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Abstract. The problem of holistic scene understanding involves many
vision tasks such as depth estimation, scene categorization, event cate-
gorization, etc. Each of these tasks explores some aspects of the scene
but, these tasks are related in that, they represent attributes of the same
scene. An intuition is that one task can provide meaningful attributes to
aid the learning process of another task.
In this work, we propose a generic model (together with learning and
inference techniques) for connecting different vision tasks in the form of
a 2-layer cascade. Our model considers the first layer as a hidden layer,
where the latent variables are inferred by feedback from the second layer.
The feedback mechanism allows the first layer classifiers to focus on more
important image modes, and draws their output towards “attributes”
rather than the original “labels”. Our model also automatically discovers
sparse connections between the learned attributes on the first layer and
the target task on the second layer. Note that in our model, the same
vision tasks can act as attribute learners as well as target tasks, while
being set up on different layers. In extensive experiments, we show that
the same proposed model improves the performance in all the tasks we
consider: single image depth estimation, scene categorization, saliency
detection and event categorization.

1 Introduction

One of the primary goals in computer vision is holistic scene understanding,
which involves many sub-tasks, such as depth estimation, scene categorization,
saliency detection, object detection, event categorization, etc. Each of these tasks
explains some aspects of a particular scene. To fully understand a scene, the goal
is to solve for each of these tasks. However, these tasks are related in that they
represent some attributes of the same scene and thus can aid each other, as
shown in many recent works, e.g., [1–4]. These methods, however, either tend to
be ad-hoc (where a manually engineered rule is used to combine the tasks) or
would need considerable attention to construct (probabilistic) models to com-
bine them, based on the insights of the researchers into the problem of scene
understanding. We would like to develop a more generic model that automati-
cally discovers the connections or relationships between different tasks. A recent
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Fig. 1. Generic model to compose vision modules to aid scene understanding. Sparse
cascaded classification model with feedback, where the decision from the second layer
is fed back to the previous layer to learn useful attributes thus to help improve final
performance. (Each Taski in the first layer is parametrized by θi and its output is Ti.
The output from the second stage classifier for Taskj parametrized by ωj , is Yj)

method called Cascaded Classification Models (CCM) by Heitz et. al. [5] at-
tempts to do so by repeating instantiations of the classifiers for different tasks in
a cascade. The classifiers on each layer are trained to the groundtruth “labels”
of corresponding tasks. The restriction of training each layer classifiers towards
“labels” can easily cause the overfitting problem. In this work, we propose a 2-
layer CCM model with a hidden intermediate layer, which automatically learns
meaningful attributes for optimizing the target task on the second layer.

The idea of learning attributes towards a particular target task relates our
work with some recent research about learning visual attributes, e.g. [6–9]. The
prior works learn attributes to describe an image, mainly for object recognition.
In this work, we look at scene understanding where we try to describe a scene
by various explicit attributes, such as the type of scene, the event going on in
the scene, or other implicit attributes such as the depths of different regions, the
salient regions in the scene, etc. These attributes, provide specific description of
the scene, which if learned by the tasks mentioned earlier can serve as valuable
inputs to the target task. For example, it is intuitive that a “mountain-like”
attribute plays an important role in identifying a “snowboarding” event and a
“depth in the top region” attribute helps identify a “tall-building” scene. Based
on this analysis, we propose a generic model in the form of a 2-layer cascade,
where we have various tasks on the first layer and repeat the particular target
task on the second layer, as shown in Figure 1. Note that in our model, the same
vision tasks can act as attribute learners as well as target tasks, while being
set up on different layers. This is different from the prior works, which need
to introduce extra tasks (e.g. color classification, shape classification, etc.) for
attribute learning.

Our approach is as follows. We have classifiers for N tasks on the first layer,
and our goal is to improve the performance of a particular task j on the second
layer. Our learning algorithm tries to maximize the conditional log-likelihood of
the final output. The goal of the second-layer classifier is to achieve the best class
labels while the first-layer classifiers are not trained to do so. The target outputs
for the first-layer classifiers are latent variables, which are initialized with the
groundtruth labels of the corresponding tasks and are suitably inferred by the
feedback from the second-layer classifier in later iterations during the training
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phase. The feedback passes the first layer information about what regular modes
they should focus on to describe the scene. Implicitly, the feedback draws the
first-layer outputs towards “attributes” rather than “labels”. For example, we
observe that the feedback allows a “bocce” event image to have high scores for
both “bocce” and “croquet” categories on the first-layer, indicating the existence
of both attributes “bocce-like” and “croquet-like”, which is consistent with our
intuition that these two events share many common characteristics. Furthermore,
to connect a large number of first-layer tasks with the second-layer task, we also
want the connections to be sparse, i.e., the target task is connected to only a few
meaningful attributes. In this work, we use Laplace prior to incorporate sparsity
into our model, which figures out the connections automatically.

Our algorithm has other interesting properties that are of interest to many
vision problems. Typically, each of these tasks have their own independent train-
ing datasets, i.e., for an image, the labels for all the tasks may not be available.
We will show in detail how our model can intrinsically handle such a situation,
and thus scales well even with the heterogeneous datasets.

The contributions of our algorithm are as follows:

1. Our algorithm incorporates feedback into the cascaded model, which helps
to train the first-layer tasks towards attributes for the benefit of the target
task on the second layer.

2. Our algorithm incorporates sparsity by using the Laplace prior in order to
learn how the learnt attributes contribute to the target task.

3. Our algorithm handles heterogeneous datasets.

4. We consider four different vision tasks: single image depth estimation, scene
categorization, saliency detection, and event categorization. In our extensive
experiments we show that using the same algorithm we achieve improve-
ments in each of these tasks over state-of-the-art classifiers.

2 Related work

The importance of combining different tasks together (for “holistic scene under-
standing”) has been highlighted by a number of recent works [2–4, 10–14]. For
example, Sudderth et. al. [4] incorporate object detection to help 3D structure
estimation. Hoiem et. al. [3] combine multiple aspects of the scene like object
boundaries and surface orientations towards 3D scene interpretation. Li et. al. [2,
14] propose hierarchical graphical models to integrate multiple related tasks such
as detection, classification, etc. With well-designed models, these works outper-
form independent methods, which shows the potential of sharing information
between multiple tasks. However, the design of the model structure requires
considerable attention to each task and insight into modeling the connection
between tasks. This can limit the generality of introducing more tasks into the
model, or applying it to other tasks.

On the other extreme, generic approaches have been developed in machine
learning community to combine many classifiers to achieve a better overall per-
formance. Boosting [15] is one among these methods, where many weak learners
are combined to obtain a more accurate classifier. One highly relevant work to
ours is by Heitz et. al. [5], where a generic approach called Cascaded Classifier
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Models (CCM) is proposed for connecting multiple tasks in scene understanding.
CCM method considers each individual classifier as a “black-box” and therefore
it is compatible to different classifiers. However, CCM is limited because it se-
quentially optimizes each layer classifiers independently instead of optimizing
the final output likelihood conditioned on the observations. This independent
optimization scheme can easily suffer from the overfitting problem, and this be-
comes critical when combining a large number of tasks. In our work, we propose
a feedback mechanism to allow the communication between layers in order to
focus on more important modes on the first layer. We also introduce sparsity to
find a limited number of links between layers in order to avoid overfitting.

Another group of works related to ours are those on “visual attribute learn-
ing”, e.g. [6–9]. Most of these works introduce visual attributes to aid object
recognition, which are defined as properties that can be shared across object
categories such as shape, material, etc. In our work, we link various attributes
towards holistic scene understanding. Our attributes can be explicit (“it is a
more mountain-like scene rather than a coast-like scene”) or implicit (“it has
low depth in the upper region of the scene”), etc. Moreover, our model is generic
for any particular sub-task in the area of scene understanding. The proposed
model is scalable in that, we can add any related tasks to the first-layer to aid
the target task. Our feedback mechanism results in learning attributes for the
particular target task instead of learning towards the original category labels on
the first-layer. In our model the same vision tasks can act as attribute learners
as well as target tasks, while put on different layers.

3 Our Approach
Our model was designed to handle the following properties:

1. Ability to compose the individual classifiers without information on inner
workings of each classifier. I.e., use state-of-the-art classifier as “black-box”.

2. Learning should be feedback enabled for each classifier. i.e., each classifier
should get hints on which modes to focus its attention on. First-layer classi-
fiers can learn to output meaningful attributes in favor of the target task.

3. Ability to handle heterogeneous datasets, i.e., each task could come with its
separate labeled data. This is a very powerful advantage because most vision
datasets are such.

4. Scale with large number of tasks. i.e., the same model should work if we
increase the number from 4 (in this paper) to say, 10. Our model should
automatically decide how to compose the tasks sparsely.

5. Tractable inference. The inference in our model should be tractable and
its complexity should be no more than constant times the complexity of
inference in the original classifiers.

Notation: Our cascade is built in two layers, as shown in Figure 1. We consider
that there are N tasks in first layer that are being combined in this cascaded
model denoted as Taski where i = 1, 2, . . . , N . Our goal is to combine them for
the task say Taskj , at the output of the second layer in the cascade. Let the

dataset for jth task be Γj , which consists of a labeled pair {X(k), Y
(k)
j }, where

k indices over all the datapoints in the training set.
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In the first layer, the classifier for Taski takes image features Φi(X) as input
and gives output Ti using parameters θi. In the second layer, Yj is the output
for the jth task which uses the original features Xj as well as all the outputs
from the first layer as input, with the parameters ωj . For brevity, we will use Θ
to indicate the set {θ1, . . . , θN}.
Model: Our goal is to learn the parameters by maximizing the conditional log-
likelihood P (Yj |X) over all the data-points in the training-set Γj for task j. In
order to scale well we use a sparse coding 3 of the inputs to the second layer.

maximize
ωj ,Θ

log
∏
k∈Γj

P (Y
(k)
j |X

(k), ωj , Θ)P (ωj)P (Θ) (1)

Here, P (ωj) and P (Θ) are the terms that enforce sparsity. Note that the
parameter set ωj is typically extremely high-dimensional (and increases with the
number of tasks) because the second layer classifiers take as input the original
features as well as outputs of all previous layers. The learning problem becomes
ill-conditioned, and therefore in most prior works, the solution is to manually
decide how to connect the pieces together using intuition and insight.

In our work, we want our model to select only a few non-zero weights, i.e.,
only a few non-zero entrees in ωj . We do by using Laplace prior P (ωj) ∝
exp(−λ||ωj ||1). This prior is known to enforce sparsity in the parameters [17].

P (Θ) = P (θ1, θ2, . . . , θN ) on the other hand, is a prior over the parameters of
the first level of classifiers, which only use the image features as inputs. Since we
consider these classifiers to be independent state-of-art black-box classifiers, the
prior P (θ1, θ2, . . . , θN ) =

∏N
i=1 P (θi). Since we want to consider the individual

classifiers as “black-boxes,” we would use the same prior as used by the state-
of-art classifiers (uniform prior in the case of none); typically the image features
selected for these tasks are all relevant (e.g., they were carefully hand-designed).

Now we present our derivation for the training procedure. First we note that
during training, Yj are observed (because the ground-truth labels are available),
however Ti ∀i (output of layer 1 and input to layer 2) are hidden. This makes
training of each classifier hard. Heitz et. al. [5] assumed that each layer is inde-
pendent and that each layer produces the best output independently (regardless
of the later layers); this is not optimal because the first layer classifiers could be
focusing on error modes that are not necessary for final output for task j.

In this work, we formulate the cascaded model as a probabilistic model which
allows for a better learning algorithm in optimizing the final output. Using Figure
1, we write Eqn 1 as,

maximize
ωj ,Θ

∑
k∈Γj

log

 ∑
T

(k)
1 ,...,T

(k)
N

P (Y
(k)
j , T

(k)
1 , . . . , T

(k)
N |X

(k), ωj , Θ)P (ωj)

⇔

maximize
ωj ,Θ

∑
k∈Γj

log

 ∑
T

(k)
1 ,...,T

(k)
N

(
P (Y

(k)
j |X

(k), T
(k)
1 , . . . , T

(k)
N , ωj)P (ωj)

N∏
i=1

P (T
(k)
i |X

(k), θi)

)
(2)

3 Sparse coding is a technique used for finding concise, slightly higher-level represen-
tations of inputs, and was applied in a an unsupervised setting in [16].
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The summation inside the log makes it difficult to learn the parameters. Moti-
vated by the Expectation Maximization [18] algorithm, we use algorithm where
we first fix the latent variables and learn the parameters in the first step (Pa-
rameter learning), and then, estimate the latent variables (Latent variable esti-
mation) with the parameters fixed. While this algorithm is not guaranteed to
converge to the “global” maxima, in practice, we found it gives good results,
typically after 5 - 10 iterations.
Parameter learning : In this step, we assume that the latent variables are
known (from the Latent-variable-estimation step).4 The summation inside the
log in Eqn 2 goes away, and the maximization problem then breaks into two
separate problems as follows.

∀i ∈ {1, . . . , N}, maximize
θi

∑
k∈Γj

logP (T
(k)
i |X

(k), θi) (3)

maximize
ωj

∑
k∈Γj

logP (Y
(k)
j |X

(k), T
(k)
1 , . . . , T

(k)
N , ωj)P (ωj) (4)

Each of the maximization problem in Eqn 3 is precisely the learning problem of
the “blackbox classifier,” and we would use the learning method provided by the
individual blackbox classifier. Note that in this part, the individual classifiers
need not have a probabilistic interpretation (e.g., SVM); they just need to be
able to train their parameters given a training set (using whatever algorithm).

The maximization problem in Eqn 4 is also an instantiation of the original
learning problem, but with more inputs. There are several methods to approach
this problem depending on the situation as follows:

1. Case 1: No insight into the vision problem, and no probabilistic interpretation
of the original classifier for task j is available.
In this case, we will append all the outputs T1, . . . , TN to the original feature
vectors X(k), and make a variational approximation on the output of the
classifier for task j (i.e., approximating it as a Gaussian, [19]) to get:

minimize
ωj

∑
k∈Γj

(∣∣∣∣∣∣Yj − ωTj [X(k), T1, . . . TN ]
∣∣∣∣∣∣2

2
+ λ |ωj |

)
(5)

2. Case 2: No insight into the vision problem, and probabilistic interpretation
of the original classifier is available.
In this case, we just append all the outputs T1, . . . , TN to the original feature
vectors X(k), and solve problem Eqn 4 using exactly the same method as
provided by the original classifier.

3. Case 3: Insight into the vision problem is available.
In this case, instead of feeding the outputs of the previous layer as ap-
pended features, we would use our insights into the problem to properly
model P (Yi|X,T1, . . . , TN ).

In this paper, we show that even with Case 1, we get uniformly better results
across tasks. We believe that, if for a particular problem, one has insights into

4 We initialize the model by setting the latent variables Ti ∀i, to the ground truth for
the respective tasks.
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the vision problem, one could use case 3 and achieve even better results than
what we present here.

Latent variable estimation: In this step, we assume that parameters ωj and

θi are known. We now compute T
(k)
1 , . . . , T

(k)
N ,∀k ∈ Γj . Using Eqn 2, we get,

∀k ∈ Γj , maximize
T1,...,TN

logP (Y
(k)
j , T1, . . . , TN |X(k);ωj , θ1, . . . , θN )

⇔ ∀k ∈ Γj maximize
T1,...,TN

logP (Y
(k)
j |X

(k), T1, . . . , TN ) +

N∑
i=1

logP (Ti|X(k); θi)
(6)

As discussed in the previous section on Parameter estimation, we can make
a variational approximation to these probabilities if the characterization of the
individual black-box classifiers is not available in a probabilistic form. (If the
probabilistic characterization is available, we would use that characterization.)

The feed-back step gives optimal values for the latent variables which allows
us to obtain optimal performance at the second stage. There is an added advan-
tage of the feed-back step which enables us to work with heterogeneous datasets.
Using this step, we automatically get the estimates of the latent variables for
Taski for the dataset Γj , (i 6= j) that do not have all the labels when we started
the algorithm. These optimal latent variablesare used in the parameter learning
step again and the alternating algorithm iterates to convergence.
Inference. During inference, the parameters are already estimated, and the in-
ference (i.e., maximizing the conditional log likelihood P (Yj |X) for a given image
X) corresponds to performing inference over first layer (using existing inference
techniques in the black-box classifiers), followed by inference in the second layer,
again using the existing inference techniques in the black-box classifiers with the
extra features, i.e., previous stage’s outputs. Thus the total time required for in-
ference in our model is no longer than the total time of the inference for (N + 1)
individual classifiers, where N is the number of tasks on the first layer. Since
our structure allows paralleled inference for different tasks on the first layer, the
inference time can then decrease to the maximum inference time for individual
classifiers plus the inference time for task j on the second layer.

4 Implementation

To test our algorithm, we consider four different vision tasks (i.e., N = 4): event
categorization, depth estimation, scene categorization and saliency detection. In
this section, we describe our implementation for each of our classifiers.

Event Categorization: For event categorization, our goal is to classify an
image into one of the 8 sports events as defined in [14]: bocce, badminton, polo,
rowing, snowboarding, croquet, sailing and rock-climbing. We define the output
of an event classifier to be an 8-dimensional vector with each element representing
the log-odds score for each category. For evaluation, we compute the accuracy
of assigning the correct event label to an image. For an event categorization
module, we implement a multi-class logistic classifier. In the first-layer event
classifier, we use a 51-dimensional feature vector as input, including the top 30
PCA projections of the 512-dimensional GIST features [20], the 12-dimension
global color features (the mean and variance of RGB and YCrCb channels over
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the entire image), the 8-dimension object detection features (the absent indicator
and the detected number of the four object classes: boat, horse, person, and car),
and a bias term. We apply the latent-svm method [21] for object detection, and
we train the detectors with the PASCAL 2008 dataset [22], which is not used
for any training/testing for any of the four tasks we consider here.

Depth Estimation: For single image depth estimation, the goal is to estimate
the depth of each point in the image. The output of a depth estimation mod-
ule is therefore a real-value for each point in an image, evaluated by measuring
the root mean squared error between the estimated depth and the ground truth
laser depth same as in Make3D range image dataset [1]. We use superpixel-level
features extracted from the image as described in [1] as input for depth estima-
tion. The features include the texture, color and texture gradients extracted by
convolving the image with Laws’ masks and computing the energy and Kurtosis
over the superpixel, and the superpixel shape features. For the depth estimation
module, we use a linear regression to help estimate the depth of every point in
the image. Note that though we are using a simpler version (i.e., without Markov
Random Field), our model gives better results (e.g., better than Make3D that
uses MRF formulation).

Scene Categorization: For scene categorization, our goal is to classify an im-
age into one of the 8 categories defined in [23]: tall building, inside city, street,
highway, coast, opencountry, mountain and forest. We define the output of a
scene classifier to be a 8-dimensional vector with each element representing the
score for each category. We evaluate the performance by measuring the overall
accuracy of assigning the correct scene label to an image on MIT outdoor scene
dataset [23]. For the first-layer scene classifier, we use a RBF-Kernel SVM clas-
sifier, as used in [24], to classify an image into one of the scene categories. We
use a 512-dimensional GIST features [23] as input for the first-layer classifier.

Saliency Detection For saliency detection, our goal is to classify each point in
the image to be either salient or non-salient. Therefore we define the output of
a saliency classifier to be a scalar indicating the salient confidence score at each
point in the image. To get the final result, we threshold the saliency score to
decide whether it is a salient point or not. We use the saliency detection dataset
used in [25] for evaluation. For the saliency detection module, we use logistic
regression to help estimate the saliency score of every point in the image. In the
first layer of the cascaded models, we use a 3-dimensional feature vector based on
the Lab color space as input for saliency estimation. The 3-dimensional features
are computed using the method described in [25].

We use “Case 1” described in Section 3 for the second layer classifier, where
we append the outputs of previous layers to the original features of each task.

5 Experiments and results
We conduct an extensive set of experiments to validate and evaluate the perfor-
mance of our proposed approach. We first describe the setup of the experiments
to help understand our quantitative analysis.

5.1 Experimental Setup
For the four tasks described in Section 4, we use the same proposed model for
each task; in each case we optimize the respective task at the second layer of
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Table 1. Summary of results for the four vision tasks. Our method improves perfor-
mance in every single task. Proposed approaches shaded and best model in bold.

Event Depth Scene Saliency
Model Categorization Estimation Categorization Detection

(% Accuracy) (RMS Error in m) (% Accuracy) (% Accuracy)
Images in testset 1579 400 2688 1000

Chance 12.5 24.6 12.5 50

State-of-art 73.4 16.8 (MRF) 83.7 82.5 (±0.2)
model Li et.al. [14] Saxena et.al. [1] Torralba et.al. [24] Achanta et.al. [25]

Our base-model 72.0 (±0.8) 18.5 (±0.4) 83.8 (±0.2) 85.5 (±0.2)
All-features-direct 72.6 (±1.5) 16.4 (±0.4) 83.9 (±0.4) 86.2 (±0.2)

CCM 72.8 (±1.6) 16.2 (±0.4) 83.7 (±0.6) 86.5 (±0.2)
(Heitz et.al.)

CCM 73.3 (±1.0) 15.3 (±0.2) 83.8 (±0.6) 87.3 (±0.2)
with feedback
Sparse-CCM 73.6 (±1.4) 16.0 (±0.2) 83.9 (±0.2) 86.6 (±0.1)

without feedback
Sparse-CCM 75.3 (±0.6) 15.2 (±0.1) 85.3 (±0.2) 87.3 (±0.1)
with feedback

the model. We perform 4-fold cross-validation to evaluate the performance of
the event categorization and scene categorization tasks on a set of 1579 images
and 2688 images respectively. We perform 2-fold cross validation to evaluate the
performance of the depth estimation and the saliency detection tasks on a set
of 400 images and 1000 images respectively. (We use the same dataset as the
state-of-the-art classifiers for the respective tasks.)

5.2 Results

Table 1 gives a summary of the results for all four tasks. We first descibe the
various models we compare. In brief, we highlight that we compare our approach
with the state-of-art performance published for each task on that specific dataset
and our implementation of the previously proposed cascaded classifier models
by Heitz et. al. [5].

1. State-of-art model: We compare with [14] for event categorization, [1] for
depth estimation (this uses an MRF framework; nevertheless we show that
our final proposed model can outperform this using just linear regression),
[24] for scene categorization and [25] for saliency detection 5. Note that these
state-of-the-art methods already use well-designed features/structures, and
some [14, 1] also use a lot of context in different forms.

2. Our base-model: This model corresponds to our baseline classifier (i.e., the
individual classifiers independently trained). This serves as a base model to
evaluate the performance of our algorithm.

3. All-features-direct: This model simply appends together all features used in
each task, and builds a separate classifier for each task. Sparsity is used to
eliminate overfitting.

4. CCM: This model is our implementation of the cascaded classifier model
proposed by Heitz et. al. [5]. (It was verified that the implementation gives
similar results.) Note that this model neither has feedback nor sparsity.
The following three models are the new models we propose:

5 Most of the prior work on saliency detection are unsupervised. Since we consider
supervised classifiers, we use the same features as Achanta et. al. [25] and train a
linear regression model using the training set and test it on the test set.
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Fig. 2. (a) Event categorization accuracy, (b) Depth estimation error, (c) Scene
categorization accuracy, (c) Saliency detection accuracy

Fig. 3. (a) Event categorization confusion matrix, (b) Scene categorization confusion
matrix In each confusion table, the rows represent the ground truth categories while
the column represent the estimated categories.

5. CCM with feedback: In this model, our training method based on latent
variables is used.

6. Sparse-CCM without feedback: This method uses sparsity, however does not
use our training method, i.e., it is equivalent to CCM with the sparsity term.

7. Sparse-CCM with feedback: This is the complete model we propose which
incorporates sparsity into the CCM framework along our training method
using latent variables.

Table 1 shows that the feedback mechanism and the sparsity property both
help improve performance over the CCM model in [5]. Our Sparse-CCM with
feedback model outperforms the state-of-art models as well as the original CCM
for each task. Furthermore, besides improving the performance, our complete
model also provides more stability than all the other methods we compare to
(see σ for the results in the table, and error bars in Figure 2). The standard
deviations in our experiments show that our improvements in the results are
statistically significant.
Categorization Tasks. Figure 3 shows the confusion matrix for event catego-
rization and scene categorization. Note that in our base classifiers we use fewer
object detectors when compared to [14], and our detectors are also more coarse,
e.g., we do not differentiate rowing boats and sailing boats. Even then our model
automatically learns to use the outputs from the different tasks on the first layer
efficiently and improves event categorization accuracy. For the task of scene cat-
egorization, not only we see improvement in the overall performance, we also
achieve either equal or better accuracy for every individual category compared
to [24] (Figure 3b).
Depth estimation. Figure 4 (first 2 rows) gives a visualization of the perfor-
mance improvement due to the proposed model. We observe that our model is
clearly better than both the CCM model (Heitz et. al.) as well as the base model.
Saliency detection. The last two rows of Figure 4 shows the improvement in
saliency detection. Here the cyan color indicates the salient region. Observe in
particular that, parts of the sky and ground were incorrectly classified as salient
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Fig. 4. First two rows show the depth estimation improvement (All are gray scale
depth maps). The last two rows show the saliency detection improvement (cyan color
indicates salient regions) (a) Image from the dataset; (b) Ground truth; (c) Result from
the base-model; (d) Result using the CCM model without feedback (Heitz et. al.); (e)
Result from the proposed Sparse-CCM with feedback. (Note that: The depth maps are
at the same scale; black means near and white means far).

region in the CCM model however, with the proposed model, the feed-back
corrects this to result in a much better saliency detection.

5.3 Discussion
The proposed model for combining classifiers via the latent variable estimation
(feedback) step, results in the first-layer classifiers learning meaningful attributes
rather than the original target labels. This is different from the model by Heitz
et. al. [5] where each layer is trained towards the target labels. For example, in
our model, the outputs from the first-layer scene classifier tells whether an image
is “open country-like” or “forest-like” or both (thus, it focuses on describing the
image modes rather than simply discriminating different classes); the outputs
from the first-layer depth estimator gives an attribute of potential depth condi-
tion in different regions across the image, etc. Our model then uses the Laplace
prior to enforce sparsity in the connections between two layers, resulting in in-
teresting observations about the “attribute”-“target task” relationship.

Non-zero components in the weights ωj represent the outputs being used in
the connections. Figure 5a visualizes the weights given to the depth attributes
(first-layer depth outputs) for the task of event categorization. Figure 5b shows
the same for the task of scene categorization. We see that the depth plays an
important role in these tasks. In Figure 5a, we observe that most event categories
rely on the middle part of the image, where the main objects of the event often
locates. E.g., most of the “polo” images have horses and people in the middle of
the image while many “snowboarding” images have people jumping in the upper-
middle part. For scene categorization, most of the scene categories (e.g., coast,
mountain, open country) have sky in the top part, which is not as discriminative
as the bottom part. In scene categories of tall buildings and street, the upper
part of the street consists of buildings, which discriminates these two categories
from others. Not surprisingly, our method had automatically figured this out
(see Figure 5b).
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(a) Maps of weights ωE given to the depth attributes for the task of event
categorization

(b) Maps of weights ωS given to the depth attributes for the task of scene
categorization

Fig. 5. Figure showing the importance of depths in different regions for predicting
different events/scenes. Our algorithms automatically selects the appropriate non-zero
connections between the depth attributes to the final categorization tasks. An example
image for each class is also shown above the map of the weights.

Now, we look at the connections between scene categorization and event
categorization (Figure 6). First, it agrees with our intuitions that high weights
are assigned to the outputs of the first-layer classifier that is the same as the
task (e.g. The “street-like” attribute supports the recognition of a street scene).
Second, the scene output supports event categorization and vice versa. This
is also consistent with [14]’s intuition, where the authors (manually) decide to
include the scene into the event categorization model. We also observe that in
Figure 6-left, our algorithm had assigned high weights to “forest-like” attribute
for the event classification tasks of “bocce”, “polo” and “croquet” (these events
happen in environments close to forest), and to “open-country-like” for “bocce”
event, and to “coast-like” for “rowing” event, and so on. Also note that the
“croquet-like” attribute actually supports the final event output of “bocce”,
which indicates our first-layer output learns to describe the image semantically
instead of simply discriminating different classes.

Our model scales well with large number of tasks, where we want our task
to depend on only a few of all the tasks (i.e. few more effective attributes). For
this purpose, we used our algorithm to construct a sparse graph for connecting
the tasks. For the task of event categorization, Figure 7-left shows the weight
map learned for all the first-layer outputs from different classifiers —these are
the input of the second-layer event classifier. We observe that all the weights
corresponding to the saliency output are extremely low, which indicates that
the “salient region” attribute plays little role in the final decision. Therefore
we remove the link from the first-layer saliency box to the second-layer event
categorization task. (We also verify that removing this link has no effect on the
results.) With sparsity, the second-layer classifier input is reduced from 241-
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Fig. 6. (Left) Map of weights given to event and scene attributes outputs (shown in
rows) for the task of event categorization (the columns), (Right) Map of weights given
to them (rows) for task of scene categorization (columns). To clarify with an example,
the left-bottom element in the left figure indicates the weight assigned to the first-layer
score of being a forest-like scene for computing the final score of being a bocce event.

Fig. 7. (Left) The weights for the task of event categorization. (Right) The sparse
graph inferred using our method.

dimension to 48-dimension. Figure 7-right shows the removed links for all other
tasks overlaid on one figure. We note that depth is important for all the tasks,
and predicting depth from single image also requires information from all the
tasks. (This is consistent with [26] where they observed that a lot of information
and expressive power is needed for the task of single image depth prediction.)

6 Conclusions
We present a generic cascaded model for connecting different vision tasks to
aid holistic scene understanding. Our model considers the intermediate layer as
a hidden layer, whose output can be suitably inferred through feedback from
the latter layer. Prior work by Heitz et. al. [5] provided a good framework for
combining classifiers but, as they point out, gets stuck as classifiers at each
layer are strictly trained towards “labels”. Our feedback based learning method
allows the first layer to focus on more important modes, which results in learning
meaningful “attributes” for optimizing the target task. In addition, we show
that our model can handle heterogenous datasets and scale well to numerous
vision tasks by using sparsity. We have successfully applied the same learning
algorithm to four different vision tasks: saliency detection, event categorization,
depth estimation and scene categorization. In our extensive experiments we show
that our method improved performance in each of the tasks over state-of-the-art
classifiers as well as previous methods of combining different vision tasks.
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