each task. We use 6000 images for grasping point

different strategies for grasping. In prior work, Saxena &@tection (3000 for training and 3000 for testing) and 1200
al. [66, 67] did not use object category information fof29€S for object classification (600 for training and 600 fo

grasping. In this work, we use our FE-CCM to combinEeSting); Table3shqws th_e resglts forquralgorithm’si'qbil
object classification and grasping point detection. to predict the grasping point, given an image and the depths

Imol ion: Wi K with the labeled heti observed by the robot using its sensors. We see that our
mplementation: We wor W't. the labele . synthetic FE-CCM obtains significantly better performance over all-
dataset by Saxena et al. [66] which spans 6 object catego Stures-direct and CCM (our implementation). Figure 10

and also includes an aligned pixel level depth map for eacf s an example of our robot grasping an object
image, as shown in Figure 9. The six object categories '

include spherically symmetric objects such as cerealbowl, Object-finding Robot

rectangular objec.ts such as eraser, martini glass, book$yen an image, the goal of an object-finding robot is
cups and long objects such as pencil. to find a desired object in a cluttered room. As we have
For grasp point detection, we compute image artiscussed earlier, some types of scenes such as living room
depthmap features at each point in the image (using codee more likely to have objects (e.g., shoes) than other
given by [66]). The features describe the response of thges of scenes such as kitchen. Similarly, office scenes
image and the depth map to a bank of filters (similaare more likely to contain tv-monitors than kitchen scenes.
to Make3D) while also capturing information from theFurthermore, it is also intuitive that shoes are more likely
neighboring grid elements. We then use a regression overappear on the supportive surface such as floor, instead
the features. The output is a confidence score for each paifitthe vertical surface such as the wall. Therefore, in this
being a good grasping point. In an image, we pick the pointork, we use our FE-CCM to combine object detection
with the highest score as the grasping point. with indoor scene categorization and geometric labeling.

For object detection, we use a logistic classifier tbmplementation: For scene categorization, we use the
perform the classification. The output of the classifier is a thdoor scene subsets in the Cal-Scene Dataset [68] and



[4]

[5]
Fig. 11. Left: the shoe-finding robot, which has a camera to take
photos of a scene. Right: the shoed detected using our algorithm. [6]

classify an image into one of the four categories: bedroo
living room, kitchen and office. For geometric labeling,
we use the Indoor Layout Data [69] and assign ead$
pixel to one of three geometry classes: ground, wall a
ceiling. We use the same features and classifiers for scene
categorization as in Section 5. [10]

For object detection, we use the PASCAL 2007 Datasgt]
[70] and our own shoe dataset to learn detectors for four
object categories: shoe, dining table, tv-monitor, an(;!isof[12
We first use the part-based object detection algorithm in
[38] to create candidate windows, and then use the safhd
classifiers as described in Section 5. (14]

Results: We use this method to build a shoe-finding robot,

as shown on Figure 11-left. With a limited number of;-
training images (86 positive images in our case), it is hard
to train a robust shoe detector to find a shoe far awa
from the camera. However, using our FE-CCM model, t

robot learns to leverage the other tasks and performs more
robust shoe detection. Figure 11-right shows a succesdfdl
detection. For more details and videos, please see [71].[18]

8 CONCLUSIONS [19]

We propose a method for combining existing classifiers fgig)
different but related tasks in scene understanding. We only
consider the individual classifiers as a ‘black-box’ (thos n (21
needing to know the inner workings of the classifier) and
propose learning techniques for combining them (thus ni@e]
needing to know how to combine the tasks). Our method
introduces feedback in the training process from the latgg;
stage to the earlier one, so that a later classifier can pgovid
the earlier classifiers information about what error modé&'!
to focus on, or what can be ignored without hurting thgs)
joint performance.

Our extensive experiments show that our unified model (g
single FE-CCM trained for all the sub-tasks) improves per-
formance significantly acrosall the sub-tasks consideredml
over the respective state-of-the-art classifiers. We shaiv t
this was the result of our feedback process. The classifia$]
actually learns meaningful relationships between thestask
automatically. We believe that this is a small step towargs

holistic scene understanding. 0]
30
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